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Abstract
We give a characterization of finite sets of triples of elements (e.g., positive integers) that

can be coloredwith two colors such that for every element i in each color class there exists
a triplewhich does not contain i.We give a linear (in the number of triples) time algorithm

to decide if such a coloring exists and find one if it does.We also consider generalizations

of this result and an application to a matching problem, which motivated this study.

Finally, we show how these results translate to results about colorings of hypergraphs in

which the degree of every vertex is k less than the number of hyperedges.

Keywords Hypergraph � Coloring � Matching � Algorithm

1 Introduction

For positive integers k and n we are given a finite multiset of n many k-tuples1 of
characters from an alphabet such that every triple consists of three different

characters. From now on a ‘set of k-tuples’ always refers to such a finite multiset of

k-tuples. We also refer to the characters as elements.

Two sets of k-tuples is said to be equivalent if there is a bijection between their

alphabets which induces a bijection between the two sets of k-tuples. We do not want to

distinguish equivalent sets of k-tuples, thus without loss of generality we can assume

that the elements are positive integers from ½m� ¼ f1; . . .;mg for some m and each of

these m numbers is present in at least one k-tuple. If a k-tuple does not contain the

element i we say that the k-tuple avoids i (e.g., f1; 2; 3g avoids 4 but does not avoid 2).
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1 A k-tuple simply denotes a set of size k, .e.g., f1; 2; 3g is a 3-tuple, also referred to as a triple. Note that

repetition of elements is not allowed and the order of the elements does not matter.
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A c-coloring2 of a set of tuples (of numbers from [m]) is a nice c-coloring if for

each of the c colors and for every i 2 ½m� there is a tuple of that color that avoids i.
Similarly, a partial c-coloring of a set of tuples (that is, not all tuples need to be

colored) is a nice partial c-coloring if for each of the c colors and for every i 2 ½m�
there is a tuple of that color that avoids i. Notice that a nice partial c-coloring can

always be extended to a nice c-coloring by coloring arbitrarily all the tuples that are

uncolored in the partial c-coloring.
We are in particular interested in nice two-colorings of triples, that is, our aim is

to two-color (with colors red and blue) a set of triples such that for each of the two

colors and for every i 2 ½m� there is a triple of that color that avoids i. Our main

result is a characterization of the sets of triples that admit a nice (partial) 2-coloring.

Section 2 contains the characterization, Sect. 3 its proof, while in Sect. 4 we give a

linear (in the number of triples) time algorithm for finding such a coloring if it

exists. We further extend this result, and (without having a characterization) we give

an algorithm for finding a nice c-coloring for every c and k which runs in linear time

(in the number of k-tuples). Section 4 also considers the existence of nice partial

colorings that color only a small number of the k-tuples. This research is originally

motivated by a real life scheduling problem which can be phrased as a matching

problem, this connection is discussed in Sect. 5.

2 Main Results

We are mainly interested in characterizing sets of k-tuples that admit a nice c-
coloring for different values of c and k (even more generally we could have non-

uniformly sized tuples). Furthermore, we want efficient algorithms to decide if such

a c-coloring exists and if yes then find it.

Irrespective of the size of the tuples, for every c a trivial necessary condition for

having a nice c-coloring is that all elements must be missed from at least c many

tuples, that is, the set of tuples is c-fair:

Definition 1 A set of tuples (on elements from [m]) is c-fair if each element (of

[m]) is missed from at least c many tuples.

The case c ¼ 1 is trivial, in this case a set of tuples admits a nice 1-coloring if and

only if every element is missed from at least one tuple (i.e., the set of tuples is

1-fair).

The case c ¼ 2 and k ¼ 3 is already non-trivial. For the existence of a nice two-

coloring of the triples it is again a trivial necessary condition that every i 2 ½m� is
avoided by at least two triples (i.e., the set of triples is 2-fair). During the 9th

Emléktábla Workshop Cechlárová [3] asked what are the sufficient conditions for

the existence of a nice two-coloring.

For brevity a triple fx; y; zg is abbreviated as xyz when it does not lead to

confusion (e.g., f1; 2; 3g is written simply as 123). We explicitly define again the

2-fair property for a set of triples:

2 A c-coloring of a set is a mapping from this set to a set of c colors (which may, e.g., be denoted by

names like red and blue or by the numbers from [c]).
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Definition 2 Let T be a set of n triples (of positive integers). The triples containing

i are denoted by Ti. T is fair if for every i there are two triples that are not in Ti (i..e,
T is 2-fair).

Given a not nice two-coloring, we say that a number i makes it not nice if the

triples in one of the color classes all contain i.

Definition 3 A set of n triples is called special if and only if it contains triples of the
following form: n� 3 copies of the triple 123 plus three more triples, 1 � �; 2 � �
and 3 � �, where the �’s denote arbitrary numbers different from 1, 2, 3. A set of

n triples which is not special is called non-special.

Observe that a special set of n triples does not admit a nice two-coloring.

For n� 3 no set of n triples can have a nice two-coloring as one of the color

classes contains at most one triple.

Clearly, for n� 4 being fair and non-special are both necessary conditions for a

set of triples to admit a nice two-coloring. We prove that for n� 6 these conditions

are also sufficient. This was conjectured by Salia (for n� 8) [3].

We remark that for n ¼ 4; 5 there exist fair non-special sets of triples that

nevertheless do not admit a nice two-coloring. E.g., for n ¼ 4 the set of triples

f123; 145; 245; 678g and for n ¼ 5 the set of triples f123; 124; 134; 234; 567g. As
there are only finite many triples for n ¼ 4; 5, we omit to list all which admit a nice

two-coloring.

Theorem 1 A set of n� 6 triples admits a nice two-coloring if and only if it is fair
and non-special.

Furthermore, we show a linear (in n) time algorithm for any c and k:

Theorem 2 For any fixed c, k, given a set of n many k- tuples, there is an O(n) time
algorithm to check if a nice c-coloring exists which also finds one if it exists (the
dependence on c and k is hidden in the O notation).

The variants of Theorem 1 and Claim 4 about partial colorings are stated in

Sect. 4.

Graph coloring is a recurring tool in (sport) event scheduling (e.g., [2, 4]). The

original motivation of our research is also a (real life) event scheduling problem

which can be phrased as a certain matching problem which in turn can be solved

using our coloring results. This connection is discussed in detail in Section 5.

2.1 Consequences About Coloring Hypergraphs

To put our results in additional context, we phrase our results also as statements

about proper and polychromatic coloring certain hypergraphs. A coloring of the

vertices of a hypergraph is proper if no hyperedge is monochromatic. A c-coloring
of the vertices is polychromatic if every hyperedge contains a vertex with each of

the c colors. Notice that for c ¼ 2 a coloring is proper if and only if it is

polychromatic but for c 6¼ 2 the two conditions differ.
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Given a set T of n triples with elements from [m], let HT be the multi-hypergraph

whose vertices correspond to the triples and for each i 2 ½m� there is a hyperedge ei
containing exactly those vertices for which the corresponding triple does not contain

i. Note that every vertex is contained in exactly m� 3 hyperedges. It is easy to see

that this mapping T ! HT from sets of n triples on elements from [m], to multi-

hypergraphs with n vertices and m hyperedges that have all degrees equal to m� 3,

is in fact a bijection. It is also easy to see that a nice two-coloring of the triples of

T corresponds to a proper two-coloring of the vertices of HT . With this notation

Theorem 1 is equivalent to the following statement:

Theorem 3 Given a multi-hypergraph H with n vertices and m hyperedges such
that every vertex has degree m� 3, H admits a proper two-coloring if and only if
every hyperedge of H has size at least 2 and H is triangle-free3.

Notice that these conditions are trivially necessary, as the existence of a

hyperedge of size at most 1 or the existence of a triangle immediately prevents the

hypergraph from admitting a proper coloring. Theorem 1 implies that these simple

conditions are also sufficient. Theorem 2 can be also translated to the language of

hypergraphs:

Theorem 4 For any fixed c, k, given a multi-hypergraph H with n vertices and
m hyperedges such that every vertex has degree m� k, there is an O(n) time
algorithm to check if H admits a polychromatic c-coloring which also finds one if it
exists.

In general it is well known that proper two-colorability of a hypergraph is NP-
complete [5, 6]. In contrast to this, Theorem 3 states that there is even a simple

characterization of those hypergraphs in which the degree of every vertex is 3 less

than the number of hyperedges and that are proper two-colorable. Furthermore, for

every c and k, if in a hypergraph the degree of every vertex is exactly k less than the

number of hyperedges, Theorem 4 gives a linear time algorithm (in terms of the

number of vertices) to decide if the hypergraph admits a polychromatic c-coloring
(which is equivalent to a proper 2-coloring when c ¼ 2) and also finds the coloring

when it exists.

3 Proof of the Characterization

The proof of Theorem 1 is based on the following two lemmas.

Lemma 1 If in a fair set of non-special triples there are at least three numbers that
appear exactly n� 2 times then the set admits a nice two-coloring.

Proof There are three numbers, wlog. the numbers 1, 2, 3, that appear n� 2 times.

This implies that there are n� 6 triples of the form 123, removing these triples we

get a set T of 6 triples in which the numbers 1, 2, 3 appear exactly 4 times. If we can

find a nice two-coloring of these 6 triples than an arbitrary extension of this coloring

3 A hypergraph H is triangle-free if in H there are no three vertices a, b, c for which fa; bg; fa; cg; fb; cg
are hyperedges (of size 2) in H.
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to the original set gives a nice two-coloring of the original set. We have that

jT1 \ T2j; jT1 \ T3j; jT2 \ T3j � 2.

1. There exist two numbers i, j out of 1, 2, 3, for which Ti ¼ Tj. Then wlog. there

are three cases, listed in Table 1.

In all three cases we color the first, the third and the last triple red and the rest of

the triples blue to get a nice coloring.

2. jT1 \ T2j ¼ jT1 \ T3j ¼ jT2 \ T3j ¼ 2.

For this case see Table 2. If there is no number that appears more than 4 times

then it is easy to see that there exists a nice two-coloring of these 6 sets. If there

exists an i that appears 5 times, then in the original (fair) set there was an

additional triple 123, in which case it is easy to see that there exists a nice two-

coloring of these 7 sets. Finally, if there exists an i that appears 6 times, then in

the original (fair) set there were two additional triples 123, and then it is again

easy to see that there exists a nice two-coloring of these 8 sets.

3. 2� jT1 \ T2j; jT1 \ T3j; jT2 \ T2j � 3 and not all of jT1 \ T2j; jT1 \ T3j; jT2 \ T2j
are equal.

This implies that wlog. jT1 \ T2j ¼ 2 while jT1 \ T3j ¼ 3. Then wlog. there are

two cases, listed in Table 3.

In the first case if there is no number that appears more than 4 times then it is

easy to see that there exists a nice two-coloring of these 6 sets. If there exists an

i that appears 5 times, then in the original (fair) set there was an additional triple

123, and then it is easy to see that there exists a nice two-coloring of these 7

sets. Finally, no number can appear 6 times as the third triple is 123.

In the second case we color the first, third and the last triple red and the rest of

the triples blue to get a nice coloring.

4. jT1 \ T2j ¼ jT1 \ T3j ¼ jT2 \ T3j ¼ 3. Then wlog. there are two cases, listed in

Table 4.

In the first case we have a special set of triples, a contradiction. In the second

case we color the first and last triple red and the rest of the triples blue to get a

nice coloring. h

Table 1 Case 1

1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 *
1 2 3 1 2 * 1 2 *
* * * * * 3 * * 3
* * * * * * * * 3
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Table 3 Case 3

1 * 3 1 * 3
1 * 3 1 * *
1 2 3 1 2 3
1 2 * 1 2 3
* 2 3 * 2 3
* 2 * * 2 *

Table 4 Case 4

1 2 3 1 2 3
1 2 3 1 2 3
1 2 3 1 2 *
1 * * 1 * 3
* 2 * * 2 3
* * 3 * * *

Lemma 2 A fair non-special set of 6 triples admits a nice two-coloring.

Proof We again split the problem into a few cases.

The 6 triples of the set together contain 18 numbers (with multiplicities). As the

set is fair, every number appears at most 4 times. We distinguish cases based on how

many numbers appear exactly 4 times.

1. No number appears 4 times. In this case there are at most 18=3 ¼ 6 numbers

that appear 3 times. We consider only two-colorings where both color classes

contain 3–3 triples (we call such colorings balanced) and prove that at least one

of them is nice. There are 10 such colorings (we do not distinguish pairs of

colorings with switched colors). A number that appears 3 times makes exactly

one balanced coloring not nice, thus there are at least 10� 6 ¼ 4 nice two-

colorings.

2. Exactly one number, wlog. the number 1, appears 4 times. We again consider

only the 10 balanced two-colorings and prove that at least one of them is nice.

There are at most bð18� 4Þ=3c ¼ 4 numbers which appear 3 times, each of

Table 2 Case 2

1 2 *
1 2 *
1 * 3
1 * 3
* 2 3
* 2 3
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them makes one coloring not nice. Number 1 makes 4 colorings not nice, thus

altogether there are at least 10� 4� 4 ¼ 2 nice balanced two-colorings.

3. Exactly two numbers, wlog. 1 and 2, appear 4 times.

In this case jT1 \ T2j � 2, and there are at most b18� 2 � 4c ¼ 3 numbers which

appear in exactly three triples. We distinguish some subcases:

(a) jT1 \ T2j ¼ 4, i.e., T1 ¼ T2.
Again we consider only the balanced two-colorings. 1 and 2 both make

the same four of them not nice while the at most 3 numbers which appear

in exactly three triples make 3 of them not nice, so still there are at least

10� 4� 3 ¼ 3 nice balanced two-colorings.

(b) jT1 \ T2j ¼ 3.

In this case we have triples 12�; 12�; 12�; 1 � �; 2 � �; � � � where � are

numbers different from 1, 2. Again we consider only the balanced two-

colorings. The numbers 1 and 2 together make 7 of them not nice while

the at most 3 numbers which appear in exactly three triples make 3 of

them not nice. Assume first that there is some coincidence among these

not nice balanced colorings, then there is at least 10� 7� 3þ 1 ¼ 1 nice

balanced two-coloring.

Now assume that all these 10 not nice balanced colorings are different,

then there are numbers, wlog. 3, 4, 5 such that jT3j ¼ jT4j ¼ jT5j ¼ 3 and

jTi \ Tjj ¼ 2 for every i ¼ 1; 2 and j ¼ 3; 4; 5. This implies jT1 \ T2 \
Tjj � 1 for j ¼ 3; 4; 5. Then the first three triples must be 123, 124, 125.

To have jT1 \ Tjj ¼ 2 for j ¼ 3; 4; 5 we need that the fourth triple

containing 1 contains all of 3, 4, 5, a contradiction.

(c) jT1 \ T2j ¼ 2.

Again we consider only the balanced two-colorings. The numbers 1 and 2

together make 6 of them not nice while the at most 3 numbers which

appear in exactly three triples make 3 of them not nice, so still there are at

least 10� 6� 3 ¼ 1 nice balanced two-colorings.

4. At least three numbers, wlog. the numbers 1, 2, 3, appear 4 times.

This case follows from Lemma 1. h

We introduce one more notation and then we are ready to prove Theorem 1.

Definition 4 Let T be a set of n triples (of positive integers). T is reducible if we can

delete a triple from it such that the remaining set of triples is fair, otherwise it is

irreducible.

Note that a reducible set of triples is by definition necessarily fair.

Proof of Theorem 1 We have seen earlier that the conditions are necessary, so we

want to prove that they are also sufficient. That is, we want to find a nice two-

coloring of a fair non-special set T of n� 6 triples.

If T is reducible then we delete one of the triples such that the remaining set is
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still fair. We keep doing this until we get an irreducible set T 0 or a set T 0 with
exactly 6 triples.

1. T 0 is non-special.
If T 0 has n0 ¼ 6 triples then by Lemma 2 we get a nice two-coloring of T 0.
Otherwise T 0 is irreducible.
If T 0 is irreducible, deleting an arbitrary triple t makes the set not fair, thus there

is a number (wlog. the number 1) which appears n� 2 times (and does not

appear in t). Next, deleting a triple t0 which contains 1 would make the set not

fair, thus there is a number which appears n� 2 times and does not appear in t,
thus this number is different from 1, wlog. 2. Finally, as n� 6, there is a triple t00

in which 1 and 2 both appear. Deleting t00 would also make the set not fair thus

there is a number different from 1 and 2, wlog. 3, which also appears n� 2

times. Thus, there are three numbers that appear n� 2 times in the fair set of

triples T 0, so by Lemma 1 we get a nice two-coloring of T 0.
In both cases, the nice two-coloring of T 0 can be extended arbitrarily to a nice

two-coloring of T.
2. T 0 is special.

T 0 is then a special fair set of n0 � 6 triples. Wlog. T 0 consists of n0 � 3� 3

triples of the form 123 and three triples, t1 ¼ 1 � �; t2 ¼ 2 � �; t3 ¼ 3 � � (where

� denote arbitrary numbers different from 1, 2, 3). Now we are interested in the

triples that were deleted during the process. Recall that T was a non-special set,

thus we must have deleted at least one triple t which is not of the form 123, thus

t avoids at least one of 1, 2, 3. Assume wlog. that t avoids 1. Color t; t1 and one

triple 123 with color red. Color the rest of the triples (including t2; t3 and

another triple 123) blue, it is easy to check that this coloring is nice, as required.

h

We mention that in Theorem 1 we use Lemma 2 only on irreducible sets.

4 Algorithms and Partial Colorings

For general c and k, if a nice (partial) c-coloring exists of k-tuples, then in each color
class we can choose at most k þ 1 triples such that coloring these at most cðk þ 1Þ k-
tuples (the rest of the triples can remain uncolored) already has the property of a

nice partial c-coloring. Indeed, for each color we can choose an arbitrary k-tuple of
that color, then using that the coloring is nice, we can choose at most k other k-
tuples of that color avoiding each element in this k-tuple, together these at most c
times k þ 1 many k-tuples are as required.

Observation 5 If a nice (partial) c-coloring exists of a set of k- tuples then there is
also a nice partial c-coloring of the k- tuples which uses all colors at most k þ 1

times and the original coloring is an extension of this coloring. Moreover, from
each color class of the original c-coloring we can fix one k-tuple which remains
colored in the new nice partial c-coloring (with the same color as in the original
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coloring). Such a nice partial c-coloring can be found easily in linear time if the
nice (full) c-coloring is given.

From these using Theorem 1 we get the following:

Corollary 1 Given a set of n� 6 triples, a nice partial 2-coloring that colors at most
4 triples with each of the two colors exists if and only if the set of triples is fair and
non-special.

Observation 5 implies that there is a Oðncðkþ1ÞÞ time algorithm to check for a set

of n k-tuples if a nice c-coloring exists and find one if it exists. Indeed, it is enough

to check the Oðncðkþ1ÞÞ many partial colorings that color k þ 1 k-tuples with each

color whether any of them is a nice partial c-coloring (and if yes, extend it

arbitrarily to a nice c-coloring). Note that checking any one of these colorings

whether it is nice can be done in constant time (dependent on c and k).
In case c ¼ 1 we have seen that a set of k-tuples has a nice 1-coloring if and only

if it is 1-fair which can be easily checked in linear time in n. If it is 1-fair then

coloring all k-tuples with the unique color is a nice coloring. Also, we can easily

find in linear time in n a subset of at most k þ 1 many k-tuples such that coloring

only these is a nice partial 1-coloring.

In case c ¼ 2 and k ¼ 3 the above argument gives that in time Oðn8Þ we can

check if a nice 2-coloring exists of a set of triples and if yes then also find one. For

this case we can improve considerably this naive algorithm. Checking that a set of

n triples is fair and non-special can be done easily in linear time in n. Indeed, being
special is very easy to check while testing if a set of triples is 2-fair, one can choose

two arbitrary triples, and only check if the elements present in these two triples are

avoided by at least two other triples, as these two triples both avoid all other

elements.

This and Theorem 1 implies that there is a linear time algorithm to check if a nice

2-coloring of a set of triples exists. This does not immediately give an algorithm to

also find such a coloring. Next we show how the characterization leads to a linear

time algorithm for also finding a nice 2-coloring when it exists.

Claim Given a set of n triples, there is an O(n) time algorithm to check if a nice
2-coloring exists and find one if it exists.

Proof For n� 5 we can check every 2-coloring in constant time. Given a set T of

n� 6 triples, checking if a set of triples is fair and non-special can be easily done in

linear time. If these conditions hold, then we know that there exists a nice 2-coloring

(and otherwise it does not). Assuming that the set of triples has both of these

properties, our aim is to find a constant size subset of the triples which already has

both of the properties.

In order to do that, take two arbitrary triples, e and f. As the set is fair, for each

element appearing on e or f, in linear time we can find two triples that avoid this

element. Altogether e and f has at most 6 different elements, and thus we find at

most 12 triples which together with e and f form the set T 0 (with size at most 14).

We can also assume that T 0 has at least 6 triples as otherwise we add to it arbitrarily

some further triples so that this holds. We claim that T 0 is fair. Indeed, by our
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construction for each element in e or f there are at least two triples in T 0 which avoid

it, while for every other element both e and f avoid that element. Now we check if T 0

is non-special, which can be checked in constant time. If yes, we are done. On the

other hand, if T 0 is special then there is a unique triple g that occurs at least 3 times

in T 0, this can be identified in constant time. As T is not special, in linear time we

can find an additional triple from T n T 0 which is different from g, adding this to T 0

makes it non-special (and it remains to be fair).

Finally, having found a constant size (at most 15) subset T 0 which is fair and non-

special, we can check in constant time all its two-colorings to find one which is nice.

This is also a nice partial two-coloring of T, which can be extended arbitrarily (in

linear time) to a nice two-coloring of T.
Altogether the algorithm takes O(n) time, as required. h

In fact there is a linear time algorithm for every c, k. Note that for general c, k we
do not have a characterization and so the algorithm is based only on the fact that it is

enough to find a small partial coloring, this is stated by Theorem 2.

Proof of Theorem 2 We fix some c and k which are considered to be constants and

we are given a set T of n many k-tuples. The proof idea is to reduce the size of the

problem, that is, we will create a constant size set R of k-tuples such that T admits a

nice c-coloring if and only if R does, moreover, given a nice c-coloring of R, we can
find a nice partial c-coloring of T in constant time.

Fix an arbitrary subset S of s ¼ ðk þ 1Þðc� 1Þ þ 1 many k-tuples. If a nice c-
coloring of T exists then by 5 also a nice partial c-coloring exists which colors at

most k þ 1 sets with each color. In this partial c-coloring for some integer i
(0� i� c) we have that among the k-tuples in S there are at least i colors present and
also there are at least c� i uncolored sets in S. We can easily extend this partial

coloring to a coloring such that all colors are present on S (for each color missing on

S we color one uncolored k-tuple of S with this color). Summarizing, if there exists a

nice c-coloring then there exists also a nice c-coloring such that all colors appear on

S.
Notice that s, the size of S, is a constant. We make a list E0 of the at most ks

elements that appear in the sets of S. From now on during the algorithm whenever

we see an element not in E0, we replace it with a dummy element � (it can happen

that a k-tuple now contains several �’s but it will cause no problems). By this our

alphabet is essentially reduced to size at most ksþ 1 (the elements in E0 plus �), and
we get the set of k-tuples T� on this alphabet. Note that the k-tuples of T� are in a

natural bijection with k-tuples of T, which, given a (partial) coloring of T�, defines a
partial coloring of T. h

Lemma 3 A nice partial c-coloring of T� is also a nice partial c-coloring of T. On
the other hand, if T admits a nice partial c-coloring then T� also admits a nice
partial c-coloring.

Proof Clearly, by definition of a nice coloring, if we can find a nice c-coloring of

T�, then the same coloring is also a nice c-coloring of the original set of k-tuples
(indeed, merging elements just makes our task harder).
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On the other hand we have seen that if T admits a nice partial c-coloring then it

also admits one in which on S all colors appear. We claim that this coloring is also a

nice partial c-coloring of T�. The property of a nice coloring requires for each color

and each element that there is a k-tuple with this color avoiding this element. As we

did not merge elements in E0, this remains true for every element in E0 and every

color. Also, it is true for � and every color because for each color any k-tuple in S
with this color avoids �, as required. h

This lemma shows that it is enough to find a nice partial c-coloring of T�. If it
does not exist, then T does not have a nice partial c-coloring. On the other hand, if it

exists, then it is also a nice partial c-coloring of T. Thus, from now on we restrict our

attention to T�.
Observe that in a nice partial c-coloring, if some k-tuples contain the same

elements and get the same color, then by uncoloring all but one of them we still get

a nice partial c-coloring.
From constant many elements (that is, ksþ 1) there are only constant many

different k-tuples that can be generated. We go through the set T� of k-tuples one-
by-one and if we already kept c copies of the pending k-tuple, then we throw it

away, otherwise we keep it. This process can be done in O(n) time, at the end we are

left with a set R of constant many k-tuples, as each different k-tuple generated from

the ksþ 1 elements has multiplicity at most c. By our previous observation, if T� has
a nice partial c-coloring then R also has one, as in each color class every type of k-
tuples needs to be used at most once, and so in all colors together at most c times.

Summarizing, as we promised at the beginning of the proof, we have defined a

constant size set R of k-tuples which admits a nice (partial) c-coloring if and only if

T� does which by the lemma is further equivalent with T admitting a nice (partial) c-
coloring. Moreover, if such a coloring exists of R then the same coloring is nice for

T� and by the lemma also for T.
As R has constant size, we can brute force check in constant time if it admits a

nice c-coloring and if it does then we can use that coloring to get a nice partial c-
coloring of T (which can be easily extended to a c-coloring of T in linear time).

Altogether the algorithm takes O(n) time, as required.

As we stated earlier, we can easily uncolor (in linear time) some k-tuples in a nice
c-coloring such that we get a nice partial c-coloring in which all colors are used at

most k þ 1 times. Claim 4 thus implies the following:

Corollary 2 For any fixed c, k, given a set of n many k- tuples, there is an O(n) time
algorithm to check if a nice partial c-coloring exists which uses every color at most
k þ 1 times, and which finds one if it exists (the dependence on c and k is hidden in
the O notation).

5 A Matching Problem Application

Here we discuss the real life problem that motivated our research, the matching

problem it translates to and how these are connected to our results, as it was

presented by Cechlárová in the 9th Emléktábla Workshop Booklet [1] and
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communicated to me by Jankó [3]. It is about the International Young Physicists’

Tournament (IYPT), sometimes referred to as ‘Physics World Cup’, a team-oriented

scientific competition between secondary school students. The real-world setup is

slightly different from the model regarded here, we only restrict our attention to the

model relevant for us.

We are given n teams, each chooses in advance 3 problems to his portfolio (out

of a given set of m problems). The teams need to be split into groups of 3 or 4 and in

each group there are 3 rounds, and in each round each team of the group presents a

problem. It is required that no problem is presented twice within a group in the same

round. We are interested in finding conditions and algorithms to see if such a

grouping is possible.

In a group let us represent the teams and problems as the vertices of a bipartite

graph, a problem is connected to a team if it is in its portfolio. In particular, every

team has degree 3. It is easy to see that the problem is equivalent to splitting the

teams into groups of 3 and 4 and in each group splitting (in other words, coloring)

the edges incident to the teams into 3 matchings. By König’s Line Coloring

Theorem this can be done if and only if all degrees are at most 3 in the subgraph of

the edges incident to the teams of a given group. This trivially holds for the degrees

of the teams, for the degrees of the problems this means that no problem is present

in the portfolio of more than 3 teams in the group.

In groups of size 3 this trivially holds, thus only groups of size 4 may cause an

issue. If n is divisible by 3 then we do not need such groups, we only need that

n� 3. If n � 1 mod 3 then we need that n� 4 and there needs to be one group of

size 4, which is exactly the partial coloring problem for c ¼ 1, where the m
problems correspond to the elements of [m], the n teams to n triples (a team

corresponds to a triple containing the problems choosen by this team) and the

unique group of size 4 to the color class of a partial 1-coloring. For that we have

seen that the trivial necessary and sufficient condition is that the set of triples is 1-

fair. Finally, if n � 2 mod 3 then we need n� 8 to be able to split n into sets of size

3 and 4. In this case we need two groups of size 4, which is exactly the partial

coloring problem for c ¼ 2, where the m problems correspond to the elements of

[m], the n teams to n triples and the groups of size 4 to the two color classes of a

partial 2-coloring. Corollary 1 implies that the necessary and sufficient condition in

this case is that the set of triples is 2-fair and non-special (note that Corollary gives a

coloring which uses both colors at most 4 times, but this can easily be extended to a

coloring which uses both colors exactly 4 times). Thus, we have solved all cases,

furthermore, checking the existence of and finding such a coloring can be done in

linear time by Corollary 2.
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1. 9th Emléktábla workshop booklet, https://www.renyi.hu/*emlektab/index.html. Accessed 28 July

2020

2. Januario, T., Urrutia, S., Ribeiro, C.C., de Werra, D.: Edge coloring: a natural model for sports

scheduling. Eur. J. Oper. Res. 254(1), 1–8 (2016)
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