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ON THE BEST CONSTANTS ASSOCIATED WITH n-DISTANCES

GERGELY KISS AND JEAN-LUC MARICHAL

ABSTRACT. We pursue the investigation of the concept of n-distance, an n-variable ver-

sion of the classical concept of distance recently introduced and investigated by Kiss,

Marichal, and Teheux. We especially focus on the challenging problem of computing the

best constant associated with a given n-distance. In particular, we define and investigate

the best constants related to partial simplex inequalities. We also introduce and discuss

some subclasses of n-distances defined by considering some properties. Finally, we dis-

cuss an interesting link between the concepts of n-distance and multidistance.

1. INTRODUCTION

Let X be an arbitrary set, with ∣X ∣ ≥ 2, let n ≥ 2 be an integer, and set R+ = [0,+∞[.
Recall that a map d∶Xn → R+ is said to be an n-distance (a distance if n = 2) on X if it

satisfies the following three conditions:

(i) d(x1, . . . , xn) = 0 if and only if x1 = ⋯ = xn,

(ii) d is invariant under any permutation of its arguments,

(iii) d(x1, . . . , xn) ≤∑n
i=1 d(x1, . . . , xn)zi for all x1, . . . , xn, z ∈X .

Here and throughout, the notation d(x1, . . . , xn)zi stands for the function obtained from

d(x1, . . . , xn) by setting its ith variable to z. Condition (iii) is referred to as the simplex

inequality (the triangle inequality if n = 2).

In the special case of n = 3, the concept of n-distance was introduced in 1992 by

Dhage [3] and called D-metrics. The general n-ary version defined above seems to be

introduced only recently by Kiss et al. [4, 5].

We also observe that various alternative proposals for n-variable distances have been

introduced so far, each of those having interesting features (see, e.g., Deza and Deza [2,

Chapter 3]).

In this paper, we focus our investigation on n-distances and particularly on the following

remarkable property of n-distances. For many n-distances, the simplex inequality can be

refined into

(1) d(x1, . . . , xn) ≤ Kn

n

∑
i=1

d(x1, . . . , xn)zi , x1, . . . , xn, z ∈X,

for some constant Kn ∈ ]0,1[. To give an example, the cardinality based n-distance

defined by d(x1, . . . , xn) = ∣{x1, . . . , xn}∣ − 1 satisfies (1) with Kn = (n − 1)−1 and this

constant is optimal in the sense that (1) no longer holds if Kn is replaced by any value
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lower than (n−1)−1. In fact, the constant Kn = (n−1)−1 is attained, e.g., when x1 ≠ x2 =⋯ = xn = z.

It is important to note that condition (i) above is necessary for such a constant to exist in

]0,1[. Indeed, as it was observed in [5], we always have Kn = 1 if condition (i) is replaced

by the following one:

(i’) d(x1, . . . , xn) = 0 if and only if ∣{x1, . . . , xn}∣ < n.

The main purpose of paper [5] was to provide several instances of n-distances together

with their associated best (i.e., optimal) constants (see Example 2.1 and Table 1 below),

with the additional objective of pointing out relevant properties of n-distances.

In the present paper, we further investigate the general properties of the best constants

associated with n-distances. More precisely, in Section 2 we recall some instances of

n-distances and provide a few new ones. We observe that the best constant associated

with any n-distance cannot be lower than (n − 1)−1 and we introduce the class of those

n-distances, that we call “standard n-distances”, whose associated best constants have pre-

cisely the value (n − 1)−1. We also investigate the problem of constructing an n-distance

with a prescribed best constant. In Section 3, we show that many n-distances satisfy partial

simplex inequalities, i.e., simplex inequalities whose sums have less than n summands. We

also investigate the best constants related to these partial simplex inequalities. In Section

4, we introduce and investigate subclasses of n-distances defined by considering addi-

tional properties such as repetition invariance and nonincreasingness under identification

of variables. Finally, in Section 5, we show how some standard n-distances can be used

to define multidistances, which are special multi-argument distances introduced by Martı́n

and Mayor [6].

The investigation of n-distances and of the associated best constants seems to be very

recent and needs much more examples to be better understood. We hope that by providing

some examples and results here we might attract researchers and make this exciting topic

better known.

To make the reading of the paper easier, we have postponed the proofs of most of our

results to the Appendix.

2. DEFINITIONS AND EXAMPLES

Before presenting the formal definition of the concept of best constant associated with

an n-distance, let us first recall some n-distances introduced and investigated in [5].

Example 2.1 (see [5]). The following are instances of n-distances. Some of them are

defined in terms of a given distance d2 on X .

● Drastic n-distance

d(x1, . . . , xn) =
⎧⎪⎪⎨⎪⎪⎩
0, if x1 = ⋯ = xn,

1, otherwise.

● Cardinality based n-distance

d(x1, . . . , xn) = ∣{x1, . . . , xn}∣ − 1.
● Diameter

d(x1, . . . , xn) = max
{i,j}⊆{1,...,n}

d2(xi, xj).
● Sum based n-distance

d(x1, . . . , xn) = ∑
{i,j}⊆{1,...,n}

d2(xi, xj).
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Name Best constant Type

Drastic n-distance K
∗

n
= (n − 1)−1 attained

Cardinality based n-distance K
∗

n
= (n − 1)−1 attained

Diameter K
∗

n
= (n − 1)−1 attained

Sum based n-distance K
∗

n
= (n − 1)−1 attained

Arithmetic mean based n-distance K
∗

n
= (n − 1)−1 attained

Radius of the smallest encl. circle K
∗

n
= (n − 1)−1 attained

Area of the smallest encl. circle (n ≥ 3) K
∗

n
= (n − 3/2)−1 attained

Fermat n-distance K
∗

n
≤ (4n − 4)/(3n2 − 4n) ?

Number of lines (n ≥ 3) (n − 2 + 2/n)−1 ≤K∗
n
< (n − 2)−1 ?

TABLE 1. Best constants associated with some n-distances

● Arithmetic mean based n-distance (X = R)

d(x1, . . . , xn) = 1

n

n

∑
i=1

xi −min{x1, . . . , xn}.
● Fermat n-distance

d(x1, . . . , xn) = min
x∈X

n

∑
i=1

d2(xi, x).
● Number of lines determined by n points in R

2 (X = R2).● Radius of the smallest circle enclosing n points in R
2 (X = R2).● Area of the smallest circle enclosing n points in R

2 (X = R2 and n ≥ 3).

Definition 2.2 (see [5]). The best constant associated with an n-distance d on X is the

infimum K∗n of the set of real numbers Kn ∈ ]0,1] for which the condition

(2) d(x1, . . . , xn) ≤ Kn

n

∑
i=1

d(x1, . . . , xn)zi , x1, . . . , xn, z ∈X,

holds. Equivalently,

K∗n = sup
x1,...,xn,z∈X
∣{x1,...,xn}∣ ≥2

d(x1, . . . , xn)
∑n

i=1 d(x1, . . . , xn)zi .

We say that the best constant K∗n is attained if there exists (x1, . . . , xn; z) ∈ Xn+1, with

∣{x1, . . . , xn}∣ ≥ 2, such that

d(x1, . . . , xn) = K∗n

n

∑
i=1

d(x1, . . . , xn)zi .
Remark 1. We always have K∗

2
= 1 and this constant is attained regardless of the distance

d considered on X . Indeed, we always have

d(x1, x2) =
2

∑
i=1

d(x1, x2)x1

i , x1, x2 ∈X.

Table 1 provides the best constants corresponding to most of the n-distances defined in

Example 2.1. As observed in [5], the search for the best constant associated with a given

n-distance is usually not an easy problem. It is strongly dependent on the n-distance itself.

In some cases, we could at most determine an interval in which the best constant lies. We

also note that all the best constants that we have found thus far are attained.
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We now state a remarkable, although almost trivial, result showing that the best constant

associated with any n-distance cannot be lower than (n − 1)−1.

Proposition 2.3. For any n-distance d on X , we have K∗n ≥ (n − 1)−1.

Proof. Let d be an n-distance on X and let x, y ∈X , with x ≠ y. Using (2), we obtain

d(x, y, . . . , y) ≤ Kn

n

∑
i=1

d(x, y, . . . , y)yi = Kn(n − 1)d(x, y, . . . , y).
Since d(x, y, . . . , y) ≠ 0, we get Kn ≥ (n − 1)−1. �

As we can see in Table 1, many of the n-distances satisfying K∗n = (n − 1)−1 are based

on rather natural constructions. This observation together with the previous proposition

motivate the following terminology.

Definition 2.4. We say that an n-distance d on X is standard if K∗n = (n − 1)−1.

We know for instance that the radius (or equivalently, the diameter) of the smallest

enclosing circle in R
2 defines a standard n-distance (see Table 1). It is easy to see that this

is also the case for the diameter of the smallest enclosing Chebyshev ball in R
q for any

integer q ≥ 2, that is,

d(x1, . . . , xn) = max
{i,j}⊆{1,...,n}

∥xi − xj∥∞ , x1, . . . xn ∈ R
q.

Indeed, this is exactly the diameter-type n-distance (see Example 2.1) constructed from

the Chebyshev distance on R
q , namely

d2(x, y) = ∥x − y∥∞ , x, y ∈ Rq.

A few nonstandard n-distances based on geometric constructions have also been de-

fined and investigated in [5] (see Table 1). Now, it may be an interesting challenge to

introduce further nonstandard n-distances and determine their associated best constants.

In the following result, we provide such an n-distance on R.

Proposition 2.5 (Length of a largest inner interval). Let d∶Rn → R+ be the map defined

by

(3) d(x1, . . . , xn) = max
i=1,...,n−1

(x(i+1) − x(i)),
where the symbol x(i) stands for the ith smallest element among x1, . . . , xn. Then d is an

n-distance on R. Its best constant is K∗n = 2/n and is attained at any (x1, . . . , xn; z) such

that x1 < x2 =⋯ = xn and z = (x1 + x2)/2.

Remark 2. It is not difficult to see that, for any integer p ≥ 1, the map obtained by raising

the n-distance defined in (3) to the pth power is an n-distance on R if and only if n ≥ 2p.

Its associated best constant is K∗n = 2
p/n and is attained at any (x1, . . . , xn; z) such that

x1 < x2 =⋯ = xn and z = (x1 + x2)/2. The proof is similar to that of Proposition 2.5.

There must be plenty of natural ways to construct maps that look like n-distances. How-

ever, for some of them it might be tricky to establish that they are genuine n-distances and

find their associated best constants.

We end this section by discussing the challenging problem of constructing an n-distance

with a prescribed best constant.

Given a real number s ∈ [(n − 1)−1,1], it is natural to ask whether there exists an n-

distance whose best constant has exactly the value s. The following proposition answers

this question in the affirmative by providing one-parameter families of n-distances cover-

ing all possible best constants.
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Proposition 2.6. We assume that ∣X ∣ ≥ 3. Let s ∈ [(n − 1)−1,1], let e ∈ X , and let d be

any standard n-distance on X . Let also

Cn,s =
1

s
sup

x1,...,xn∈X∖{e}

d(x1, . . . , xn)
∑n

i=1 d(x1, . . . , xn)ei > 0.

Then the map ds∶Xn → R+ defined by

ds(x1, . . . , xn) =
⎧⎪⎪⎨⎪⎪⎩
Cn,s d(x1, . . . , xn), if e ∈ {x1, . . . , xn},
d(x1, . . . , xn), otherwise,

is an n-distance on X whose best constant is K∗n = s.

3. PARTIAL SIMPLEX INEQUALITIES

It is natural to ask whether a given n-distance d on X (with n ≥ 3) satisfies a partial

simplex inequality, i.e., an inequality of the form

(4) d(x1, . . . , xn) ≤ Kn,k

k

∑
i=1

d(x1, . . . , xn)zi , x1, . . . , xn, z ∈X,

for some k ∈ {2, . . . , n−1} and some Kn,k > 0. When Kn,k ≤ 1, such an inequality simply

means that any k-section of d (obtained from d by fixing n−k of its variables) satisfies the

simplex inequality (the triangle inequality if k = 2).

We observe that inequality (4) does not make sense when k = 1. Indeed, for any distinct

x, z ∈X , we would have

0 < d(x, z, . . . , z) ≤ Kn,1 d(z, z, . . . , z) = 0,

a contradiction.

The following proposition shows that (4) holds for all n-distances whose associated best

constants K∗n satisfy K∗n < (n − k)−1.

Proposition 3.1. For any n-distance d on X and any integer k satisfying n−1/K∗n < k ≤ n,

we have

d(x1, . . . , xn) ≤ 1

1/K∗n − n + k
k

∑
i=1

d(x1, . . . , xn)zi , x1, . . . , xn, z ∈X.

Moreover, for any x1, . . . , xn, z ∈X , we have

(5) d(x1, . . . , xn) = 1

1/K∗n − n + k
k

∑
i=1

d(x1, . . . , xn)zi
if and only if K∗n is attained at (x1, . . . , xn; z) and

(6) d(x1, . . . , xn) = d(x1, . . . , xn)zi , i ∈ {k + 1, . . . , n}.
Corollary 3.2. Let d be an n-distance on X and let x1, . . . , xn, z ∈ X . If (5) holds for

some integer k = p satisfying n − 1/K∗n < p ≤ n, then it holds also for any k ∈ {p, . . . , n}.
In view of the first part of Proposition 3.1, we naturally consider the following defini-

tion.

Definition 3.3. Let d be an n-distance on X and let k ∈ {2, . . . , n}. Assume that the set of

real numbers Kn,k > 0 for which the condition

d(x1, . . . , xn) ≤ Kn,k

k

∑
i=1

d(x1, . . . , xn)zi , x1, . . . , xn, z ∈X, ∣{x1, . . . , xn}∣ ≥ 2,
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holds is nonempty. Then, the infimum K∗n,k of this set is called the best k-constant associ-

ated with d.

Example 3.4. Consider the n-distance (n ≥ 3) defined by the area of the smallest en-

closing circle in R
2. Its associated best constant is K∗n = (n − 3/2)−1 (see Table 1). By

Proposition 3.1, we immediately see that K∗n,k exists and satisfies

K∗n,k ≤
1

1/K∗n − n + k =
1

k − 3/2
for any k ∈ {2, . . . , n}. Now, we know [5] that K∗n is attained at any tuple (x1, . . . , xn; z)
such that x1 ≠ x2 and x3 = ⋯ = xn = z = (x1+x2)/2. For such a tuple, condition (6) clearly

holds for any k ∈ {2, . . . , n}, and hence condition (5) also holds for any k ∈ {2, . . . , n}.
Using the second part of Proposition 3.1, we finally obtain that

K∗n,k =
1

1/K∗n − n + k =
1

k − 3/2
for any k ∈ {2, . . . , n}.
Example 3.5. If d is the length of a largest inner interval as defined in Proposition 2.5,

then it is not difficult to show that K∗n,k = 2/k for any k ∈ {2, . . . , n} (just proceed as in the

proof of Proposition 2.5). This example also shows that there are nonstandard n-distances

for which K∗n,2 = 1 (i.e., any 2-section of d satisfies the triangle inequality).

Proceeding as in the proof of Proposition 2.3 and using Proposition 3.1, we can easily

derive the following result.

Proposition 3.6. Let d be an n-distance on X . If K∗n,k exists for some k = p ∈ {2, . . . , n},
then it exists also for any k ∈ {p, . . . , n} and we have K∗n,k ≥ (k − 1)−1 for any k ∈

{p, . . . , n}. Moreover, if d is standard, then K∗n,k exists for any k ∈ {2, . . . , n} and we

have K∗n,k = (k − 1)−1 for any k ∈ {2, . . . , n}.
Proposition 3.6 shows that for any standard n-distance and any k ∈ {2, . . . , n}, we have

d(x1, . . . , xn) ≤ 1

k − 1
k

∑
i=1

d(x1, . . . , xn)zi , x1, . . . , xn, z ∈ X,

and the constant K∗n,k = (k − 1)−1 is the lowest possible constant that we can reach over

all the n-distances. Also, the above inequality implies that for any integer k ∈ {2, . . . , n},
we have

d(x, . . . , x´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
k

, z, . . . , z) ≤ k

k − 1 d(x, . . . , x´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
k−1

, z, . . . , z), x, z ∈X.

From the results and examples above, we obtain the following proposition, which pro-

vides inequality conditions on the best constants K∗n and K∗n,k.

Proposition 3.7. For any n-distance d on X and any integer k satisfying n−1/K∗n < k ≤ n,

the number K∗n,k exists and satisfies the inequalities

1

k − 1 ≤ K∗n,k ≤
1

1/K∗n − n + k
and

K∗n ≥
1

1/K∗n,k + n − k ≥
1

n − 1 .
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All these inequalities are equalities if d is standard. However, they may be strict for some

nonstandard n-distances.

Proof. The existence of K∗n,k and the first two inequalities follow from Propositions 3.1

and 3.6. The remaining two inequalities follow immediately. The case where d is standard

follows from Proposition 3.6. The strictness of the inequalities occurs for instance when

considering the n-distance discussed in Example 3.5 (taking n > k >max{2, n/2}). �

The following result provides sufficient conditions for an n-distance to be standard.

It is particularly interesting for n = 3, where condition (b) reduces to requiring that any

2-section of d satisfies the triangle inequality.

Proposition 3.8. Let k ∈ {2, . . . , n − 1} and let d be an n-distance on X satisfying the

following two conditions.

(a) K∗n < (n − k)−1 and is attained at some (x1, . . . , xn; z) satisfying condition (6).

(b) Condition (4) holds for Kn,k = (k − 1)−1.

Then d is standard.

Proof. Using the second part of Proposition 3.1, we obtain K∗n,k = (1/K∗n−n+k)−1. Since

K∗n,k = (k − 1)−1 by condition (b) and Proposition 3.6, we derive K∗n = (n − 1)−1. �

By applying a symmetrization technique on the partial simplex inequality, we obtain the

following result, which provides an additional inequality condition on the best constants

K∗n and K∗n,k.

Proposition 3.9. Let d be an n-distance on X and let k ∈ {2, . . . , n}. If K∗n,k exists, then

we have K∗n ≤
k
n
K∗n,k and the constant k

n
is optimal (in the sense that the equality holds

for at least one n-distance).

In the following example, which is a continuation of Proposition 2.6, we provide the

best k-constant for any k ∈ {2, . . . , n} of an n-distance that has a prescribed best constant

K∗n ∈ [(n − 1)−1,1].
Example 3.10. For any s ∈ [(n− 1)−1,1] and any e ∈X , if we choose the drastic distance

for d in Proposition 2.6, then the map ds is defined by

ds(x1, . . . , xn) =
⎧⎪⎪⎨⎪⎪⎩

1

sn
d(x1, . . . , xn), if e ∈ {x1, . . . , xn},

d(x1, . . . , xn), otherwise.

Let K∗n,k be the best k-constant associated with ds. By proceeding as in the proof of

Proposition 2.6, we see that K∗n,k exists for any k ∈ {2, . . . , n} and we have K∗n,k =

max{ns/k, (k − 1)−1}. If s ≥ k/(n(k − 1)), then K∗n,k = ns/k, which illustrates again the

optimality of the constant k/n in Proposition 3.9 (since K∗n = s). If s ≤ k/(n(k− 1)), then

we have K∗n,k = (k − 1)−1 even when d is not standard (which shows that the converse of

the second part of Proposition 3.6 does not hold).

We observed that the second displayed inequality in Proposition 3.7 reduces to an equal-

ity when considering Example 3.4. Now, in the following proposition we provide an ex-

ample of an n-distance for which this equality holds for any k ∈ {2, . . . , n} and that has a

prescribed best constant K∗n ∈ [(n − 1)−1, (n − 2)−1[.
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Proposition 3.11. We assume that ∣X ∣ ≥ 4. Let s ∈ [(n − 1)−1, (n − 2)−1[ and set Cn,s =
2

1/s−n+2
≥ 2. Let also a, b ∈ X , a ≠ b, and let d be the drastic n-distance on X . Then, the

map ds∶Xn → R+ defined by

ds(x1, . . . , xn) =
⎧⎪⎪⎨⎪⎪⎩
Cn,s d(x1, . . . , xn), if a, b ∈ {x1, . . . , xn},
d(x1, . . . , xn), otherwise,

is an n-distance on X whose best constant is K∗n = s. Moreover, for any k ∈ {2, . . . , n},
its best k-constant K∗n,k exists and we have K∗n,k =

1

1/K∗

n−n+k
.

Remark 3. We observe that Proposition 3.11 can be easily generalized by considering the

assumption that s ∈ [(n − ℓ)−1, (n − ℓ − 1)−1[ for some integer ℓ satisfying 1 ≤ ℓ ≤ n − 2.

However, the value of Cn,s and the admissible range of k are to be adapted accordingly.

4. ADDITIONAL PROPERTIES FOR n-DISTANCES

We now introduce and investigate subclasses of n-distances defined by considering

some special properties. Throughout this section, for any k ∈ {1, . . . , n} and any x ∈ X ,

the notation k ⋅ x stands for the k-tuple x, . . . , x. For instance, we have

d(3 ⋅ x,2 ⋅ y) = d(x,x, x, y, y).
Definition 4.1. Let k ∈ {2, . . . , n}. We say that an n-distance d on X fulfills the strong

k-simplex inequality if there exists Mn,k > 0 such that, for any n1, . . . , nk ∈ {1, . . . , n}
with n1 +⋯+ nk = n, the map d′∶Xk → R+ defined by

(7) d′(x1, . . . , xk) = d(n1 ⋅ x1, . . . , nk ⋅ xk), x1, . . . , xk ∈ X,

satisfies

d′(x1, . . . , xk) ≤ Mn,k

k

∑
i=1

d′(x1, . . . , xk)zi , x1, . . . , xk, z ∈X.

For instance, a 4-distance d on X satisfies the strong 2-simplex inequality if and only if

there exists M > 0 such that

d(2 ⋅ x1,2 ⋅ x2) ≤ M (d(2 ⋅ z,2 ⋅ x2) + d(2 ⋅ x1,2 ⋅ z)),
d(3 ⋅ x1, x2) ≤ M (d(3 ⋅ z, x2) + d(3 ⋅ x1, z)),

for all x1, x2, z ∈X .

Remark 4. It should be noted that the map d′∶Xk → R+ defined in (7) need not be sym-

metric. In particular, d′ need not be a k-distance.

Many n-distances discussed in this paper satisfy the strong k-simplex inequality for

k = 2, . . . , n. This is the case for instance for the radius of the smallest enclosing circle in

R
2, where the map d′∶Xk → R+ defined in (7) is symmetric. The following example shows

that the arithmetic mean based n-distance also satisfies the strong k-simplex inequality for

k = 2, . . . , n. However, in this latter case the map d′ is clearly not symmetric.

Example 4.2. For any k ∈ {2, . . . , n}, the arithmetic mean based n-distance satisfies the

strong k-simplex inequality with constant Mn,k = (k − 1)−1. Indeed, let n1, . . . , nk ∈

{1, . . . , n} be such that n1 + ⋯ + nk = n and let d′∶Xk → R+ be the map defined in (7).

Let x1, . . . , xk ∈ X . We can assume without loss of generality that x1 ≤ ⋯ ≤ xk . Then the

inequality

d′(x1, . . . , xk) ≤ 1

k − 1
k

∑
i=1

d′(x1, . . . , xk)zi ,
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reduces to

1

n

k

∑
i=1

nixi − x1 ≤
1

n

k

∑
i=1

nixi −min{x1, z} + 1

k − 1 (z −min{x2, z}) ,
or equivalently,

(k − 1)(x1 −min{x1, z})+ (z −min{x2, z}) ≥ 0,

which clearly holds.

Definition 4.3. We say that an n-distance d on X is repetition invariant if for any x1, . . . ,

xn, x′
1
, . . . , x′n ∈ X , we have

{x1, . . . , xn} = {x′1, . . . , x′n} ⇒ d(x1, . . . , xn) = d(x′
1
, . . . , x′n).

Many n-distances discussed in this paper are repetition invariant. For instance, the

cardinality based n-distance and the length of a largest inner interval (see Proposition 2.5)

are repetition invariant. The following example provides two instances of n-distances that

are not repetition invariant.

Example 4.4. The arithmetic mean based n-distance d on R is not repetition invariant.

Indeed, for any x, y ∈ R such that x < y, we have d(x, y, y) = 2

3
(y − x) > 1

3
(y − x) =

d(x,x, y). Also, in general, the Fermat n-distance d on X defined in terms of a distance d2
on X is not repetition invariant. Indeed, consider the distance d2(x, y) = ∣x− y∣ on X = R.

Denoting the Fermat point of (0,0,1,1) by x ∈ [0,1], we have d(0,0,1,1) = 2x+2(1−x) =
2. Denoting the Fermat point of (0,1,1,1) by x ∈ [0,1], we have d(0,1,1,1) = 3 − 2x,

which is minimized by x = 1, with value 1.

Fact 4.5. If an n-distance d on X is repetition invariant and satisfies the strong k-simplex

inequality for some k ∈ {2, . . . , n}, then the map d′∶Xk → R+ defined in (7) is symmetric,

and hence it is a k-distance whenever Mn,k ≤ 1. As an important special case when k = 2,

the set X is metrizable by d′ whenever Mn,2 ≤ 1.

In the next proposition, we show that any standard n-distance that is repetition invariant

satisfies the strong k-simplex inequality for any k ∈ {2, . . . , n}. We also provide the opti-

mal value of the corresponding constant Mn,k. Of course the case k = n is trivial and we

clearly have Mn,n = (n − 1)−1. We first present a technical lemma.

Lemma 4.6. Let d be a standard n-distance on X that is repetition invariant, let k ∈
{2, . . . , n − 1}, and let p ∈ {0, . . . , n − k}. Then, for any x1, . . . , xk, z ∈X , we have

d(x1, . . . , xk−1, xk, . . . , xk)
≤

k + p
(k − 1)(k + p − 1)

k−1

∑
i=1

d(x1, . . . , xk−1, xk, . . . , xk)zi
+ p + 1
(k − 1)(k + p − 1) d(x1, . . . , xk−1, z, . . . , z).

Moreover, the constants are optimal.

Proposition 4.7. If a standard n-distance d on X is repetition invariant, then, for any

k ∈ {2, . . . , n − 1}, it satisfies the strong k-simplex inequality with constant

Mn,k = (k − 1)−1 + (k(k − 1)(n − 1))−1
and this constant is optimal and attained.
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Remark 5. By Proposition 4.7, any standard n-distance d on X that is repetition invariant

satisfies the strong k-simplex inequality for any k ∈ {2, . . . , n}. Moreover, if k ≥ 3, then

we have Mn,k ≤ 1, and hence the map d′ defined in (7) is a k-distance by Fact 4.5. We

might then say that d is reducible to a k-distance.

We observe that by removing the standardness assumption in Lemma 4.6 and Proposi-

tion 4.7, we can prove similarly the following more general result. However, the optimality

of Mn,k is no longer ensured.

Proposition 4.8. If an n-distance d on X is repetition invariant, then, for any integer k

satisfying n − 1/K∗n < k < n, it satisfies the strong k-simplex inequality with constant

Mn,k =
K∗n + 1

1/K∗n − n + k −
K∗n

k
.

Also, we have Mn,k ≤ 1 if k ≥ n + 2 − 1/K∗n (and Mn,k > 1 if k ≤ n + 1 − 1/K∗n).

In the following definition, we introduce a property for n-distances that is stronger than

repetition invariance. We observe that this property was already considered in the special

case of n = 3 in the framework of G-metric spaces in [8].

Definition 4.9. We say that an n-distance d on X is nonincreasing under identification of

variables if for any x1, . . . , xn ∈ X , we have

d(x1, . . . , xn−1, xn) ≥ d(x1, . . . , xn−1, x1).
In other words, the distance cannot increase when two variables are identified.

Proposition 4.10. If an n-distance d on X is nonincreasing under identification of vari-

ables, then it is repetition invariant.

Example 4.11. The cardinality based n-distance on X is nonincreasing under identifica-

tion of variables. The length d of a largest inner interval (see Proposition 2.5) is not nonin-

creasing under identification of variables. Indeed, we have 1 = d(1,2,3) < d(1,3,3) = 2.

Proposition 4.12. Let d be an n-distance on X that is nonincreasing under identification

of variables. Let k ∈ {2, . . . , n} be such that K∗n,k exists (see Definition 3.3). Then d

satisfies the strong k-simplex inequality with constant Mn,k =K
∗
n,k.

Corollary 4.13. Let d be a standard n-distance on X that is nonincreasing under identifi-

cation of variables. Then, for any k ∈ {2, . . . , n}, d satisfies the strong k-simplex inequality

with constant Mn,k = (k − 1)−1.

5. MULTIDISTANCES

Recall that a multidistance on X , as defined by Martı́n and Mayor [6], is a function

d∶⋃n≥2X
n → R+ satisfying the following three conditions, for every integer n ≥ 1:

(i) d(x1, . . . , xn) = 0 if and only if x1 = ⋯ = xn,

(ii) d∣Xn is invariant under any permutation of its arguments,

(iii) d(x1, . . . , xn) ≤∑n
i=1 d(xi, z) for all x1, . . . , xn, z ∈X .

As already observed in [5], some n-distances cannot be considered to define multidis-

tances. For instance, the area of the smallest circle enclosing n points in R
2 cannot be

used to define a multidistance (since the triangle inequality does not hold when n = 2).

Likewise, the number of lines determined by n points of R2 cannot be used to define a
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multidistance. Indeed, if the points x1, . . . , xn are pairwise distinct and placed on a circle

centered at z, then for any integer n ≥ 3 we have

dn(x1, . . . , xn) = (n
2
) > n =

n

∑
i=1

d2(xi, z).
We also observe that many n-distances can be considered to define multidistances, even

in the nonstandard case. The largest inner interval as defined in Proposition 2.5 could serve

as a very simple example here.

In the following proposition, we show how multidistances can be easily defined from

certain standard n-distances.

Lemma 5.1. Let d be a standard n-distance on X , let g∶X2 → R+ be a function, and let

z ∈ X . If d(x, z, . . . , z) ≤ g(x, z) for all x ∈ X , then for any k ∈ {1, . . . , n} we have

d(x1, . . . , xk, z, . . . , z) ≤
k

∑
i=1

g(xi, z) , x1, . . . , xk ∈X.

In particular,

d(x1, . . . , xn) ≤
n

∑
i=1

g(xi, z) , x1, . . . , xn ∈X.

Proposition 5.2. Let (dn)n≥2 be a sequence, where dn is a standard n-distance on X

satisfying

dn(xn, zn, . . . , zn) ≤ d2(xn, zn), n ≥ 2 ; xn, zn ∈X.

Then the map d∶⋃n≥2X
n → R+ defined by d∣Xn = dn is a multidistance on X .

Proof. This is an immediate consequence of Lemma 5.1. �

It is known [1, 7] that the radius of the smallest enclosing circle in R
2 defines a multi-

distance. The next example shows how we can retrieve this result from Proposition 5.2.

Example 5.3. Consider the sequence (dn)n≥2, where the n-distance dn is defined by the

radius of the smallest circle enclosing n points in R
2. We then have dn(xn, zn, . . . , zn) =

d2(xn, zn) for all n ≥ 2 and all xn, zn ∈ R
2. By Proposition 5.2, the map d∶⋃n≥2(R2)n →

R+ defined by d∣Xn = dn for all n ≥ 2 is a multidistance on R
2.

The following example shows that the arithmetic mean based n-distance defines a mul-

tidistance, provided its binary version is doubled.

Example 5.4. Consider the sequence (dn)n≥2, where dn is the arithmetic mean based n-

distance on R. For any n ≥ 3, we have dn(xn, zn, . . . , zn) ≤ d2(xn, zn) if and only if

zn ≤ xn. Now, replacing d2 by the map d′
2
∶R2 → R+ defined by

d′
2
(x, z) = dn(x, z, . . . , z) + dn(z, x, . . . , x) = 2d2(x, z),

we obtain dn(xn, zn, . . . , zn) ≤ d′2(xn, zn) for all n ≥ 2 and all xn, zn ∈ R. By Proposi-

tion 5.2, the map d∶⋃n≥2(R2)n → R+ defined by d∣Xn = dn for all n ≥ 3 and d∣X2 = d′
2

is

a multidistance on R
2.

In the following proposition, we show how n-distances can be defined from certain

multidistances. The proof is straightforward and thus omitted.

Proposition 5.5. Let d∶⋃n≥2X
n → R+ be a multidistance onX and let n ≥ 3 be an integer.

If dn = d∣Xn is nonincreasing under identification of variables and satisfies d(x, z) ≤
dn(x, z, . . . , z) for all x, z ∈ X , then it is an n-distance.



12 GERGELY KISS AND JEAN-LUC MARICHAL

APPENDIX: PROOFS

Proof of Proposition 2.5. If n = 2, then d is the usual Euclidean distance on R. Now

suppose that n ≥ 3 and let x1, . . . , xn, z ∈ R be such that ∣{x1, . . . , xn}∣ ≥ 2. By symmetry,

we can assume without loss of generality that x1 ≤ ⋯ ≤ xn. Let p ∈ {1, . . . , n − 1} such

that d(x1, . . . , xn) = xp+1 − xp. There are two exclusive cases to consider.

● Case z ∉ ]xp, xp+1[.
– If 1 ≠ p ≠ n− 1, then d(x1, . . . , xn)zi ≥ d(x1, . . . , xn) for i = 1, . . . , n, that is,

n

∑
i=1

d(x1, . . . , xn)zi ≥ nd(x1, . . . , xn).
– If p = 1, then d(x1, . . . , xn)zi ≥ d(x1, . . . , xn) for i = 2, . . . , n, that is,

n

∑
i=1

d(x1, . . . , xn)zi ≥ (n − 1)d(x1, . . . , xn).
– If p = n− 1, then d(x1, . . . , xn)zi ≥ d(x1, . . . , xn) for i = 1, . . . , n− 1, that is,

n

∑
i=1

d(x1, . . . , xn)zi ≥ (n − 1)d(x1, . . . , xn).
● Case z ∈ ]xp, xp+1[. Set λ = (z − xp)/(xp+1 − xp).

– If 1 ≠ p ≠ n − 1, then d(x1, . . . , xn)zi ≥ max{λ,1 − λ}d(x1, . . . , xn) ≥
1

2
d(x1, . . . , xn) for i = 1, . . . , n, that is,

n

∑
i=1

d(x1, . . . , xn)zi ≥ n

2
d(x1, . . . , xn).

– If p = 1, then d(x1, . . . , xn)zi ≥max{λ,1−λ}d(x1, . . . , xn) for i = 2, . . . , n,

and d(x1, . . . , xn)z1 ≥ (1 − λ)d(x1, . . . , xn), that is,

n

∑
i=1

d(x1, . . . , xn)zi
≥ (n − 1)max{λ,1 − λ}d(x1, . . . , xn) + (1 − λ)d(x1, . . . , xn)
≥ (n − 2)max{λ,1 − λ}d(x1, . . . , xn) + d(x1, . . . , xn)
≥

n

2
d(x1, . . . , xn).

– If p = n − 1, then d(x1, . . . , xn)zi ≥ max{λ,1 − λ}d(x1, . . . , xn) for i =
1, . . . , n − 1, and d(x1, . . . , xn)zn ≥ λd(x1, . . . , xn), that is,

n

∑
i=1

d(x1, . . . , xn)zi
≥ (n − 1)max{λ,1 − λ}d(x1, . . . , xn) + λd(x1, . . . , xn)
≥ (n − 2)max{λ,1 − λ}d(x1, . . . , xn) + d(x1, . . . , xn)
≥

n

2
d(x1, . . . , xn).

To summarize, we have

K∗n ≤ max{(n − 1)−1,2/n} = 2/n.
To complete the proof, it suffices to observe that the best constant is attained at any tuple

having the stated properties. �
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Proof of Proposition 2.6. We first observe that Cn,s ≤ 1. Indeed, using standardness of d,

we obtain

sup
x1,...,xn∈X∖{e}

d(x1, . . . , xn)
∑n

i=1 d(x1, . . . , xn)ei ≤
1

n − 1 ≤ s.

Now, let x1, . . . , xn, z ∈X satisfying ∣{x1, . . . , xn}∣ ≥ 2 and set

R(x1, . . . , xn; z) = d(x1, . . . , xn)
∑n

i=1 d(x1, . . . , xn)zi
and

Rs(x1, . . . , xn; z) = ds(x1, . . . , xn)
∑n

i=1 ds(x1, . . . , xn)zi .

There are two exclusive cases to consider.

● Case e ∈ {x1, . . . , xn}. We can assume that xn = e. If z = e or e ∈ {x1, . . . , xn−1},
then

Rs(x1, . . . , xn−1, e; z) = R(x1, . . . , xn−1, e; z) ≤ (n − 1)−1 .
If z ≠ e and e ∉ {x1, . . . , xn−1}, then, using Cn,s ≤ 1, we obtain

Rs(x1, . . . , xn−1, e; z)
≤

Cn,s d(x1, . . . , xn−1, e)
∑n−1

i=1 Cn,s d(x1, . . . , xn−1, e)zi +Cn,s d(x1, . . . , xn−1, z)
= R(x1, . . . , xn−1, e; z) ≤ (n − 1)−1 .

● Case e ∉ {x1, . . . , xn}. If z ≠ e, then we have

Rs(x1, . . . , xn; z) = R(x1, . . . , xn; z) ≤ (n − 1)−1 .
If z = e, then by the definition of Cn,s, we obtain

Rs(x1, . . . , xn; e) = 1

Cn,s

R(x1, . . . , xn; e) ≤ s .

The cases discussed above show that the best constant of ds is less than or equal to

max{(n − 1)−1, s} = s. However, we also have

sup
x1,...,xn∈X∖{e}

Rs(x1, . . . , xn; e) = 1

Cn,s

sup
x1,...,xn∈X∖{e}

R(x1, . . . , xn; e) = s,

which shows that the best constant is exactly s. �

Proof of Proposition 3.1. We can assume that n ≥ 3. Let us first prove the inequality. We

proceed by decreasing induction on k. The result clearly holds for k = n. Suppose that it

holds for some integer k satisfying n + 1 − 1/K∗n < k ≤ n and let us prove that it still holds

for k − 1.

Let x1, . . . , xn, z ∈X . By the induction hypothesis, we have

(8) d(x1, . . . , xn) ≤ 1

1/K∗n − n + k (
k−1

∑
i=1

d(x1, . . . , xn)zi + d(x1, . . . , xn)zk)
and

(9) d(x1, . . . , xn)zk ≤ 1

1/K∗n − n + k (
k−1

∑
i=1

d(x1, . . . , xn){z,xk}

{k,i}
+ d(x1, . . . , xn)) ,
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where d(x1, . . . , xn){z,xk}

{k,i}
is the function obtained from d(x1, . . . , xn) by setting its kth

variable to z and its ith variable to xk . We then observe that

(10) d(x1, . . . , xn){z,xk}

{k,i}
= d(x1, . . . , xn)zi , i = 1, . . . , k − 1.

By substituting (10) into (9) and then (9) into (8), we obtain

d(x1, . . . , xn) ≤ 1

1/K∗n − n + k (1 +
1

1/K∗n − n + k)
k−1

∑
i=1

d(x1, . . . , xn)zi
+ ( 1

1/K∗n − n + k)
2

d(x1, . . . , xn),
that is,

d(x1, . . . , xn) ≤ 1

1/K∗n − n + k − 1
k−1

∑
i=1

d(x1, . . . , xn)zi ,
which shows that the result still holds for k − 1.

Let us now prove the second part of the result. The sufficiency is straightforward. In-

deed, we have

d(x1, . . . , xn) = K∗n(
k

∑
i=1

d(x1, . . . , xn)zi + (n − k)d(x1, . . . , xn)).
Solving this latter equation for d(x1, . . . , xn) immediately provides (5).

Let us prove the necessity. If (5) holds, then in view of (8)–(10), we must have

d(x1, . . . , xn) = 1

1/K∗n − n + p (
p−1

∑
i=1

d(x1, . . . , xn)zi + d(x1, . . . , xn)zp)
d(x1, . . . , xn)zp =

1

1/K∗n − n + p (
p−1

∑
i=1

d(x1, . . . , xn)zi + d(x1, . . . , xn))
for any p ∈ {k + 1, . . . , n}. From these two equations, we derive condition (6). Moreover,

taking p = n in the first equation shows that K∗n is attained at (x1, . . . , xn; z). �

Proof of Proposition 3.9. For any x1, . . . , xn, z ∈ X and any S ⊆ {1, . . . , n} such that∣S∣ = k, we have

d(x1, . . . , xn) ≤ K∗n,k∑
i∈S

d(x1, . . . , xn)zi .
Summing this inequality over all possible subsets S, we obtain

(n
k
)d(x1, . . . , xn) ≤ K∗n,k ∑

S⊆{1,...,n}
∣S∣=k

∑
i∈S

d(x1, . . . , xn)zi

≤ K∗n,k

n

∑
i=1

d(x1, . . . , xn)zi ∑
S⊆{1,...,n}, S∋i

∣S∣=k

1,

where the inner sum reduces to (n−1
k−1
). This establishes the inequality. The optimality of

the constant is obtained by considering the distance defined in Example 3.5, for which we

have K∗n = 2/n and K∗n,k = 2/k. �
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Proof of Proposition 3.11. Let x1, . . . , xn, z ∈ X satisfying ∣{x1, . . . , xn}∣ ≥ 2 and set

Rs(x1, . . . , xx; z) = ds(x1, . . . , xn)
∑n

i=1 ds(x1, . . . , xn)zi .

There are two exclusive cases to consider.

● Case {a, b} ⊈ {x1, . . . , xn}. We immediately have Rs(x1, . . . , xx; z) ≤ (n− 1)−1.● Case {a, b} ⊆ {x1, . . . , xn}. Let na (resp. nb) be the exact number of occurrences

of a (resp. b) in x1, . . . , xn

– If na ≥ 2 and nb ≥ 2, then

Rs(x1, . . . , xn; z) = Cn,s

nCn,s

=
1

n
.

– If na = 1 and nb ≥ 2 (or na ≥ 2 and nb = 1), then

Rs(x1, . . . , xn; z) =
⎧⎪⎪⎨⎪⎪⎩

Cn,s

nCn,s
= 1

n
, if z = a,

Cn,s

(n−1)Cn,s+1
= 1

n−1+1/Cn,s
, if z ≠ a.

– If na = nb = 1, then

Rs(x1, . . . , xn; z) =
⎧⎪⎪⎨⎪⎪⎩

Cn,s

(n−1)Cn,s+1
= 1

n−1+1/Cn,s
, if z ∈ {a, b},

Cn,s

(n−2)Cn,s+2
= 1

n−2+2/Cn,s
, if z ∉ {a, b}.

The cases discussed above show that ds is an n-distance and its best constant is

K∗n =
1

n − 2 + 2/Cn,s

= s

and it is attained at any (a, b, x3, . . . , xn; z) ∈ Xn+1 such that x3, . . . , xn, z ∈ X ∖ {a, b}.
Moreover, for such tuples we have

ds(a, b, x3, . . . , xn) = Cn,s =
2

1/s − n + 2 =
1

1/K∗n − n + 2
2

∑
i=1

ds(a, b, x3, . . . , xn)zi ,
which shows that K∗n,2 exists and K∗n,2 =

1

1/K∗

n−n+2
. By Proposition 3.1 and Corollary 3.2,

we also have K∗n,k =
1

1/K∗

n−n+k
for any k ∈ {2, . . . , n}. �

Proof of Lemma 4.6. By Proposition 3.6, we have

(11) d(x1, . . . , xk−1, xk, . . . , xk)
≤

1

k + p − 1
k−1

∑
i=1

d(x1, . . . , xk−1, xk, . . . , xk)zi
+ p + 1
k + p − 1 d(x1, . . . , xk−1, xk, . . . , xk, z).

Using repetition invariance and Proposition 3.6, we also have

(12) d(x1, . . . , xk−1, xk, . . . , xk, z) = d(x1, . . . , xk−1, xk, z, . . . , z)
≤

1

k − 1
k−1

∑
i=1

d(x1, . . . , xk−1, xk, . . . , xk, z)zi
+ 1

k − 1 d(x1, . . . , xk−1, z, . . . , z).
Substituting (12) into (11), we obtain the claimed result. To see that the constants are

optimal, just take the cardinality based distance with distinct x1, . . . , xk and z = xk. �
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Proof of Proposition 4.7. Let k ∈ {2, . . . , n − 1}, let n1, . . . , nk ∈ {1, . . . , n} be such that

n1 + ⋯ + nk = n, and let d′∶Xk → R+ be the map defined in (7). Using the symmetry of

d′, we can rewrite Lemma 4.6 with p = n − k as follows. For any j ∈ {1, . . . , k} and any

x1, . . . , xk, z ∈ X , we have

d′(x1, . . . , xk) ≤ n

(k − 1)(n − 1)
k

∑
i=1
i≠j

d′(x1, . . . , xk)zi

+ n − k + 1
(k − 1)(n − 1) d′(x1, . . . , xk)zj .

Summing the latter inequality over j = 1, . . . , k, we obtain

k

∑
j=1

d′(x1, . . . , xk) ≤ n

(k − 1)(n − 1)
k

∑
i=1

k

∑
j=1
j≠i

d′(x1, . . . , xk)zi

+ n − k + 1
(k − 1)(n − 1)

k

∑
i=1

d′(x1, . . . , xk)zi ,
that is,

d′(x1, . . . , xk) ≤ ((k − 1)−1 + (k(k − 1)(n − 1))−1) k

∑
i=1

d′(x1, . . . , xk)zi ,
This shows that d satisfies the strong k-simplex inequality with the claimed constant Mn,k,

which does not depend on n1, . . . , nk.

To see that this constant is optimal and attained, we now construct a standard n-distance

that is repetition invariant and for which the constant Mn,k is attained.

Let k ∈ {2, . . . , n−1}, let X = {y1, . . . , yk, e}, with ∣X ∣ = k+1, let dc be the cardinality

based n-distance, and define d∶Xn → R+ by d(x1, . . . , xn) = 0 if ∣{x1, . . . , xn}∣ = 1, and

d(x1, . . . , xn) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

k−1
dc(x1, . . . , xn), if e ∉ {x1, . . . , xn},

a, if e ∈ {x1, . . . , xn} ≠X,

b, if e ∈ {x1, . . . , xn} =X,

otherwise, where

(k − 1)(n − 1)
k(n − 1) + 1 = a < b =

k

k − 1 a =
k(n − 1)

k(n − 1) + 1 < 1.

Let us show first that d is a standard n-distance on X . Let x1, . . . , xn, z ∈ X be such

that ∣{x1, . . . , xn}∣ ≥ 2. There are three exclusive cases to consider.

● Case e ∉ {x1, . . . , xn}.
– If z ≠ e, then we have

d(x1, . . . , xn) = 1

k − 1 dc(x1, . . . , xn)
≤

1

n − 1
n

∑
i=1

1

k − 1 dc(x1, . . . , xn)zi
=

1

n − 1
n

∑
i=1

d(x1, . . . , xn)zi .
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– If z = e, then assume first that {x1, . . . , xn} ≠X ∖ {e}. We then have

d(x1, . . . , xn) = 1

k − 1 dc(x1, . . . , xn) ≤ k − 2
k − 1

≤
n

n − 1 a =
1

n − 1
n

∑
i=1

d(x1, . . . , xn)ei .
If {x1, . . . , xn} = X ∖ {e} = {y1, . . . , yk}, then d(x1, . . . , xn) = 1 and it is

not difficult to see that
n

∑
i=1

d(x1, . . . , xn)ei ≥ (k − 1)a + (n − k + 1)b = n − 1.
● Case e ∈ {x1, . . . , xn} ≠X . We have

d(x1, . . . , xn) = a ≤
1

n − 1
n

∑
i=1

d(x1, . . . , xn)zi
since the sum on the right is greater than (n − 1)a.● Case e ∈ {x1, . . . , xn} =X . Let ni (resp. ne) be the number of yi (resp. e) among

x1, . . . , xn.

– If z = yj for some j ∈ {1, . . . , k}, then

n

∑
i=1

d(x1, . . . , xn)yj

i =
n

∑
i=1

d(n1 ⋅ y1, . . . , nk ⋅ yk, ne ⋅ e)yj

i

=

⎧⎪⎪⎨⎪⎪⎩
ℓ a + (n − ℓ)b, if ne > 1,

ℓ a + (n − ℓ − 1)b + 1, if ne = 1,

where ℓ = ∣{q ∈ {1, . . . , k} ∖ {j} ∶ nq = 1}∣ ≤ k − 1. It follows that

d(x1, . . . , xn) = b < 1 =
(k − 1)a + (n − k + 1)b

n − 1
≤

1

n − 1
n

∑
i=1

d(x1, . . . , xn)zi .
– If z = e, then

n

∑
i=1

d(x1, . . . , xn)ei =
n

∑
i=1

d(n1 ⋅ y1, . . . , nk ⋅ yk, ne ⋅ e)ei
= ℓa + (n − ℓ)b,

where ℓ = ∣{q ∈ {1, . . . , k} ∶ nq = 1}∣ ≤ k. It follows that

d(x1, . . . , xn) = b =
k a + (n − k)b

n − 1
≤

1

n − 1
n

∑
i=1

d(x1, . . . , xn)zi .
In view of the cases discussed above, we see that d is a standard n-distance. To see that the

claimed constant Mn,k is attained, we just observe that

d′(y1, . . . , yk)
∑k

i=1 d
′(y1, . . . , yk)ei =

1

k a
= Mn,k ,

where d′∶Xk → R+ is the (symmetric) map defined in (7). �
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Proof of Proposition 4.10. Let x1, . . . , xn, x
′
1
, . . . , x′n ∈ X such that

{x1, . . . , xn} = {x′1, . . . , x′n}.
We can assume that ∣{x1, . . . , xn}∣ ∉ {1, n}. Then, there exist pairwise distinct i, j, k ∈{1, . . . , n} such that xi = xj ≠ xk. By nonincreasingness under identification of variables,

we can replace xi or xj by xk without changing d(x1, . . . , xn). By iterating this argument,

we finally obtain d(x1, . . . , xn) = d(x′1, . . . , x′n).
Let us illustrate this proof. To see that

d(a, b, b, c, c, e) = d(a, a, b, c, e, e),
we consider the chain of equalities

d(a, b, b, c, c, e) = d(a, a, b, c, c, e) = d(a, a, b, c, e, e). �

Proof of Proposition 4.12. Let n1, . . . , nk ∈ {1, . . . , n} such that n1 +⋯+nk = n. Let also

d′∶Xk → R+ be the map defined in (7) and let x1, . . . , xk, z ∈ X . We only need to prove

that

d′(x1, . . . , xk) ≤ K∗n,k

k

∑
i=1

d′(x1, . . . , xk)zi .
Using repetition invariance (see Proposition 4.10) and nonincreasingness under identifica-

tion of variables, we obtain

d′(x1, . . . , xk) ≤ d(x1, . . . , xk, z, . . . , z) ≤ K∗n,k

k

∑
i=1

d(x1, . . . , xk, z, . . . , z)zi
and

d(x1, . . . , xk, z, . . . , z)zi = d′(x1, . . . , xk)zi , i ∈ {1, . . . , k}.
This completes the proof. �

Proof of Lemma 5.1. We proceed by induction. The result trivially holds for k = 1. Sup-

pose now that the result holds for some k ∈ {1, . . . , n−1} and let us prove that it still holds

for k + 1. Using Proposition 3.6 and then the induction hypothesis we obtain

d(x1, . . . , xk+1, z, . . . , z) ≤ 1

k

k+1

∑
i=1

d(x1, . . . , xk+1, z, . . . , z)zi
≤

1

k

k+1

∑
i=1

k+1

∑
j=1
j≠i

g(xj, z) = k+1

∑
i=1

g(xi, z),

which completes the proof. �
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