COMBINATORIAL STRUCTURES AND THEIR APPLICATIONS

Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications held at the University of Calgary, Calgary, Alberta, Canada, June, 1969.

Editorial Committee

RICHARD GUY HAIM HANANI NORBERT SAUER
JOHANAN SCHONHEIM

GORDON AND BREACH, SCIENCE PUBLISHERS

NEW YORK · LONDON · PARIS

ON EXTREMAL PROBLEMS IN GRAPH THEORY

Vera T. Sós

Ectvos L. University, Budapest, Hungary

In this talk I am going to speak on results and problems in connection with the investigations concerning distance distribution in a point set A, discussed by P. Turán in his talk.

I shall use the following notations: G(P;E) is the graph with the set of vertices P and set of edges E $C_k = C_k(P;E_c)$ is the complete graph, where |P| = k.

 $g^r(P;G_1,G_2,\ldots,G_r)$ is a so-called r-class graph.

 $G_i = G_i(P, E_i)$, where $E_i \cap E_j = \phi$ for $i \neq j$ and $\bigcup_{i=1}^r E_i = E_c$. $H(k, \ldots, k)$ is the class of G^r r-class graphs, with the pro-

 $H(k_1,\ldots,k_r)$ is the class of G^r r-class graphs, with the property, that $C_{k_0} \nsubseteq G_{v}$ for every $1 \leqslant v \leqslant r$.

 $H_n(k_1, \ldots, k_p)$ is the subclass of it containing G^P with |P| = n.

Let n have the form $n = (k-1)m + \ell (n,k,m,\ell)$ non negative integers) and

$$t(n,k) \stackrel{\text{def}}{=} \frac{k-2}{2(k-1)} (n^2 - \ell^2) + {\ell \choose 2}$$

the Turán-numbers.

Let $R(k_1,\dots,k_p)$ the Ramsey-number, defined as the smallest number having the property, that if

$$G^{r}(P;G_{1},\ldots,G_{p}) \subset H(k_{1},\ldots,k_{p})$$

then $|P| \leq R(k_1, \ldots, k_p)$.

In order to obtain *lower* bound for the number of large distances in a point set, we recall the definition of the k'th covering-constant of a point-set A on the plane.

Let K(r,P) be the disk with radius r and center P. We call $K_1(r,P_1),\ldots,K_k(r,P_k)$ a covering-system of A, if P_i $\in A$ for $1\leqslant i\leqslant k$ and $A\subset\bigcup_{i=1}^k K_i(r,P_i)$. The covering-constant c_k of a set A is defined usually as the infimum of the r's with the above property.

From our point of view it's more appropriate to use the equivalent definition:

where $Q \in A$, $P_i \in A$.

Theorem. If $A = \{Q_1, \dots, Q_n\}$ having k^{th} covering constant c_k , then at least

$$e(n,k) \stackrel{\text{def}}{=} (k-1)(n-1) + \left[\frac{n-k+2}{2}\right]$$

among the distances $\overline{Q_iQ_j}$ (1 \leqslant i \leqslant j \leqslant n) are not less, than c_k .

The result is sharp, as it is shown by the following example:

Let n-k+1 even, Q_1,\ldots,Q_{n-k+1} the vertices of a regular n-k+1-gon inscribed into K(r,0), and let Q_{n-k+2},\ldots,Q_n additional points with the property

$$\frac{\overline{Q_{\nu}^{0}}}{\overline{Q_{\nu}^{0}}} > 2r$$
 for $n-k+2 \leq \mu$, $\nu \leq n$.

For this point set $c_k = r$ and the number of distances, which are $\geq r$ is exactly e(n,k).

The proof follows easily using the following theorem of P. Erdős – L. Moser:

Theorem. (P. Erdös-L. Moser): If the graph G(P,E) has the property, that for every $\{P_1,\ldots,P_k\}$ \in P there exists a P^* \in P such that the edges P_iP^* \in E for $1 \in i \in k$, then

$$|E| \ge (k-1)(n-1) + \left[\frac{n-k+2}{2}\right].$$

The unique extreme graph has the property, that it has k-1 points with degree n-1.

From the point of view of application the following question arises: how fast the minimal possible value of |E| increases, if we restrict the maximal degree. More exactly, if the graph G(P,E) has the above property

and the maximal degree in G is δ , what is the minimal possible value for |E| depending on δ (and on k,n).

E.g. in the simplest case, when $\delta = n-2$, the following holds: Theorem. If the graph G(P,E) has the property as in theorem of P. Erdős - L. Moser, and every vertex in P has degree $\leq n-2$, then

$$|E| \ge k(n-k) + {k \choose 2}$$
.

The above graph problems are strongly connected with the following one for (0,1) matrices:

Let $A=\{a_{i,j}\}$ an $n\times n$ symmetric (0,1) matrix with $a_{i,i}=0$ and with the property, that for $A^2=\{b_{i,j}\}$ we have $b_{i,j}\geqslant k$. What is the minimal possible value of $\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}a_{i,j}$? Further, the same question under the

additional condition $\sum_{i=1}^{n} a_{ij} \leq \delta$?

In order to get some results for the distribution of distances of a point set A using the packing-constants, refining the ideas of P. Turán, we proceed as follows:

For the case of simplicity we consider a point set A with diameter 1.

We divide the interval [0,1] by the packing-constants* $1 = d_2 \ge d_3 \ge \dots \ge d_{r+1} \ge 0.$ We define the r-class graph $G^r = G^r(P,G_1,\dots,G_r) \text{ with } P = \{1,2,\dots,n\} \text{ belonging to a point-set } \{Q_1,\dots,Q_n\} \subset A \text{ by:}$

$$\begin{array}{cccc} (i,j) & \epsilon & E_{\nu} & \longleftrightarrow & \overline{Q_iQ_j} & \epsilon & [d_{\nu+1},d_{\nu+2}) & & \text{for } \nu \leqslant r-1 \\ \\ & \epsilon & [d_{r+1},0] & & \text{for } \nu = r. \end{array}$$

Now from the definition of the numbers $d_{_{\mathbf{V}}}$ we get simultaneous structural conditions for the graph $G_{_{1}},\ldots,G_{_{p}}$. The general question is, what are the possible values of $|E_{_{1}}|,\ldots,|E_{_{p}}|$ (under certain condition). This leads to the following simplest special but important graph problem:

Let k_1, \ldots, k_p given positive integers. If G^r is an r-class graph having the property, that

^{*}For the definition of the packing constants d_2 , d_3 ,... see P. Turán: Applications of graph th. etc. in this volume.

$$C_{k_{v}} \not\subseteq G_{v}$$
 for $1 \le v \le r$

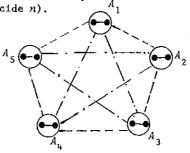
then what is max $(E_1 + \ldots + E_{n-1})$?

In the case, when $k_p = n+1$ (i.e. there is no condition for \mathcal{G}_p) it is easy to see, that

$$E_1 + \ldots + E_{p-1} \leq t(n, R(k_1, \ldots, k_{p-1}))$$

and the upper bound is sharp,

E.g. for r=3, $k_1=k_2=3$ the 3-class graph in $H_n(3,3,n+1)$ having the minimal number of edges in G_3 is the following: (for the sake of symplicity let 5 decide n).



Let A_i $(1\leqslant i\leqslant 5)$ be disjoint sets of the n vertices each having $\frac{n}{5}$ points. E_3 consists of all the edges with both vertices in the same set A_{v} $(1\leqslant v\leqslant 5)$. E_2 consists of all the edges (i,j) for which $i\in A_{v}$ and $j\in A_{v+1}$ $(A_6\equiv A_1)$ and E_1 consists of all the remaining edges.

Already in the case k=2 it seems to be very difficult to determine

$$f_n(k_1, k_2) \stackrel{\text{def}}{=} \max_{G^2 \subset H_n(k_1, k_2)} .$$

The remark, that (i) $f_n(k_1,n+1) = t(n,k_1)$ and (ii) $f_n(k_1,k_2) = o(n^2)$ for fixed k_1,k_2 shows the connection between Turán's and Ramsey's theorem. Namely the statement (i) is just Turán's theorem. While statement (ii) implies that for n large the class $\mathcal{H}_n(k_1,k_2)$ must be empty, which is just Ramsey's theorem. So having some information on $f_n(k_1,k_2)$ Turán's and Ramsey's theorems are the consequences of the two extreme cases.

For the case, when k_1 is fixed and $k_2=cn$ or $k_2=o(n)$ for large enough, we have some results with P. Erdös which will appear later.