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Abbreviations
Akt Protein kinase B
AMPK 5′ AMP-activated protein kinase
apo A1 Apo-lipoprotein A1
ER Endoplasmic reticulum
GLUT4 Glucose transporter type 4
GM3 Monosialodihexosylganglioside
HSF1 Heat shock factor 1
HSP Heat shock protein
iHSP Intracellular heat shock proteins

IRS Insulin receptor substrate
mTOR Mammalian target of rapamycin
pIKK-β Inhibitor of nuclear factor kappa-B kinase

subunit beta
pJNK Phosphorylated c-Jun N-terminal kinase
PGC1-α Peroxisome proliferator-activated receptor

gamma coactivator 1-alpha
pps Pulses per second
t2DM Type 2 diabetes mellitus
V Volts

What if we had a new paradigm to explain the metabolic
syndrome and type 2 diabetes? What if our focus on the
importance of glucotoxicity, lipotoxicity, and inflammation
could be addressed in a new perspective of a disease that so
threatens global health? We propose that loss of cellular stress
response in insulin responsive tissues is the near seminal event
that disrupts metabolic homeostasis, leading to a cascade of
pathological outcomes. As a valid paradigm, it necessarily
would occur very early in the disease process and be a funda-
mental factor in the pathological features of the disease—
namely, obesity, inflammation, beta-cell malfunction, insulin
resistance, dyslipidemia, mitochondrial dysfunction, and or-
gan vulnerability. Importantly, correcting the defect through a
variety of means would restore metabolic homeo-dynamics
and improve functioning of diverse organ systems adversely
affected by type 2 diabetes mellitus (liver, muscle, kidney,
heart, brain, and beta-cell). Conversely, inducing the defect
would induce the disease. Indeed, defects in the stress re-
sponse occur prior to the development of glucose intolerance,
and restoration of the stress response aids in the resolution of
all of the abnormalities associated with the metabolic syn-
drome and t2DM—yielding more robust organelles, organs,
and, ultimately, organisms. Herein, we propose that impaired
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Hsp activity is a near seminal event in the pathogenesis of
t2DM—tipping the balance from health into disease.

Background: exercise, hyperthermia, and diabetes

Lifestyle modification is a primary intervention improving all
of the major features of the disease: glycemia, dyslipidemia,
obesity, and hypertension. Indeed, the Diabetes Prevention
Program found that lifestyle modification to be more effective
than drug therapy (Diabetes Prevention Program Research
Group et al. 2009). We hypothesized that attempting to mimic
the physiological effects of exercise by warming the body
might duplicate the beneficial effects of exercise on glycemic
control in t2DM. We reasoned that skeletal muscle is the
major organ that consumes glucose in response to insulin
and predicted that simply warming muscle would improve
glucose indices. Indeed, when we treated traditionally man-
aged t2DM with partial submersion in a hot tub for 30 min, 6
out of 7 days/week for 3 weeks. The results exceeded our
expectations with improvements in fasting glucose, a 1 %
drop in HbA1, a trend toward weight loss, and relief of
neuropathic symptoms (Hooper 1999). The neuropathic im-
provement suggested that heat did more than just improve
blood flow to muscles; therefore, we explored cellular mech-
anisms that surround the heat response and found a vast
literature outside of clinical medicine concerning heat shock
proteins (HSPs). A Hungarian colleague, Kurucz, reflected on
the hot tub study and then examined messenger RNA
(mRNA) of heat shock protein70 (Hsp 70) in skeletal muscle
of patients with t2DM, subjects with glucose intolerance, and
euglycemic identical twins of subjects with glucose intoler-
ance. All subjects, including the euglycemic twins, had lower
muscle mHsp70 than control subjects and the levels positively
correlated with insulin sensitivity (Kurucz et al. 2002).
Subsequently, as we will discuss below, nearly all of the patho-
logical features of t2DM and its complications can be treated by
induction of HSPs—ranging fromwhole body hyperthermia, to
genetic modification, to pharmacological agents.

What are Hsps?

Hsps are almost as old as life itself, 2.6 billion years old, and
remarkably evolutionarily conserved. Even plant Hsp70 re-
mains 70 % homologous with human Hsp70(Hooper et al.
2010). The heat shock protein molecular chaperones protect
cells and their organelles from succumbing to stressful insults,
whether from heat, cold, oxidation, free radicals, toxins, or
hypoxia. They guard protein integrity by aiding in protein
folding, preventing aggregation, or degrading nonfunctional
proteins from the cytoplasm. They are often anti-
inflammatory inside the cell but can be pro-inflammatory

outside the cell, acting as a danger signal that alerts the body
to foreign threats. They preserve surface membranes, mito-
chondria, endoplasmic reticulum, and nuclear fidelity, and
participate in intracellular transport. Hsps aid in wound
healing, ischemia–reperfusion injury, and sepsis survival
(Chen et al. 2007).

Hsp levels in diabetes

In both types of diabetes, iHSP levels [(iHsp70 (iHsp72,
HSPA1A), iHsp27, and hemeoxygenase (iHsp 32)] and their
response to stress are low in tissues that are insulin sensitive,
particularly skeletal muscle, the heart, liver, and monocytes
(Kurucz et al. 2002; Atalay et al. 2004a; Bruce et al. 2003;
Nakhjavani et al. 2012; Rodrigues-Krause et al. 2012;
McClung et al. 2008; Kavanagh et al. 2009; Figueredo et al.
1996). The fall in iHSPs is likely a consequence of the
deactivation of the major regulator of iHSPs, HSF1
(Kavanagh et al. 2009, 2011; Atalay et al. 2004b). Within
skeletal muscle types, HSP expression is associated with
oxidative capacity. Slow twitch fibers (highly oxidative) have
higher HSP expression levels, lower activation of inflamma-
tory cytokines, and better insulin signaling compared to fast
twitch fibers (Gupte et al. 2008). Moreover, diabetics have a
decreased amount of slow twitch fibers and correlated to the
severity of insulin resistance (Stuart et al. 2013). Further
debilitating the function of Hsp70 is its glycation, which
blocks its protein refolding ability (Bathaie et al. 2010). Loss
of insulin signaling itself promotes deactivation of HSF1 via
an inhibitory phosphorylation of HSF1 by glycogen synthase
kinase 3-β (GSK-3β). A low Hsp state then promotes in-
creased activation of inflammatory cytokines, c-Jun N-
terminal kinase (JNK) and IkappaB kinase (pIKK-β), which
phosphorylate serine 307 of IRS1 and further interfere with
insulin signaling. Thus, a vicious cycle is created in which
inflammation-induced insulin resistance leads to lower Hsps
and further inflammation (Hooper and Hooper 2009). iHSP
levels are inversely correlated with glucose disposal rate,
insulin resistance, inflammatory cytokines, GLUT4 levels,
and mitochondrial function (Bruce et al. 2003). The HSP
response is delayed and diminished in diabetic wound healing
(McMurtry et al. 1999). Finally, not all studies have found low
iHsps in diabetes (Ugurlucan et al. 2010). Not infrequently,
these studies were in drug-induced, streptozotocin, diabetes,
and the acute stress of the sudden diabetic state could raise the
levels initially and with time fall to lower levels (Bathaie et al.
2010).

Low levels of iHsps contribute to an impaired stress re-
sponse in a disease disrupted by protein glycation and oxida-
tion, free radical formation, protein aggregation, and inflam-
mation, and may be a clue to the etiology of the disease itself
for it sets up for disruption of homeostasis and induction of
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pathology. On the other hand, appropriately serum extracellu-
lar HSPs are higher than normal in t2DM and rise further with
longer duration of t2DM, higher glycemia, and inflammation
(Nakhjavani et al. 2010, 2012).

Obesity and t2DM are associated with ER stress. Hsp72
directly binds to IRE1α and enhances IRE1α-XBP1 signaling
at the ER and thus improves adaptation to ER stress and cell
survival (Gupta et al. 2010). Furthermore, reduction of ER stress
with agents that augment ER chaperones is associated with
amelioration of obesity and diabetes (Lee et al. 2003, 2011).

HSF1 directly stimulates expression of the tight junction
protein, occluding (Dokladny et al. 2008). Diabetes induces
defects in intestinal tight junctions that lead to a chronic
endotoxemia and exacerbate systemic inflammation (Geurts
et al. 2013). ImpairedHSF1 activity in t2DMmay contribute to
the gut endotoxemia. Tight junction defects also contribute to
renal and retinal pathology in diabetes (Hara et al. 2009; Silva
et al. 2013), again perhaps exacerbated by a low HSF1 state.

Aging, diabetes, and Hsps

t2DM is an age-related disease that reduces longevity and in
many ways accelerates many of the features associated with
aging. HSPs are thought to play a fundamental role in longev-
ity and aging (Murshid et al. 2013). Cytoplasmic Hsp70 levels
have been examined across many different species, and higher
levels confer longer maximum life spans (Rincon et al. 2005;
Salway et al. 2011). For example, in invertebrates, overex-
pression of HSP70 confers a more than 40 % extension in
lifespan (Yokoyama et al. 2002). In Caenorhabditis elegans,
the transcription factor that regulates Hsps, HSF, is required
for daf-2 mutants to express their longevity phenotype. These
mutants have reduced insulin-like growth factor receptor func-
tion and double the expected lifespan (Hsu et al. 2003). Aging
is generally associated with lower iHSPs; however, in our
long-term studies of non-human primates, we found that
development of insulin resistance via a high fat diet conferred
lower iHsps, not age itself (Kavanagh et al. 2007, 2012).

Interestingly, neurodegenerative diseases like Parkinson’s
and Alzheimer’s diseases have a higher prevalence in patients
with t2DM (Garcia-Lara et al. 2010; Hu et al. 2007). These
diseases share a common loss of insulin signaling in brain and
in the t2DM pancreatic beta cell with amyloid precursor
accumulation and aggregation (Hooper and Hooper 2005;
Frame and Zheleva 2006). Insulin sensitivity as a central aging
mechanism is supported by the longest lived mouse models,
which have high insulin sensitivity through genetic modifica-
tion of growth hormone biology (Brown-Borg and Bartke
2012). While iHSPs have not been measured in neurons or
beta cells in vivo, loss of insulin signaling likely reduces
iHSPs in these tissues, resulting in abnormal protein accumu-
lation and function. Administering insulin and Hsp70 can

reduce amyloid accumulation in the brain (Tang et al. 2013;
Huang et al. 2014; Bobkova et al. 2013).

Like aging, t2DM accelerates the loss of genome-protecting
telomeres (Garagnani et al. 2013; Balasubramanyam et al.
2007) because preservation of telomeres is dependent on a
functioning cell stress response (Strub et al. 2008). Disruption
of Hsps by t2DM could accelerate aging (Pandita et al. 2004;
Tzanetakou et al. 2012). Not surprisingly, telomere shortness
and t2DM are both tied to malignant transformation (Ornish
et al. 2013). Finally, aging and diabetes are both associated with
fluidity reduction and micro-domain (Adak et al. 2008; Vigh
et al. 2007a). These changes in membrane organization can
nullify healthy membrane-perturbing signaling and attenuating
the heat shock response leading to a vicious cycle whereby
aging reduces Hsp induction, which promotes aging through
reduced cell survival and accumulation of oxidized proteins
(Horvath and Vigh 2010; Vigh et al. 2007b; Török et al. 2013).

Hsp induction—importance of the membrane

We were intrigued how membrane composition could modu-
late the stress response and act as a temperature and/or stress
sensor to activate the cellular stress response. We found evi-
dence for a direct correlation between membrane fluidization
and the Hsp response in mammalian cells. The thermal shift of
membrane fluidity induced by heat was duplicated by mem-
brane fluidizers (like benzyl alcohol and heptanol). The for-
mation of isofluid membrane states in response to the chem-
ical agents increased the expression of Hsp70 at physiological
temperatures. Importantly, we demonstrated that the activation
of Hsp expression by membrane fluidizers was not induced by
a protein-unfolding signal (Balogh et al. 2013).

Saturated fats from animals are solid, while most unsatu-
rated plant or marine origin fats are liquid at room tempera-
ture. Intuitively, it is not surprising that there is an association
between type of dietary fats consumed, membrane fatty acid
composition, and the development of diabetes (Weijers 2012).
Less obvious is the notion that endurance exercise alone can
change the membrane fatty acid content with a reduction of
saturated fat and increased membrane fluidity (Marini et al.
2011). Conversely, patients with t2DM have higher saturated/
cis-unsaturated fatty acid ratio in their membranes (resulting
in lower membrane fluidity)(Weijers 2012). A high oleic acid
intake normalizes the saturated/unsaturated fatty acid ratio,
resets the proper membrane fluidity, and improves glycemia
(Perona et al. 2007). Consumption of trans unsaturated fats,
whose structure and effects on the membrane structure are
closer to those of saturated fats, is also associated with diabe-
tes and other health problems (Kavanagh et al. 2007;
Bhardwaj et al. 2011). On the basis of the membrane sensor
hypothesis, we speculate that a diet rich in cis-unsaturated
fatty acids can be useful in the treatment of diabetes by
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remodeling membranes and thus upregulating Hsp70 (Vigh
et al. 2007b; Balogh et al. 2013; Török et al. 2013).

Our present interest focuses on better defining a heat re-
ceptor and understanding the acute changes in membrane
fluidity induced by its activation. Evidence is now gathering
that a membrane calcium channel transient receptor potential
vanilloid (TRPV), can react to heat and the herb capsaicin and
produce a calcium influx into the cell resulting in activation of
HSF-1 and thus the cellular stress response (Bromberg et al.
2013). Interestingly, capsaicin ingestion can improve mito-
chondrial biogenesis, improve exercise performance, block
fat-induced insulin resistance, and protect against ischemic
events (Luo et al. 2012; Xu et al. 2011). Perhaps, it is no
surprise that knock out of TRP channels leads to a t2DM
phenotype (Zhu et al. 2011).

Finally, in addition to the general lipid dietary approach,
single membrane lipid or lipid molecular species can also be
important. The ganglioside GM3 blocks insulin signaling,
causing a dissociation of the insulin receptor and caveolin-1
complex in the surface membrane microdomains (rafts)
(Kabayama et al. 2007). Thus, a novel therapeutic intervention
aimed at normalizing the elevated level of GM3 through
inhibiting GM3 synthase could prove beneficial for the treat-
ment of t2DM.

Exercise, diabetes, and Hsps

Exercise offers great potential for improving the complica-
tions associated with obesity and diabetes. Exercise can main-
tain optimal blood glucose, lipid, and blood pressure profiles,
which prevent or delay chronic complication of diabetes
(American Diabetes Association 2010; Eriksson 1999;
Zanuso et al. 2010; Ostergard et al. 2006). Acute and chronic
exercise induces mechanical and cellular changes that affect
metabolism and organ structure. Acute bouts, depending on
intensity of exercise, can result in structural damage to tissues
that lead to an adaptive response of tissue repair. Repeated
acute bouts lead to enhanced cardiovascular and skeletal mus-
cle functioning (Harber et al. 2012; Gollnick et al. 1972;
Hamilton and Booth 2000). Moreover, endurance exercise
training increases skeletal muscle mitochondrial enzyme ac-
tivity (Holloway et al. 2006; Dudley et al. 1982; Gollnick et al.
1973; Holloszy 1975) and respiratory control via oxidative
phosphorylation (Holloszy 1967), which improves fatigue
resistance (Conlee and Fisher 1979) by modifying fiber type
characteristics (Gollnick et al. 1973). Exercise induces meta-
bolic adaptations include increased insulin sensitivity and
muscle glycogen content (Manabe et al. 2013) and improved
fatty acid oxidation and synthesis of acid cycle enzymes
(Harber et al. 2012). Repeated exercise bouts will enhance
cardiovascular function such as increasing the absolute and
relative left ventricular mass (Longhurst et al. 1981;Wernstedt

et al. 2002) as well as vascular density in skeletal muscles
(Lash and Bohlen 1992), while physical inactivity decondi-
tions the skeletal muscle and cardiovascular system.

While the etiology of t2DM is not well understood, evi-
dence suggests that progressive insulin resistance is associated
with damaged pancreatic β-cell function (Alonso-Magdalena
et al. 2011; Sheng and Yang 2008; Hooper 1999). These
impairments may be the cause of physical inactivity and in-
crease calorie intake due to lipotoxicity and excess fatty acids
accumulation, and resulting in a chronic pro-inflammatory
state (Eckel et al. 2005; Sheng and Yang 2008; Furuhashi
et al. 2011). This has been supported in obese insulin type 2
diabetics and the descendants of patients with t2DM having a
defective mitochondrial oxidative phosphorylation capacity
and increased triglycerides and lipids in skeletal muscle
(Eckel et al. 2005). Elevated lipid metabolites (ceremide and
diacyglycerol) can directly activate inflammatory pathways
(i.e., JNK, nuclear factor-κB, and IKK) (Copps and White
2012; Tanti et al. 2012). Moreover, an increase in inflamma-
tory proteins impairs the insulin receptor substrate in t2DM
and disrupts the downstream signal for the translocation of
GLUT4 protein from the vesicles to the cell membrane, thus
impairing glucose transport (Eckel et al. 2005; Hotamisligil
2005; Ozcan et al. 2004).

An acute bout of exercise improves whole-body insulin
sensitivity and glucose tolerance (Wojtaszewski et al. 2002;
Sakamoto andGoodyear 2002) 24–48 h after the bout (Hawley
and Lessard 2008; Zierath 2002; Schneider et al. 1984). The
precise mechanisms are not well understood; however, muscle
contraction leads to an insulin independent effect via activation
of 5′ adenosine monophosphate-activated protein kinase
(AMPK) that likewise cause the translocation of GLUT4 to
the cell membrane as well as increases GLUT4 gene expres-
sion (Daugaard and Richter 2001; Zisman et al. 2000; Hussey
et al. 2012; Lehnen et al. 2011; Holloszy 2008; O’Gorman
et al. 2006; Kraniou et al. 2006; Holmes and Dohm 2004;
Daugaard et al. 2000), thereby improving glucose tolerance
and insulin sensitivity (Chen et al. 2003; Richter et al. 2004;
Frosig et al. 2004). AMPK is a key regulator of skeletal muscle
metabolism and gene expression and is believed to be an
important signaling molecule for adaptations caused by exer-
cise training (Russell et al. 2014; Richter and Hargreaves
2013). Furthermore, exercise is known to have an anti-
inflammatory effect with reduce pro-inflammatory cytokines
in obese and diabetic humans (Belotto et al. 2010;
TeixeiradeLemos et al. 2009; Petersen and Pedersen 2006;
Gielen et al. 2003). Moreover, acute exercise reduces JNK
activity and restores insulin sensitivity by modulating IRS
(pSER) in humans (Pauli et al. 2010; Kiraly et al. 2010;
Teixeira-Lemos et al. 2011) rat models (Kiraly et al. 2010;
Ropelle et al. 2006; Berdichevsky et al. 2010), and cell cultures
(Berdichevsky et al. 2010). Hsp72 functions as a natural in-
hibitory protein of JNK (Park et al. 2001; Volloch et al. 2000)

P.L. Hooper et al.
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and improvements attribute to limiting inflammatory kinase
disruption of insulin signaling (Gabai et al. 1997).

Muscle mitochondrial function in diabetes mellitus is im-
paired with fiber-type-specific defects in insulin signal trans-
duction for glucose transport (Song et al. 1999). Specifically,
GLUT4 is reduced in type I muscle fibers of type 2 diabetic
patients (Gaster et al. 2001; Tanner et al. 2002). These im-
pairments are associated with a low aerobic exercise capacity
in obese type 2 diabetics (Kadoglou et al. 2009; Leite et al.
2009). Physical inactivity causes a deconditioning effect and
a diminished capacity of skeletal muscle and the cardiovas-
cular system, as observed in bed rest studies (Ringholm et al.
2011; Adami et al. 2013; Brocca et al. 2012). Moreover, in
healthy populations, 2 weeks of inactivity can likewise impair
peripheral insulin sensitivity and cardiovascular fitness
(Olsen et al. 2008). This deconditioned effect may be associated
with a decreased HSPs expression and HSF1 gene, which is
observed in obese type 2 diabetic humans (Rodrigues-Krause
et al. 2012).

Exercise will increase iHsps in response to a varied stress
response such as muscle contraction (Liu and Steinacker
2001), ischemia (Bushell et al. 2002; Lepore et al. 2000; Liu
et al. 2002), metabolism (Ndisang 2014), oxidative stress
(Fittipaldi et al. 2014), and glycogen depletion (Febbraio
and Koukoulas 2000; Khassaf et al. 2001). Moreover, the
extent of such changes is dependent on training status, inten-
sity, duration, mode, damaging/nondamaging, and fiber re-
cruitment (see reviews: Liu and Steinacker 2001;Morton et al.
2009). Animal studies have shown that acute exercise in-
creases iHsp70 in tissues such as skeletal muscle, lympho-
cytes, spleen, heart, brain, and liver (Lollo et al. 2013;
Touchberry et al. 2012; Salo et al. 1991; Pahlavani et al.
1995; Mikami et al. 2004; Campisi et al. 2003).
Interestingly, high-intensity exercise of short duration raises
iHsps as effectively as longer duration exercise and produces
similar positive metabolic effects on skeletal muscle (Bartlett
et al. 2012). Moreover, resistance exercise, which can cause
significant muscle damage, has demonstrated that mammalian
target of rapamycin (mTOR) signaling is important for induc-
ing hypertrophy (Farnfield et al. 2012; Apro et al. 2013).
Recently, mTOR has been implicated as a key protein for
the activation of HSF1 in cell cultures (Chou et al. 2012).
Exercise induced heat shock proteins have been extensively
studied in cardiac tissues and are thought to serve as a cardio
protective role for ischemia–reperfusion injury. In fact, a
single exercise bout will increase iHsp70 in large and small
vessels (Milne et al. 2012) and myocytes and improved ische-
mia recovery and reduce infarct size (Dillmann and Mestril
1995;Mestril et al. 1994a, b; Nishizawa et al. 1996). Similarly,
a cross-tolerance response (Whitley et al. 1999), such that an
exposure to one stress (exercise) can protect against other
stresses (i.e., hypoxia and or ischemia) or cross-talk (Vigh
et al. 2007b), may also occur in skeletal muscle.

In conclusion, we believe that exercise can play a major
role in enhancing the endogenous defense system against
mechanical and metabolic muscle damage, which has the
potential for cross-talk mechanisms for improving insulin
signaling and reducing inflammatory induced insulin resis-
tance. Ultimately, exercise can provide a model for developing
new therapeutic options to overcome or limit the metabolic
impairments of t2DM.

Hyperthermia, diabetes, and Hsps

While a tradition of treating diabetes with healing hot waters
has thrived for centuries, particularly in Eurasia, only in the
past decade havewe invested scientific attention to understand
the therapeutic effects of hyperthermia in treating diabetes.
Table 1 highlights the results of studies examining hyperther-
mia and/or other nonpharmaceutical HSP induction methods
in animal models of diabetes. One striking observation is how
a brief heat shock—as short as 15 min and as infrequent as
once a week—results in remarkable improvements in the
metabolic state. A variety of techniques have been used to
induce hyperthermia—hot water immersion, warm electric
blanket, sauna, and infrared box. Mild, direct electrical current
stimulation has also been used to augment heat-induced rises
in HSPs. Relevantly, whole-body hyperthermia raises baseline
iHSPs (Shinohara et al. 2006; Singleton and Wischmeyer
2006). Provocatively (but not recommended by us), it has
been observed that low-dose gamma radiation, known to raise
HSPs (Seo et al. 2006), applied to diabetic genotype animals
over a lifetime is associated with longer lifespan and less renal
disease than nonirradiated animals(Nomura et al. 2011).

As noted in Table 1, hyperthermic and nonpharmaceutical
Hsp induction studies demonstrate multiple physiological im-
provements: notably increased GLUT4 transport and AMPK
activation, improved adipokine profile, and reduced C-
reactive protein, triglycerides, low-density lipoprotein
(LDL), advanced glycosylation end product (AGE) formation,
body weight, abdominal fat, liver fat, and blood pressure.
Lastly, heat shock has been shown to protect from loss of
organ function (liver, kidney, pancreatic beta cell, and periph-
eral nerves). The uniform amelioration of so many of the
pathological features associated with t2DM with Hsp induc-
tion through nonpharmacologic methods reflects the funda-
mental role in the initiation and progression of the disease.

Herein, we will review, beyond our initial hot tub therapy
study (Hooper 1999), the hyperthermia-metabolic syndrome
studies as they differ considerably from the animal model
studied, the tissues examined, and the method of Hsp induc-
tion. In collaboration with Febbraio and colleagues, we stud-
ied Hsp inducers in a fat diet mice model of t2DM. Fifteen
minutes of weekly increasing body temperature to 41.5 °C via
a warm blanket resulted in a transient rise in Hsp72 in skeletal

Importance of cellular stress response in treating t2DM
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muscle, liver, and adipose tissue over a 24-h period. After
16 weeks, heat therapy prevented fat induction of fasting
glucose, glucose intolerance, hyperinsulinemia, insulin resis-
tance, and phosphorylation of JNK (Chung et al. 2008).
Gupte, Geiger, and coworkers studied fat fed male Wister rats
by weekly immersion for 20 min in hot water to raise rectal
temperature in a range of 41–41.5 °C for 12 weeks. The heat
treatment did not alter body weight, but it did reduce epidid-
ymal fat accumulation compared to control fat fed animals.
While fasting glucose levels were not altered by the diet, heat
treatment, compared to fat fed control animals, reduced

insulin levels, improved glucose clearance, improved mito-
chondrial function, increased insulin-stimulated glucose in
both fast and slow twitch muscles, increased insulin signaling
with activating phosphorylation of IRS and Akt, augmented
GLUT4 translocation, and reduced JNK activation (which
was blocked by Hsp72 inhibitor, KNK437), reduced activa-
tion of pIKK-β in fast twitch EDL muscle but not in slow
twitch soleus muscle. Heat treatment phosphorylated Hsp25
in EDL muscle and restored low Hsp60 in the mitochondria.
A single bout of heat treatment in a nonfat fed rat, 41 °C for
20 min, resulted in a rise in insulin stimulated glucose uptake

Table 1 Hyperthermia and/or other nonpharmaceutical HSP induction methods and therapies for diabetes/metabolic syndrome

Species and metabolic state or model Heat or stress applied,
intensity, duration frequency

Therapeutic result

Type 2 diabetes patients (Hooper 1999) Hot tub: oral temperature rose 0.8 °C,
30 min, for 3 weeks, 6 out of 7 days/week

1 % fall in HbA1 1.3 mmol/l, weight loss
trend, symptoms of neuropathy improved

Obese subjects (Biro et al. 2003) Sauna: rectal temperature rose 1.0 °C,
15 min at 60 °C, daily, 2 weeks

Fasting blood sugar fell 0.3 mmol/l, weight loss
0.3 kg, BP fell 4 mmHg systolic and
5 mmHg diastolic

Obese subjects’ ex vivo monocytes
(Simar et al. 2004)

Cells incubated for 2 h at 42 °C Decreases in pJNK, pIKK-β, and inhibitory
serine IRS-1 phosphorylation

Type 2 diabetes patients (Beever 2010) Sauna: far-infrared, 20 min,
3 times/week for 3 months

Increased quality of life: reduced stress, fatigue,
increased health perception, and social functioning

Fat fed mice—model of t2DM
(Chung et al. 2008)

Warming blanket: rectal temperature
41.5 °C for 15 min, weekly, 16 weeks

Prevented fat induction of fasting glucose,
glucose intolerance, hyperinsulinemia,
insulin resistance, and pJNK

Fat fed rats (Gupte et al. 2009a) Hot water immersion: rectal temperature
41.0 °C for 20 min, weekly, 3 months

Improved glucose tolerance, insulin-stimulated
glucose uptake, increased insulin signaling
in slow twitch skeletal muscle, decreased pJNK,
pIKK-β, increased mitochondrial enzyme levels

Aged insulin resistant rats 24 months
old (Gupte et al. 2011)

Warming blanket: rectal temperature
of 41–41.5 °C for 20 min, tested
24 h later

Increase in insulin-stimulated glucose uptake
in slow twitch skeletal muscle

Aged insulin resistant rats 24 months old,
in vitro soleus muscle (Gupte et al. 2011)

Incubated: 30 min at 42 °C Inhibited anisomycin-induced activation of JNK:
effect blocked by specific Hsp72 inhibitor

L-6 rat skeletal muscle cell line treated with
tumor necrosis factor alpha to induce
insulin resistance (Gupte et al. 2011)

Incubated: 43 °C for 20 min, tested 24 h later Preserved ATP-coupled oxygen consumption,
and fatty acid oxidation, i.e., enhanced
mitochondrial function

db/db mice (Kokura et al. 2007) Far infrared light: rectal temperature
of 38 °C for 30 min, 3 times/week,
3 months

Improved glycemia, triglycerides, free fatty
acid levels, urinary protein excretion,
histological kidney damage, GLUT4 expression

db/db mice and fat mice
(Morino et al. 2008)

Heat and mild electric stimulation:
42 °C electrodes and 12 V direct
current (55 pps of 0.1 ms duration),
2 times/week for 12–15 weeks

Improved glycemic, reduced insulin levels,
reduced liver and body fat, decreased
size of adipocytes

HepG2 cells in high glucose
medium (Morino-Koga et al. 2013)

Incubation at 42 °C and MES for 10 min Increased activating phosphorylation IRS
and Akt, increased accumulation of
insulin on lipid rafts

db/db mice (Kondo et al. 2012) Heat and mild electric stimulation:
42 °C electrodes and 12 V direct
current (55 pps of 0.1 ms duration),
2 times/week for 12–15 weeks

Reduced beta cell apoptosis and ER
stress, increased insulin response
to glucose challenge, reduced
cytokine activation

Low-dose streptozotocin
rat(Bathaie et al. 2010)

Hot water immersion: rectal temperature
41.0 °C for 20 min, 3 times/week, 5 months

Lowered fasting glucose, Hb A1c AGE,
triglycerides, low-density lipoprotein
cholesterol, increased high-density
lipoprotein cholesterol, and insulin secretion
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24 h after the heat shock. Finally, the authors studied the effect
of heat (43 °C for 20 min) in vitro L6 muscles and found at
24 h improved oxygen consumption and fatty acid oxidation
compared to sham-treated muscle (Gupte et al. 2009a). In a
separate study by the same authors, a single bout of heat,
41 °C for 20 min, improved insulin-stimulated glucose uptake
in aging Fisher 344 rats in slow twitch soleusmuscle 24 h after
the heat shock. In vitro heat treatment, 42 °C for 30 min, of
soleus muscle applied to 3-month and older 24 month soleus
muscles increased expression of Hsp72 and inhibited
anisomycin-induced activation of JNK. Inhibition of Hsp72
transcription with KNK437 blocked the ability of heat treat-
ment to reduce JNK activation, which suggests that heat
treatment’s ability to inhibit JNK activation in skeletal muscle
is dependent on increased Hsp72 expression (Gupte et al.
2011).

Kokura and coworkers studied the rodent model of t2DM,
db/db mice, treated three times per week for 12 weeks with
rectal temperature of 38 °C for 30 min using far infrared light
therapy. Heat treatment decreased fasting blood glucose, in-
sulin, and triglycerides levels, and improved glucose tolerance
and GLUT4mRNA inmuscle as compared with untreated db/
db mice. The rise in urinary albumin and histological kidney
damage observed in the db/db mice was inhibited by heat
therapy (Kokura et al. 2007).

Kai, Kondo, and colleagues have developed a method
that combines heat and mild electrical stimulation that
maximizes Hsp72 expression in tissues. In their study, they
heated fat fed mice to 42 °C in a warming box and applied
electrodes with a 12-V direct current (55 pps of 0.1 ms
duration), two times/week for 12–15 weeks. They observed
lower fasting glucose, insulin and tumor necrosis factor
alpha levels, but raised adiponectin levels, and improved
glucose tolerance. Despite the same level of activity and
calorie consumption, the treated animals had less liver and
body fat, and weighed less with a change in the diet induced
t2DM phenotype (see Fig. 1). At 15 weeks, fat cell size
decreased and brown fat increased, as did uncoupling pro-
tein. The treated animals demonstrated improved insulin
signaling in the liver (IRS phosphorylation, Akt activation),
lower JNK activation, and higher Hsp72 expression. When
Hsp 72 was knocked down with small interfering RNA,
insulin signaling, and reduction in JNK activation by the
treatment were blocked (Morino et al. 2008). When the
same researchers used heat and electrical stimulation ap-
plied to db/db mice for 12 weeks, compared to sham treat-
ment, insulin secretion was improved in response to a
glucose challenge. Levels of HSP72, insulin, pancreatic
duodenal homeobox-1, glucose transporter type 2, and in-
sulin receptor substrate-2 were up regulated in the pancre-
atic islets of treated mice. On the other hand, JNK phos-
phorylation, nuclear translocation of forkhead box class
O-1, and nuclear factor-κB p65 were reduced. Apoptotic

signals, ER stress, and oxidative stress markers were atten-
uated. Thus, the therapy preserved beta cell function in
addition to improving insulin signaling and body composi-
tion (Kondo et al. 2012). Finally, the same research group
directed their attention to insulin-resistant liver cells,
HepG2 cells in high glucose medium, by applying heat at
42 °C and MES for 10 min. The treatment activated the
insulin receptor and improved insulin signaling in the ab-
sence of insulin by accumulating insulin receptors within
lipid rafts (Morino-Koga et al. 2013).

Bathaie and colleagues studied streptozotocin-induced
diabetic rats, which are the not ideal animal model to study
t2DM, but can add insight into impact of hypoinsulinemia
and hyperglycemia and long-term pathological impact.
Rats were immersed in a circulating water bath (42 °C for
30 min) to obtain a core body temperature of 41 °C and
repeated three times a week for 5 months. The treated
diabetic rats compared to untreated animals had improve-
ment in lipid profile [lower cholesterol, triglycerides, and
higher density lipoprotein (HDL) cholesterol), better anti-
oxidant capacity, insulin secretion, normalization of serum
Hsp70 level and a decrease in AGE formation. The effect
on fasting glucose was minimal. Glycated Hsp70 lost its
chaperoning ability to reactivate the denatured luciferase.
While fewer rats died in the intervention group, the reduc-
tion was not statistically significant (Bathaie et al. 2010).

Regarding the limited human studies, Biro and coworkers
studied subjects with lifestyle-related diseases (12 % diabetes,
32 % hypertension, 60 % smoking, and 36 % obesity), which
might be considered subjects with metabolic syndrome; how-
ever, the authors did not use that term. Patients were seated in
a far-infrared sauna for 15 min, followed by a warm blanket
for 30 min. The treatment raised the body temperature by
1.0 °C. Two weeks of therapy significantly reduced fasting
glucose (99 to 94 mg/dl), body weight, and systolic and
diastolic blood pressure, while serum lipids remained un-
changed (Biro et al. 2003). In a study of insulin-resistant obese
subjects with bodymass index (BMI)>30 kg/m2, compared to
thinner, insulin-sensitive subjects with average BMIs of 21 kg/
m2 fasting blood was collected and incubated for 2 h ex vivo at
42 °C. Monocytes were separated and tested for insulin sig-
naling and inflammatory markers. At baseline, obese subjects
had increased phosphorylation and thus activation of JNK and
pIKK-β with increased inhibitory serine phosphorylation of
IRS-1 and reduced GLUT4 response to insulin. In response to
the hyperthermia, monocyte iHsp25 and iHsp27 rose less in
the obese group than in the thin cohort. The heat lowered
phosphorylation of JNK and pIKK-β and reduced serine IRS-
1 in the obese group. GLUT4 response to insulin after the heat
challenge was not retested (Simar et al. 2012).

A study of t2DM patients who were treated with far infra-
red therapy three times a week for 3 months examined the
psychosocial impact of the intervention. Heat therapy was

Importance of cellular stress response in treating t2DM
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associated with increased quality of life: reduced stress, fa-
tigue, increased health perception, and social functioning
(Beever 2010). Clearly, larger, clinical interventional hyper-
thermia studies are needed in humans.

Induction of Hsps with bioactive compounds and diabetes
therapy

Background

In 1997, we showed that the cyto-protective properties of an
Hsp inducer (bimoclomol) improved diabetic wound healing
and cardiac ischemia (Vígh et al. 1997). Soon afterward,
bimoclomol demonstrated amelioration of diabetic neuropa-
thy, retinopathy, and nephropathy. Subsequently, we found
that bimoclomol and other hydroximic acids modified mem-
brane lipid domains where thermally or chemically induced
perturbation of lipid phase is sensed and transduced into a

cellular signal, leading to enhanced activation of heat shock
genes (Török et al. 2003). Later, we were able to replicate the
therapeutic effects of hyperthermia on t2DM with an Hsp
coinducer (BGP 15) by blocking fat fed induction of t2DM
in rodents—improving insulin signaling, lowering fasting
glucose levels, and reducing cytokine levels. Overexpressing
the Hsp72 gene prevented fat feeding-induced impairments in
insulin signaling via reduced cytokine release (Chung et al.
2008).

Overview of bioactive inducers

The diverse compounds that raise Hsps and improve many of
the pathologies associated with t2DM. These compounds vary
widely in their structure and mechanism of Hsp induction and,
like hyperthermia, their effects are diverse and consistently
metabolically restorative. Table 2 summarizes the agents and
their biological effects in t2DM subjects and t2DM animal
models. While some of the agents are impractical for

Fig. 1 Ventral aspect of high fat-
fed mice sham-treated (control) or
treated with heat shock and mild
electrical stimulation [42 °C
electrodes and 12 V direct current
(55 pps of 0.1 ms duration)
10 min, two times per week] after
15 weeks of treatment with
exposed peritoneal cavity,
showing decrease in visible
adipose tissues in treated mice.
The diet induced t2DM
phenotype is normalized by
therapy [from open access
journal, Plos1 (Morino et al.
2008)]. Similarly, but not shown
here, heme oxygenase stimulation
with cobalt protoporphyrin in the
Zucker fat rat alters the t2DM
phenotype to a thin, smaller rat
(Nicolai et al. 2009)

P.L. Hooper et al.

Libby
Sticky Note
This whole image is quite fuzzy-- can we not reduce its size to 1/4 this size? or use the whole figure seen in author's original power point



FO
R A

PPROVAL
therapeutic use in t2DM, many are nontoxic and effective
when administered orally. Relevantly, some of these com-
pounds also enhance exercise endurance and, in some cases,
longevity.

Hydroximic acids This group of compounds, and BGP15 in
particular, has received the most research as potentially
therapeutic HSP inducers in diabetes. As coinducers of
Hsps, they augment HSP induction through enhancing
membrane fluidization, acting as raft stabilizers (Gombos
et al. 2011) and thereby activating specific “heat sensors” in
the membranes (Brameshuber et al. 2010; Török et al.
2013), which initiate a cascade of events resulting in
HSF1 activation, IRS laden lipid raft formation, GLUT4
translocation, Akt phosphorylation, mTOR activation, glu-
cose uptake, AMPK activation, SIRT1-like deacetylation,
mitochondrial preservation, and reduced JNK activation
(see Fig. 2). Relevantly, Rac1 inhibitors almost completely
block the hsp-coinducer effect of BGP-15. Beyond im-
provements in metabolic homeostasis, this group of drugs
demonstrate potential efficacy in treating complications of
diabetes and providing renal, eye, kidney, nerve, endothe-
lial function, and heart protection. Finally, animal disease
models of previously untreatable diseases like muscular
dystrophy and ALS respond to this class of drugs.
Problems with drug tolerability and/or toxicity have not
been identified in either animal or human trials (Crul et al.
2013).

Xenohormetic plant substances Plants and animals share
common cellular survival stress responses, as well as common

metabolic energy producing organelles, like mitochondria.
Stressed plants synthesize bioactive compounds that can con-
fer stress tolerance and longevity to an animal that consumes
them by priming and augmenting the animal’s HSP response.
Indeed, many of the xenohormetic substances associated with
ancient traditional diets and/or herbal medicines raise HSPs,
improve insulin action, and enhance fitness. Perhaps the most
effective drug used today in diabetes, metformin, is a
xenohormetic plant compound that increases membrane fluid-
ity, raises Hsps, restores metabolic homeostasis, reduces cancer
risk, and reduces diabetic mortality (Hooper et al. 2010; Tsuei
and Martinus 2012; Nunn et al. 2010; Muller et al. 1997;
Wiernsperger 1999; Holman et al. 2008).

Geranylgeranylacetone Geranylgeranylacetone (GGA) is an
antiulcer medication that is widely available in Japan and has
been studied as a potential therapeutic agent in manymaladies
(colitis, ischemia, retinal detachment, infection, etc.). GGA is
thought to prolong HSF1 activation (Kavanagh et al. 2011).

Alpha-lipoic acid Alpha-lipoic acid is a cofactor in oxidative
metabolism and has a wide application as an over-the-counter
product to aid in weight loss, wound healing, and neuropathy
(Gupte et al. 2009b).

Hsp90 inhibitors Hsp90 represses HSF1 and, therefore, selec-
tive Hsp90 inhibitors activate HSF1-dependent transcription.
This class of drugs raises Hsp 70 and improves insulin signaling,
preserves diabetic islet cells, and reduces diabetic neuropathy.
Unfortunately, the inhibition of Hsp 90 increases the toxicity of
this class of compounds (Lee et al. 2013; Farmer et al. 2012).

Table 2 HSPs inducers: therapeutic effect on diabetes/metabolic syndrome

HSP inducer Therapeutic result

Hydroximic acids (Crul et al. 2013) Improves glycemia, insulin signaling, anti-inflammatory, mitochondria
generation renal, and nerve protection; blocks weight gain to
antipsychotic medications; ischemia protection; improves diabetic
wound healing; reduces liver fat; improves dyslipidemia

Gerenylgerenylacetone (Kavanagh et al. 2011) Improves glycemia, insulin signaling, anti-inflammatory

Alpha-lipoic acid (Gupte et al. 2009b) Improves glycemia, insulin signaling, anti-inflammatory

Xenohormetic plant compounds(4)-cucumin (Sahin et al. 2012; Maradana
et al. 2013), carvacrol (Cho et al. 2012; Wieten et al. 2010), resveratrol
(Han et al. 2012; Ito-Nagahata et al. 2013), metformin (Tsuei and
Martinus 2012), astaxanthine (Lee et al. 2010; Yuan et al. 2011), naringin
(Sharma et al. 2011), rhodiola (Wang et al. 2012; Panossian et al. 2009),
capsaicin (Luo et al. 2012; Joo et al. 2010)

Improves glycemia, insulin signaling, and anti-inflammatory; reduce fatty
liver; improves exercise performance; reduces fatigue; preserves kidney
function; reduces diabetes-related cancer risk; improves endothelial
function; extends life span of nematode

Hemeoxygenase inducers (Li et al. 2008) Improves glycemia, insulin signaling, anti-inflammatory

Hsp90 inhibitors (Lee et al. 2013; Farmer et al. 2012) Improves glycemia, insulin signaling, anti-inflammatory

Chemical chaperones (Kars et al. 2010; Raciti et al. 2010) Improves glycemia, insulin signaling, anti-inflammatory

GLP agonist (Cunha et al. 2009) Protects islets cells

Hsp27 (Dai et al. 2009) and Hsp72 (Chung et al. 2008)
gene overexpression

Improves glycemia, improves insulin signaling, reduces
inflammatory cytokines, reduces body fat, preserves beta cells

Importance of cellular stress response in treating t2DM
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Hemeoxygenase inducers The Hsp heme oxygenase acts as
an antioxidant and apoptosis blocker via its byproducts
bilirubin/biliverdin and carbon monoxide. Induction of this
Hsp changes the whole phenotype of diabetic animal
models with marked reduction in adiposity and increases
in adiponectin and insulin sensitivity (Li et al. 2008). The

hemeoxygenase inducer L-4F is an apo-lipoprotein A1 mi-
metic, which reverses the obese mouse phenotype. As an
aside, one of the defining criteria of the metabolic syndrome
is low apo A1 (the major apo-lipoprotein of HDL). This raises
the question: Does a low apo A1 level itself promote a lower
HSP state associated with the t2DM (Marino et al. 2012)?
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Fig. 2 Exercise, heat shock, and the multitarget, membrane-interacting
HSP inducers (like hydroximic acid derivatives) can activate many of the
samemetabolic pathways. These activators increase insulin receptor auto-
phosphorylation, block JNK’s inhibitory phosphorylation of insulin re-
ceptor, increase Akt phosphorylation, activate mTOR, activate ras-related
C3 botulinum toxin substrate 1 (RAC1), increase GLUT4 translocation
and increase glucose uptake, increase second messenger H2O2, remodel
membranes, increase AMPK, decrease HSF-1 acetylation, deactivates
glycogen synthase kinase (GSK) inhibition of HSF-1, increase activation

of HSF-1, inhibit poly ADP ribose polymerase (PARP), increase mito-
chondrial biogenesis and function, increase HSPs that restores stress
resilience and organ survival—beta-cell, heart, liver kidney, retina, skin,
etc., increase occludin expression and tight junction barrier function,
activate the heat sensor transient receptor potential (TRP) that releases
calcium as a second messenger to ultimately activate HSF1 and PGC1-α
to increase mitochondrial function and synthesis (Dokladny et al. 2008;
Crul et al. 2013; Török et al. 2013)
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Fig. 3 HSP induction addresses
the diverse pathological
complications of t2DM
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Chemical chaperones Chemical chaperones are similar to
HSPs in their ability to facilitate protein folding. Two have
been studied in humans, 4-phenylbuteric acid and
tuaroursodeoxycholic acid (a bile salt), which were shown to
reduce ER stress, stabilize mitochondria, and improve insulin
signaling (Kars et al. 2010; Raciti et al. 2010).

Glucagon-like peptide agonist A glucagon-like peptide ago-
nist increases ER chaperone BiP (Grp78), reduces ER stress,
and improves islets cell culture survival from an FFA chal-
lenge (Cunha et al. 2009).

Common metabolic pathways of exercise, heat, and Hsp
inducers

The stress of exercise results in a physiological response
assuring survival by activating key metabolic events directed
at a temporary reduction in anabolism (fat, glycogen, and
protein synthesis) and a focus on generation of ATP.
Exercise, heat shock, and many of the Hsp inducers on a
cellular level activate AMPK, mTOR, PGC1-α, and SIRT1,
particularly in skeletal muscle and liver. The net biological
effect is increased fat oxidation, oxidative energy production,
and mitochondrial biogenesis (Hooper et al. 2010; Reznick
and Shulman 2006; Gurd 2011). With exercise conditioning
stress tolerance is enhanced, muscle mass is gained, while
inflammation and visceral fat mass are reduced. Heat shock
and HSP inducers activate the same pathways and can im-
prove exercise tolerance (Panossian et al. 2009).

Hsp induction addresses all of the diverse pathological
features associated with t2DM

We view t2DM as a systemic multiorgan inflammatory dis-
ease and suggest that we think of it as “systemic diabetes
mellitus” (Hooper 2005). The organ systems affected by
t2DM are diverse and the disease itself is associated with
comorbid diseases like cancer, dementia, and cardiovascular
disease. Other seemingly unrelated inflammatory diseases like
asthma and rheumatoid arthritis are associated with t2DM
(Dandona et al. 2013; Graeber et al. 2013). Certainly, an
age-related disease like t2DM that promotes early aging can
contribute to major destructive pathologies.

Improving the cellular stress response via heat shock pro-
tein induction can play a core role in treating t2DM its com-
plications. By addressing a fundamental defect that is so key
to enhancing cellular resilience and survival, Hsp induction is
able to promote pleotropic beneficial effects on diverse pa-
thologies associated with t2DM (Fig. 3).

Reflections

Does the loss of the cellular stress response lie near the core of
the pathogenesis of t2DM and the metabolic syndrome? Does
a low muscle iHSP state occur years before the metabolic
abnormalities appear? Has a sedentary lifestyle with ready
access to calories led to an unfit, unconditioned phenotype?
Should we begin to think of the syndrome as the “uncondi-
tioned syndrome”?We are intrigued that Tobin and coworkers
have observed that space flight and zero gravity lab experi-
ments lead to a diabetogenic state with increased inflamma-
tion, insulin resistance, and loss of muscle mass (Tobin et al.
2002). Our tissues have evolved over eons to survive a rigor-
ous environment with regular pulses of stress and inflamma-
tion and are not prepared to thrive in a sedentary and calori-
cally excessive lifestyle. iHSP induction can ensure that
stressors positively influence survival and fitness. This new
lifestyle is almost as alien as living in outer space.

New directions

Therapeutic interventions for t2DM focusing on diet and
exercise are appropriate. For some individuals, intermittent
bouts of intense exercise or fasting may result a better thera-
peutic impact to recover metabolic homeostasis than lifestyle
changes that the body becomes complacent to. Restoration of
the cellular stress response via modalities of heat shock and/or
medicinal products is warranted. Mimicking exercise opens
viable avenues to treat t2DM and its comorbidities.
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