On L(2, 1)-labelings of some products of oriented cycles

Lucas Colucci^{1,2*} lucas.colucci.souza@gmail.com Ervin Győri^{1,2†} gyori.ervin@renyi.hu

 ¹Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13–15, 1053 Budapest, Hungary
²Central European University, Department of Mathematics and its Applications, Nádor u. 9, 1051 Budapest, Hungary

July 3, 2020

Abstract

We refine two results of Jiang, Shao and Vesel on the L(2, 1)-labeling number λ of the Cartesian and the strong product of two oriented cycles. For the Cartesian product, we compute the exact value of $\lambda(\overrightarrow{C_m} \Box \overrightarrow{C_n})$ for $m, n \geq 40$; in the case of strong product, we either compute the exact value or establish a gap of size one for $\lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_n})$ for $m, n \geq 48$.

1 Introduction

A L(p,q)-labeling, or L(p,q)-coloring, of a graph G is a function $f: V(G) \to \{0, \ldots, k\}$ such that $|f(u) - f(v)| \ge p$, if $e = uv \in E(G)$; and $|f(u) - f(v)| \ge q$, if there is a path of length two in G joining u and v. To take into account the number of colors used, we say that f is a k-L(p,q)-labeling of G (note that, for historical reasons, the colorings are assumed to start with the label 0). The minimum value of k such that G admits a k-L(p,q)-labeling is denoted by $\lambda_{p,q}(G)$, and it is called the L(p,q)-labeling number of G.

The particular case of L(p, q)-labelings that attracted the most attention is p = 2 and q = 1, the L(2, 1)-labeling. It was introduced by Yeh [6], and it traces back to the frequency assignment problem of wireless networks introduced by Hale [3]. In this case, we write $\lambda(G)$ instead of $\lambda_{2,1}(G)$ for short.

^{*}Research of the author was partially supported by the National Research, Development and Innovation, NKFIH grant K 116769.

[†]Research of the author was partially supported by the National Research, Development and Innovation, NKFIH grants K 116769 and SNN 117879.

The definitions above can be extended to oriented graphs (a directed graph whose underlying graph is simple), namely: if G is an oriented graph, a L(p,q)labeling of G is a function $f: V(G) \to \{0, \ldots, k\}$ such that $|f(u) - f(v)| \ge p$, if $uv \in E(G)$; and $|f(u) - f(v)| \ge q$, if there is a *directed* path of length two in G joining u and v. The corresponding L(p,q)-labeling number is again denoted by $\lambda_{p,q}(G)$ (in some papers, the notation $\overrightarrow{\lambda}_{p,q}(G)$ is used instead). The L(2, 1)-labelings of oriented graphs were first studied by Chang and Liaw [2], and the L(p,q)-labeling problem has been extensively studied since then in both undirected and directed versions. We refer the interested reader to the excellent surveys of Calamoneri [1] and Yeh [7].

In this paper, we study the L(2, 1)-labeling number of the Cartesian and the strong product of two oriented cycles, improving results of Jiang, Shao and Vesel [4]. We use the notation $\overrightarrow{C_n}$ to represent the oriented cycle on n vertices, i.e., the digraph such that $V(\overrightarrow{C_n}) = \{1, 2, \ldots, n\}$ and $E(\overrightarrow{C_n}) = \{(1, 2), (2, 3), \ldots, (n - 1, n), (n, 1)\}, n \geq 3$. In the case of Cartesian product, we compute the exact value of $\lambda(\overrightarrow{C_m} \Box \overrightarrow{C_n})$ for $m, n \geq 40$; in the case of strong product, we either compute the exact value or establish a gap of size one for $\lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_n})$ for $m, n \geq 48$.

2 Cartesian product

The Cartesian product of two graphs (resp. digraphs) G and H is the graph (resp. digraph) $G \Box H$ such that $V(G \Box H) = V(G) \times V(H)$, and where there is an edge joining (a, x) and (b, y) if $ab \in E(G)$ and x = y, or if a = b and $xy \in E(H)$ (resp. there is an edge pointing from (a, x) to (b, y) if $ab \in E(G)$ and x = y, or if a = b and $xy \in E(H)$ (resp. there is an edge pointing from (a, x) to (b, y) if $ab \in E(G)$ and x = y, or if a = b and $xy \in E(H)$).

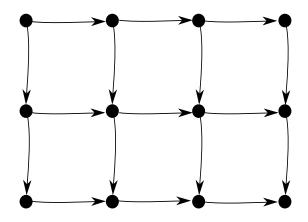


Figure 1: The Cartesian product of $\overrightarrow{P_3}$ and $\overrightarrow{P_4}$

Let $S(m,n) = \{am + bn : a, b \ge 0 \text{ integers not both zero}\}$. A classical result of Sylvester [5] states that $t \in S(m, n)$ for all integers $t \ge (m-1)(n-1)$ that are divisible by gcd(m, n), the greatest common divisor of m and n.

In [4], Jiang, Shao and Vesel prove the following theorem:

Theorem 1 ([4]). For all $m, n \in S(5, 11), 4 \leq \lambda(\overrightarrow{C_m} \Box \overrightarrow{C_n}) \leq 5$. In particular, the result holds for every $m, n \ge 40$.

Our result in this section determines the exact value of λ in the range above. We start with a lemma which is a slightly stronger version of Lemma 5 from [4] that can be obtained with the same proof, which we include here for the sake of completeness.

Lemma 1. For every $m, n \geq 3$ and every $4 \cdot L(2,1)$ -labeling f of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$, the following periodicity condition holds:

$$f(i,j) = f(i+1 \mod m, j-1 \mod n) \text{ for all } i \in [m], j \in [n].$$
(1)

Proof. Let f be a 4-L(2,1)-labeling of $G = \overrightarrow{C_m} \Box \overrightarrow{C_n}$. We write f(i,j) for the value of f at the vertex (i, j). By the symmetry of the graph, it is enough to prove that f(2,2) = f(1,3). Suppose, for the sake of contradiction, that this is not the case.

Consider the $\overrightarrow{P_2} \square \overrightarrow{P_2}$ subgraph spanned by $\{(1,2), (1,3), (2,2), (2,3)\}$. Every vertex is at distance at most 2 from each other, expect for the pair (2, 2), (1, 3). This implies, together with our assumption that $f(2,2) \neq f(1,3)$, that every vertex of this subgraph gets a distinct color. It is clear that the color 2 cannot be used in any vertex v of this subgraph, since otherwise the two neighbours of v must receive colors 0 and 4, and there is no color left for the fourth vertex. Thus, the colors used on the vertices of this subgraph are exactly 0, 1, 3 and 4, in some order.

Using the fact that 4 - f is a 4-L(2, 1)-labeling of a graph whenever f is, we may assume without loss of generality that $f(2,2) \in \{0,1\}$. This implies that $f(1,3) \in \{0,1\}$ and $\{f(1,2), f(2,3)\} = \{3,4\}$. If f(2,3) = 3, there is no color for (3,3), since its within distance two from (2,2) and (1,3), colored with 0 and 1, and it is neighbor of a vertex of color 3. If f(1,2) = 3, the same argument applies for the vertex (1, 1).

We call labelings with the property of Lemma 1 diagonal.

The following lemma from [4] combined with the result of Sylvester will also help us:

Lemma 2. (Lemmas 2 and 3 in [4]) Let $m, n, p \ge 3$ and $t, k \ge 1$ be integers. If $\lambda(\overrightarrow{C_m} \Box \overrightarrow{C_n}) \le k$ and $\lambda(\overrightarrow{C_p} \Box \overrightarrow{C_n}) \le k$, then $\lambda(\overrightarrow{C_m} \Box \overrightarrow{C_n}) \le k$. In particular, if m and n are such that $\lambda(\overrightarrow{C_m} \Box \overrightarrow{C_n}) \le k$, $\lambda(\overrightarrow{C_m} \Box \overrightarrow{C_m}) \le k$ and $\lambda(\overrightarrow{C_n} \Box \overrightarrow{C_n}) \le k$, then $\lambda(\overrightarrow{C_a} \Box \overrightarrow{C_b}) \le k$ for all $a, b \in S(m, n)$, and hence for all $a, b \ge (m-1)(n-1)$ divisible by gcd(m, n).

Theorem 2. Let $m, n \ge 40$. Then:

$$\lambda(\overrightarrow{C_m} \Box \overrightarrow{C_n}) = \begin{cases} 4, & \text{if } \gcd(m, n) \ge 3; \\ 5, & \text{otherwise.} \end{cases}$$

Proof. For $m, n \geq 3$, let G denote the graph $\overrightarrow{C_m} \Box \overrightarrow{C_n}$, i.e., $V(G) = [m] \times [n]$ and the directed edges of G point from (i, j) to $(i + 1 \mod m, j)$ and to $(i, j + 1 \mod n)$, for every $i \in [m], j \in [n]$. For a labeling f, we write f(i, j) instead of f((i, j)) for short.

Let $d = \operatorname{gcd}(m, n)$ and assume first that $d \notin \{1, 2\}$. According to Lemma 2, it is enough to prove that $\lambda(\overrightarrow{C_d} \Box \overrightarrow{C_d}) = 4$. Any 4-L(2, 1)-labeling f of $\overrightarrow{C_d}$ can be extended to a 4-L(2, 1)-labeling f' of $\lambda(\overrightarrow{C_d} \Box \overrightarrow{C_d})$ by setting $f'(i, j) = f(i+j \mod d)$. It suffices to show, then, that $\lambda(\overrightarrow{C_d}) = 4$.

If $d \equiv 0 \pmod{3}$, then we can label $\overrightarrow{C_d}$ with d/3 blocks 024. If $d \equiv 1 \pmod{3}$, we label $\overrightarrow{C_d}$ with (d-4)/3 consecutive blocks 024 and then one block 0314. Finally, if $d \equiv 2 \pmod{3}$, then we label $\overrightarrow{C_d}$ with (d-2)/3 consecutive blocks 024 and then a block 13.

On the other hand, assume for the sake of contradiction that $d \in \{1, 2\}$ and there is a 4-L(2, 1)-labeling f of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$. In particular, $m \neq n$, so let us assume that m > n.

It is easy to check that, if $m \ge n+3$, f induces a valid 4-L(2, 1)-labeling of $\overrightarrow{C_{m-n}} \Box \overrightarrow{C_n}$. In fact, let g(i,j) = f(i,j) for all $1 \le i \le m-n$ and $1 \le j \le n$. We claim that g is a 4-L(2, 1)-labeling of $\overrightarrow{C_{m-n}} \Box \overrightarrow{C_n}$, which, in particular, satisfies (1) as well.

Indeed, all we have to check is that the following conditions hold for g, since the other restrictions are inherited by $f: |g(m-n-1,j) - g(1,j)| \ge 1, |g(m-n,j) - g(1,j)| \ge 2, |g(m-n,j) - g(2,j)| \ge 1, |g(m-n,j) - g(1,j+1 \mod n)| \ge 2,$ for every $j \in [n]$. All these conditions follow from $g(m-n-1,j) = f(m-n-1,j) = f(m-n-1,j) = f(m-1,j+n \mod n) = f(m-1,j)$ and $g(m-n,j) = f(m-n,j) = f(m,j+n \mod n) = f(m,j)$, which result from the application of (1) n times, together with the fact that f is a L(2,1)-labeling of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$.

Applying this argument consecutively, using the fact that $d = \gcd(m, n)$ and by the symmetry of the factors of the product, we conclude that f induces a 4-L(2, 1)-labeling c of either $\overrightarrow{C}_{k+1} \Box \overrightarrow{C}_k$ or $\overrightarrow{C}_{k+2} \Box \overrightarrow{C}_k$, for some $k \ge 3$. This is a contradiction, since in this case we would have, by Lemma 1, c(1, 1) = c(2, k) = $\cdots = c(k+1, 1)$ and (k+1, 1) and (1, 1) are joined by and edge or by a directed path of length two, respectively.

3 Strong product

The strong product of two graphs (resp. digraphs) G and H is the graph (resp. digraph) $G \boxtimes H$ such that $V(G \boxtimes H) = V(G) \times V(H)$, and where there is an edge joining (a, x) and (b, y) if either $ab \in E(G)$ and x = y, or if a = b and $xy \in E(H)$, or if $ab \in E(G)$ and $xy \in E(H)$. (resp. either there is an edge pointing from (a, x) to (b, y) if $ab \in E(G)$ and x = y, or if a = b and $xy \in E(H)$, or $ab \in E(G)$ and $xy \in E(H)$.

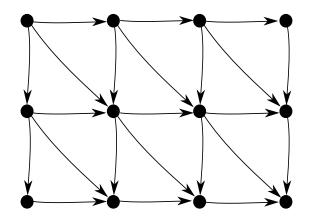


Figure 2: The strong product of $\overrightarrow{P_3}$ and $\overrightarrow{P_4}$

In the same paper, Jiang, Shao and Vesel prove the following result for the strong product of two directed cycles:

Theorem 3 ([4]). If $m, n \ge 48$, then $6 \le \lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}) \le 8$.

In this section, we refine this theorem in the following way:

Theorem 4. If $m, n \ge 48$, then

$$\lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}) = \begin{cases} 6, & \text{if } m \equiv n \equiv 0 \pmod{7}; \\ 7 \text{ or } 8, & \text{otherwise.} \end{cases}$$

The key lemma of in the proof of Theorem 4 is analogous to Lemma 1:

Lemma 3. Let $m, n \ge 4$ be integers. Any 6-L(2,1)-labeling f of $\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}$ is diagonal, i.e., the following condition holds:

$$f(i,j) = f(i+1 \mod m, j-1 \mod n) \text{ for all } i \in [m], j \in [n].$$
(2)

Proof of Lemma 3. Let G be the graph $\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}$. For every vertex (i, j) of G, there is a $\overrightarrow{P_4} \boxtimes \overrightarrow{P_4}$ subgraph of G as in Figure 3 such that v_{23} is the vertex (i, j).

It suffices, then, to show that $f(v_{23}) = f(v_{32})$ for every 6-L(2, 1)-labeling of the graph in Figure 3.

Let f be a 6-L(2, 1)-labeling of G. By the fact that 6 - f is also a 6-L(2, 1)labeling of G, we may assume that $f(v_{32}) \in \{0, 1, 2, 3\}$. We will divide the rest of the proof in cases according to the value of $f(v_{32})$. In each case, we will assume that $f(v_{23}) \neq f(v_{32})$ and reach a contradiction by applying the rules of L(2, 1)-labeling and finding a vertex for which there is no available color. We will use the notation v! to mean that there is no color available for the vertex v, and the notation $\{u, v\} \in S!$ to mean that u and v cannot be colored using the colors in S, where S is the set of possible colors for u and v based on the colors of the previous vertices and the rules of L(2, 1)-labeling. For instance, if u and v are joined by an edge, then $\{u, v\} \in \{0, 1\}!$.

Case 1: $f(v_{32}) = 3$

- $f(v_{23}) \in \{5, 6\} \Rightarrow \{v_{22}, v_{33}\} \in \{0, 1\}!$.
- $f(v_{23}) = 4 \Rightarrow f(v_{22}) = 6$ and $f(v_{33}) \in \{0,1\}$, or $f(v_{22}) \in \{0,1\}$ and $f(v_{33}) = 6$. In the first case, $f(v_{43}) = 5 \Rightarrow f(v_{44}) = 2 \Rightarrow f(v_{33}) = 0 \Rightarrow v_{34}!$; in the second, $f(v_{21}) = 5 \Rightarrow f(v_{11}) = 2 \Rightarrow f(v_{22}) = 0 \Rightarrow v_{12}!$.
- $f(v_{23}) \in \{0, 1\} \Rightarrow \{v_{12}, v_{23}\} \in \{5, 6\}!$.
- $f(v_{23}) = 2 \Rightarrow f(v_{22}) = 0$ and $f(v_{33}) \in \{5, 6\}$, or $f(v_{33}) = 0$ and $f(v_{22}) \in \{5, 6\}$. In the first case, $\Rightarrow f(v_{43}) = 1 \Rightarrow f(v_{44}) = 4 \Rightarrow f(v_{33}) = 6 \Rightarrow v_{34}!$; in the second, $\Rightarrow f(v_{21}) = 1 \Rightarrow f(v_{11}) = 4 \Rightarrow f(v_{22}) = 6 \Rightarrow v_{12}!$.

Case 2: $f(v_{32}) = 0$

- $f(v_{23}) = 3 \Rightarrow \{v_{22}, v_{33}\} \in \{5, 6\}!.$
- $f(v_{23}) = 5 \Rightarrow \{v_{22}, v_{33}\} \in \{2, 3\}!.$
- $f(v_{23}) = 2 \Rightarrow f(v_{22}) = 6$ and $f(v_{33}) = 4$, or $f(v_{33}) = 6$ and $f(v_{22}) = 4$. In the first case, v_{43} !; in the second, v_{21} !.
- $f(v_{23}) = 4 \Rightarrow f(v_{22}) = 6$ and $f(v_{33}) = 2$, or $f(v_{22}) = 2$ and $f(v_{33}) = 6$. In the first case, v_{34} !; in the second, v_{12} !.
- $f(v_{23}) = 6 \Rightarrow f(v_{22}) = 2$ and $f(v_{33}) = 4$, or $f(v_{22}) = 4$ and $f(v_{33}) = 2$. In the first case, v_{43} !; in the second, v_{21} !.
- $f(v_{23}) = 1 \Rightarrow f(v_{22}) = 3$ and $f(v_{33}) = 5$, or $f(v_{22}) = 5$ and $f(v_{33}) = 3$, or $f(v_{22}) = 6$ and $f(v_{33}) = 4$, or $f(v_{22}) = 4$ and $f(v_{33}) = 6$, or $f(v_{22}) = 6$ and $f(v_{33}) = 3$, or $f(v_{22}) = 3$ and $f(v_{33}) = 6$. In the first and the third cases, v_{34} !; in the second and the fourth, v_{12} !; in the fifth, $f(v_{34}) = 5 \Rightarrow v_{44}$!; in the sixth, $f(v_{12}) = 5 \Rightarrow v_{11}$!.

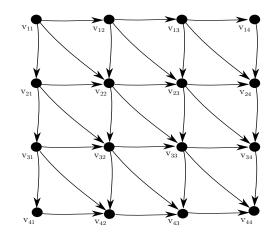


Figure 3: A $\overrightarrow{P_4} \boxtimes \overrightarrow{P_4}$ subgraph of $\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}$

Case 3: $f(v_{32}) = 1$

- $f(v_{23}) = 3$ or $f(v_{23}) = 0$: can be treated similarly as the previous cases $f(v_{32}) = 3$, $f(v_{23}) = 1$, and $f(v_{32}) = 0$, $f(v_{23}) = 1$.
- $f(v_{23}) = 6 \Rightarrow \{v_{22}, v_{33}\} \in \{3, 4\}!.$
- $f(v_{23}) = 5 \Rightarrow \{v_{22}, v_{33}\} \in \{3\}!.$
- $f(v_{23}) = 4 \Rightarrow \{v_{22}, v_{33}\} \in \{6\}!.$
- $f(v_{23}) = 2 \Rightarrow f(v_{22}) = 4$ and $f(v_{33}) = 6$, or $f(v_{22}) = 6$ and $f(v_{33}) = 4$. In the first case, $f(v_{43}) = 3$ and $f(v_{34}) = 0 \Rightarrow v_{44}!$; in the second, $f(v_{21}) = 3$ and $f(v_{12}) = 0 \Rightarrow v_{11}!$.

Case 4: $f(v_{32}) = 2$

- $f(v_{23}) \in \{0, 1, 3\}$: can be treated similarly as in previous cases with $f(v_{23})$ and $f(v_{32})$ swapped.
- $f(v_{23}) = 5 \Rightarrow \{v_{22}, v_{33}\} \in \{0\}!.$
- $f(v_{23}) = 6 \Rightarrow f(v_{22}) = 0$ and $f(v_{33}) = 4$, or $f(v_{22}) = 4$ and $f(v_{33}) = 0$. In the first case, v_{43} !; in the second, v_{21} !.
- $f(v_{23}) = 4 \Rightarrow f(v_{22}) = 0$ and $f(v_{33}) = 6$, or $f(v_{22}) = 6$ and $f(v_{33}) = 0$. In the first case, v_{43} !; in the second, v_{21} !.

Proof of Theorem 4. By Theorem 3, it is enough to prove that $G = \lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}) = 6$ if and only if 7 divides m and n.

If both m and n are divisible by 7, the following periodic labeling is easily checked to be a L(2, 1)-labeling of $\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}$: the pattern 0246135 is repeated along the cycles. More explicitly, f(i, j) = 0, 2, 4, 6, 1, 3, 5 if $i + j \equiv 2, 3, 4, 5, 6, 0, 1 \pmod{7}$, respectively.

On the other hand, assume that G admits a 6-L(2, 1)-labeling f. By Lemma 3, f is diagonal. Similarly as in the proof of Theorem 2, it is simple to check that, if $m \ge n+3$, then f induces a 6-L(2, 1)-labeling of $\overrightarrow{C_{m-n}} \boxtimes \overrightarrow{C_n}$, simply by considering the restriction of the coloring in a $\overrightarrow{C_{m-n}} \boxtimes \overrightarrow{C_n}$ subgraph of $\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}$. Again, applying this argument consecutively, we are either left with a $\overrightarrow{C_d} \boxtimes \overrightarrow{C_d}$, where $d = \gcd(m, n)$, if $d \ge 3$, or a $\overrightarrow{C_{k+1}} \boxtimes \overrightarrow{C_k}$, or a $\overrightarrow{C_{k+2}} \boxtimes \overrightarrow{C_k}$.

In the last two cases, the fact that f is diagonal immediately implies that there are either two consecutive vertices or two vertices within distance two which receive the same color, which is a contradiction.

We are done, then, if we prove that $\lambda(\overrightarrow{C_d} \boxtimes \overrightarrow{C_d}) \geq 7$ if d is not a multiple of 7. Indeed, assume that there is a 6-L(2, 1)-labeling of $\overrightarrow{C_d} \boxtimes \overrightarrow{C_d}$. Again, by Lemma 3, it should be diagonal. In particular, it means that it corresponds to a labeling of the cycle C_d with the following property: every pair of vertices with distance at most two must receive colors two apart, and every pair of vertices with distance three or four must receive distinct colors: indeed, the vertex (i + 1, j) is a neighbor of (i, j), and the vertex (i + 2, j) has the same color as (i+1, j+1), which is adjacent to (i, j) in $\overrightarrow{C_d} \boxtimes \overrightarrow{C_d}$, so they must receive colors two apart from the color of (i, j); similarly we prove that (i + 3, j) and (i + 4, j) must receive distinct colors from (i, j). Such a coloring is denoted in the literature by L(2, 2, 1, 1)-labeling. Note that, in particular, this implies the statement for d = 3 and d = 4. Let us assume in what follows that $d \geq 5$.

If C_d has such a coloring, it is readily checked that it must use the color 0 or 6. Indeed, otherwise all available colors are 12345, and it is impossible to color a P_5 subgraph of C_d with only these colors.

By symmetry, we may assume that 0 is used. Let c be the coloring of C_d , and let the integers modulo d represent its vertices. Let us assume that c(0) = 0.

If c(1) = 3, then 2 must receive a color from $\{5, 6\}$. If c(2) = 5, then c(3) = 1, and then c(-1) = 6, c(-2) = 2 or c(-2) = 4. In the first case, c(-3) = 4, and finally there is no available color for -4; in the second, $c(-3) \in \{1, 2\}$, and in either case there is no color available for -4. If c(2) = 6, then c(3) = 1, and then c(-1) = 5, c(-2) = 2, and there is no available color for -3.

If c(1) = 4, then c(2) is either 2 or 6. In the first case, c(-1) = 6 and there is no available color for 3. In the second, c(-1) = 2, which implies c(-2) = 5 and then there is no available color for -3.

If c(1) = 6, then $c(2) \in \{2, 3, 4\}$. The first implies c(3) = 4 and there is no color for 4. The second implies c(3) = 1, and then c(4) = 5 and there is no color for 5. Finally, the third implies that either c(3) = 1 or c(3) = 2, both of which makes impossible to find a color for 4.

The argument above implies that the neighbors of 0 must have colors 2 and 5. Without loss of generality, we may assume that c(1) = 5 and c(-1) = 2. This implies that c(2) = 3, which in turn implies c(3) = 1, then c(4) = 6 and c(5) = 4. It follows that $c(6) \in \{0, 2\}$, but by the paragraphs above, 4 cannot be a neighbor of 0, so c(6) = 2. Then c(7) = 0, and the block 2053164 of size 7 is repeated. The only way the coloring can be completed along the cycle is, then, if 7 divides d.

4 Final remarks

The natural next step would be to close the gap left from Theorem 4, deciding for which m and n we have $\lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}) = 7$.

In the proof of Theorem 4, we gave a periodic 6-labeling of $\lambda(\overrightarrow{C_7} \boxtimes \overrightarrow{C_7})$, namely that one in which the pattern 0246135 is repeated along the cycles diagonally. In a similar fashion, the following periodic 7-coloring works for $\lambda(\overrightarrow{C_8} \boxtimes \overrightarrow{C_8})$: 02461357. Concatenating these two patterns, one can show that $\lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_m}) = 7$ for every sufficiently large m (namely, for every $m \in S(7,8)$; in particular for $m \ge 42$), and consequently $\lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}) = 7$ for every m, nsuch that 7 does not divide both m and n and $gcd(m, n) \ge 42$.

Finally, we remark that it is simple to check that the proof of Lemma 2 works in the setting of strong product of cycles as well. As we know from the paragraph above that $\lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_m}) = 7$ for every m in S(7,8) (and, in particular for every $m \ge 42$), to prove that $\lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}) = 7$ for all sufficiently large m and n, it would be enough to find a pair of coprime integers $a, b \in S(7,8)$ such that $\lambda(\overrightarrow{C_a} \boxtimes \overrightarrow{C_b}) = 7$.

References

- CALAMONERI, T. The L(h,k)-labelling problem: an updated survey and annotated bibliography (2014). Available on http://www.dsi.uniroma1. it/~calamo/PDF-FILES/survey.pdf.
- [2] CHANG, G. J., AND LIAW, S.-C. The L(2,1)-labeling problem on ditrees. Ars Combinatoria 66 (2003), 23–31.
- [3] HALE, W. K. Frequency assignment: Theory and applications. Proceedings of the IEEE 68, 12 (1980), 1497–1514.

- [4] SHAO, Z., JIANG, H., AND VESEL, A. L(2,1)-labeling of the cartesian and strong product of two directed cycles. *Mathematical Foundations of Computing* 1, 1 (2018), 49–61.
- [5] SYLVESTER, J. J., ET AL. Mathematical questions with their solutions. *Educational times* 41, 21 (1884), 6.
- [6] YEH, K.-C. Labeling graphs with a condition at distance two. PhD thesis, University of South Carolina, 1990.
- [7] YEH, R. K. A survey on labeling graphs with a condition at distance two. Discrete Mathematics 306, 12 (2006), 1217–1231.