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The complement system is a major humoral component of immunity and is

essential for the fast elimination of pathogens invading the body. In addition

to its indispensable role in innate immunity, the complement system is also

involved in pathogen clearance during the effector phase of adaptive immu-

nity. The fastest way of killing the invader is lysis by the membrane attack

complex, which is formed by the terminal components of the complement cas-

cade. Not all pathogens are lysed however and, if opsonized by a variety of

molecules, they undergo phagocytosis and disposal inside immune cells. The

most important complement-derived opsonins are C1q, the first component

of the classical pathway, MBL, the initiator of the lectin pathway and

C3-derived activation fragments, including C3b, iC3b and C3d, which all

serve as ligands for their corresponding receptors. In this review, we discuss

how complement receptors are utilized by various immune cells to tackle

invading microbes, or by pathogens to evade host response.
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The complement system consists of approximately 50

soluble, membrane-bound and regulatory proteins.

Most of the circulating, inactive complement compo-

nents are synthesized in the liver, although the local

production of complement proteins in tissues has also

been proven to play an important role in several

immune processes [1–3].

Activation of the complement cascade can occur via

the classical, the lectin-dependent or the alternative

pathway (Box 1).
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The central event in the activation cascade is the cleav-

age of the third component, C3. Its first split products

are C3a and C3b. The small, soluble C3a peptide may

bind to G-protein-coupled C3a receptors, while the lar-

ger activation fragment C3b, containing the exposed,

reactive thioester group, has the capacity to bind cova-

lently to the activating surface on the pathogen. Cova-

lently fixed C3b is the main ligand of CR1 (CD35) and

CRIg. C3b can be further processed to generate iC3b

and C3d(g), which remain covalently attached to the

antigen and interact with complement receptors CR3

(CD11b/CD18), CR4 (CD11c/CD18), CRIg and CR2

(CD21) expressed on several cell types. In addition to

the covalently fixed C3- and C4-derived fragments, C1q

and MBL are further opsonins (Table 1, Fig. 1).

Complement receptors are essential to empower

immune cells to clear the circulation from invaders [4].

Here, we review data describing the interaction of

these receptors with different pathogens – bacteria,

viruses, fungi and parasites – mentioning also exam-

ples of how these receptors are utilized by pathogens

to evade host responses (Table 2).

Complement receptor type 1 (CR1,
CD35)

Human complement receptor type 1 (CR1, CD35) is

expressed on the surface of various myeloid and lym-

phoid cells and also on erythrocytes [5]. It is an

approximately 200 kDa single-chain transmembrane

glycoprotein with a short cytoplasmic tail. In the most

common human allotype, the extracellular portion of

the molecule is composed of 30 SCRs (Short Consen-

sus Repeat), each having 60–70 amino acids. CR1

binds activated fragments of C3 and C4, such as C3b

and C4b and with lower affinity, iC3b [6]. It is also an

important regulator of the complement cascade, since

it possesses decay-accelerating activity for the C3/C5

convertases of both the classical and alternative path-

ways. Additionally, it serves as a cofactor for Factor

I-mediated cleavage of C3b, thus blocks further activa-

tion of the complement cascade [7].

CR1 expressed by phagocytes – macrophages and

granulocytes – plays an important role in the phagocy-

tosis of C3-opsonized antigens. Its further roles include

Box 1. Activation of the complement system

The classical pathway is triggered by C1q, a subunit of the trimolecular C1 complex, upon its reaction with the Fc

portion of IgM or IgG antibodies bound to the antigen, or directly, upon recognizing pathogen surfaces and apop-

totic cells. This step is followed by the activation of C1r then C1s, the two C1q-associated serine proteases. After

cleavage of C2 and C4, the larger split products, C2b and C4b form the classical pathway’s C3 convertase on the sur-

face of the activating substance. This, in turn, activates C3, the major and central component of this cascade on

which all three complement activation pathways converge.

The lectin pathway is activated by mannose-binding lectin (MBL) and ficolins. These pattern recognition molecules

bind to microbial surface oligosaccharides and acetylated residues, and form complexes with MASP1 and MASP2,

the MBL-associated serine proteases, which cleave C2 and C4 to generate C2bC4b, the classical C3 convertase.

The alternative pathway is constitutively activated at a low level by the spontaneous hydrolysis of C3 (‘tick-over

mechanism’) in body fluids generating C3(H2O). This C3b-like molecule binds factor B, which is cleaved by the serine

protease factor D, giving rise to the formation of the initial, fluid-phase C3 convertase (C3(H2O)Bb) of the alternative

pathway. This enzyme produces further C3b fragments, resulting in a surface-bound C3bBb, the C3 convertase of the

alternative pathway. Several substances can initiate this pathway, including bacterial LPS, zymosan and biomaterials.

Of note, the alternative pathway serves as a strong amplification loop, as it can be triggered also by C3b generated

by either the classical or the lectin pathways.

The three pathways converge at the level of the central complement component, C3. Activation of this major com-

ponent leads to the generation of several biologically important C3 fragments. C3b, the first, larger cleavage product

binds covalently to the activating surface and initiates the assembly of C5 convertase enzymes of either the classical

(C4bC2bC3b) or the alternative (C3bBbC3b) pathway. Upon the cleavage of C5 by the C5 convertases, the generated

C5b binds C6 followed by the formation of the trimeric C5b-7 complex, which associates with the cell membrane. In

the next steps, the tetrameric C5b-8 complex is formed, which allows binding and polymerization of C9 molecules. In

the final step, the C5b-9 complex (MAC) inserts into the plasma membrane, which causes cell death by lysis.

Since complement activation can potentially be destructive, fluid-phase and cell membrane-bound regulators con-

trol this system to protect host tissues. These regulators of complement activation (RCA) show structural homology,

characterized by repeats of complement control protein (CCP) or sushi domains.
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transport of soluble antigen–antibody complexes from

blood to the liver [8] and inhibition of human B-cell

responses [9–12].

The expression of CR1 on human erythrocytes

was shown to vary among healthy individuals. The

CR1 gene is highly polymorphic, and an RFLP was

identified which correlates with CR1 expression levels

on RBCs. A combination of the alleles linked to

high (H) and low (L) expression levels – HH, HL

and LL, respectively – gives rise to three distinct

genotypes with high, intermediate and low expression

of CR1 [13].

Table 1. Complement receptors (For references see the text). Mo, monocyte; Mf, macrophage; DC, dendritic cell; Mast, mast cell; Bas,

basophil granulocyte; Neu, neutrophil granulocyte; Eos, eosinophil granulocyte; RBC, red blood cell; FDC, follicular dendritic cell; NK, natural

killer cell.

Name Structure Main ligand(s) Distribution Major function

cC1qR Calreticulin (CRT), 60 kDa, in

complex with CD91

Collagenous region

of C1q and MBL

Mo, Mf, DC, Mast,

Bas, B cell

Phagocytosis, Chemotaxis,

RO synthesis

gC1qR Homotrimer, 97 kDa Globular heads of

C1q and MBL

Ubiquitous Inflammation

CR1, CD35 Single chain, 200 kDa C3b, C4b Mo, Mf, Neu, Bas, Eos,

B cell, T-cell subpop,

RBC, FDC

Phagocytosis (Mf, Neu),

IC clearance, immune adherence,

antigen retention (FDC),

human B-cell inhibition

CR2, CD21 Single chain, 145 kDa in

trimolecular complex

CR2-CD19-CD81

C3d, EBV B cell, FDC Mouse B-cell coactivation,

antigen retention (FDC)

CR3, CD11b/18 Heterodimer, CD11b 170 kDa,

CD18 90 kDa

iC3b, fibrinogen, ICAM-1,

beta-glucan

Mo, Mf, DC, Neu,

B-cell subpop, FDC,

NK, platelet

Phagocytosis, RO/NO synthesis,

migration

CR4, CD11c/18 Heterodimer, CD11c 150 kDa

integrin b chain, CD18 90 kDa

iC3b, fibrinogen, ICAM-1 Mo, Mf, DC, Neu,

B-cell subpop, FDC,

NK, platelet

Adherence, migration

CRIg Ig superfamily 56 kDa iC3b, C3b Kupffer cells, subset of

tissue macrophages

Phagocytosis
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The abundance of the receptor on the surface of

various leucocytes makes these cells a potential tar-

get for intracellular pathogens. Phagocytosis – a cru-

cial step in pathogen neutralization, regulating

inflammation and antigen presentation – can be

hijacked by microbes. Pathogens are able to adhere

to or enter monocytes, macrophages and neutrophils

via phagocytic receptors, while avoiding intracellular

enzymatic digestion and subsequently contributing to

disease development. Polymorphisms of CR1 have

been linked to greater susceptibility to certain infec-

tions as well.

Viruses

Interaction between HIV (human immunodeficiency

virus) and various immunocytes, as well as red blood

cells, suggests a complex pathomechanism. Comple-

ment alone can target the virus to erythrocyte CR1,

and antibodies only enhanced this effect [14]. Viral

adherence was shown to be inhibited in the absence of

complement, while undisturbed without IgG. Further-

more, blocking CR1 significantly diminished HIV

adhesion. These experiments indicate that adherence of

the virus to red blood cells is a complement-dependent

phenomenon [15].

Fig. 1. Ligand specificity and microbial utilization of complement receptors. C1q may opsonize microbial surfaces directly or indirectly, via

binding to the Fc region of bound antibodies. The globular head of C1q may interact with gC1qR, while its collagen-like tail binds to cC1qR.

MBL directly bound to microbial surfaces presumably interacts with cC1qR. Complement activation leads to the deposition of complement

fragments that are potent ligands for several complement receptors. The larger C3b fragment is recognized by CR1 and CRIg, the

inactivated iC3b fragment interacts with CRIg, CR3 and CR4, whereas C3d is a ligand for CR2. Complement receptors interact with

pathogens through the opsonins or by direct binding of microbial components. The viruses, bacteria, fungi and parasites utilizing these

receptors are listed below the illustration.
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Monocytes and macrophages also contribute to the

progression of AIDS, as they express CD4 that HIV

uses to enter these cells. In addition, it has been shown

that the opsonization of HIV-1 and HIV-2 strains with

complement results in higher and earlier productive

infection – independently of CD4 – while blocking of

CR1 (or CR3) attenuates the enhancing effect of com-

plement [16]. The immune complex formation of virus

envelope protein-specific antibodies and HIV-1 leads

to opsonization and binding to CR1 on K562 leukae-

mia-derived cell line [14].

Certain human T lymphocyte subsets express CR1

(and CR2) receptors [17,18], making them suitable for

complement-induced immune responses, but on the

other hand, they become potential targets for infec-

tion. Similarly to monocytes and macrophages,

opsonization of HIV-1 with complement leads to ear-

lier and enhanced infection of CD4-expressing human

T-cell lines in a CR1- or CR2-dependent manner, as

blocking either of these receptors diminished the

positive effect of complement [19]. Certain HIV strains

require no involvement of CD4 in the process of CR1-

and CR2-mediated contagion of T cells. In addition to

its crucial role in linking opsonized HIV to T lympho-

cytes, CR1 presumably facilitates viral attachment to

CR2 by its cofactor activity during cleavage of C3b

into smaller fragments that could interact with CR2

[19].

The genotype of CR1 could be a major factor in

viral infections. Namely, severe acute respiratory syn-

drome (SARS) disease progression differs in patients

with or without the high expression genomic type

(HH) [20]. In the early stages of SARS disease, the

number of CR1 receptors on RBCs decreases signifi-

cantly but later returns close to physiological values.

This phenomenon may have an impact on disease pro-

gression. While patients bearing HH and HL geno-

types showed temporary reduction of CR1 levels,

SARS patients with LL genotype had no change in

their CR1 expression on erythrocytes, although this

Table 2. List of pathogens binding to various complement receptors.

Receptor Viruses Bacteria Parasites and Fungi

cC1qr–C1q Salmonella typhimurium [133]

Streptococcus pneumoniae [132]

Schistosoma mansoni [140]

cC1qr–MBL Ebola virus [120]

Human immunodeficiency virus (HIV) [119,124–126]

Herpes simplex virus (HSV) [123]

Human T-lymphotropic virus 1 (HTLV-1) [125]

Influenza A virus [122,127–129]

Severe acute respiratory syndrome (SARS-CoV) [121]

Salmonella montevideo [138,139]

Staphylococcus aureus [135–137]

Leishmania major [141]

Leishmania mexicana [141]

gC1qr Hepatitis C virus (HCV) [130,131] Staphylococcus aureus (SpA) [134]

CR1 Epstein–Barr virus (EBV) [21]

Human immunodeficiency virus (HIV) [14–16]

SARS-virus [20]

Francisella tularensis [25]

Mycobacterium leprae [30,31]

Mycobacterium tuberculosis [29]

Salmonella typhi [28]

Staphylococcus aureus (Ecb) [26]

Streptococcus pneumoniae [27]

Leishmania major [37,38]

Plasmodium falciparum

(PfRh4) [32–35]

Trypanosoma cruzi [36]

CR2 Epstein–Barr virus (EBV) [21,39–43]

Human immunodeficiency virus (HIV) [19,22]

CR3/CR4 Dengue fever virus [51]

Hantavirus [53]

Human immunodeficiency virus (HIV-1) [46–48]

Rotavirus [52]

West Nile virus [49,50]

Borrelia burgdorferi [59]

Escherichia coli [54]

Francisella tularensis [25,63]

Legionella pneumophila [65]

Listeria monocytogenes [61]

Mycobacterium kansasii [60]

Mycobacterium leprae [30]

Mycobacterium tuberculosis [55]

Porphyromonas gingivalis [66–69]

Salmonella enterica [58]

Staphylococcus aureus [56,57]

Streptococcus pneumoniae [64]

Plasmodium falciparum [78]

Leishmania ssp.[80–82]

Aspergillus fumigatus [74]

Blastomyces dermatitidis [73]

Cryptococcus neoformans [70]

Candida albicans [54,75–78]

Histoplasma capsulatum [71,72]

CRIg Adenovirus [89]

Hepatitis B virus (HBV) [95,96]

Listeria monocytogenes [85,99]

Staphylococcus aureus [85]

Candida albicans [97,98]
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might be a result of the small sample size, according

to the authors. Thus, the correlation between the geno-

type of CR1 and progression of the SARS disease is

not clear yet, but the dynamic change in the CR1

numbers during infection suggests its involvement in

the process [20].

CR2 (CD21) was formerly considered the sole recep-

tor for the major Epstein–Barr virus (EBV) glycopro-

tein gp350/220 [21]; however, there are data on EBV

patients deficient in CR2 indicating an alternative

CR2-independent process for viral entry. Experiments

with CD21- B-cell lines showed gp350/220 binding to

CR1. In the presence of HLA type II complexes in the

membrane, CR1 could mediate infection [22].

Bacteria

It is long known that CR1, in cooperation with CR3,

has a major role in the phagocytosis of opsonized par-

ticles [23,24]. For instance, Schwartz et al. [25] demon-

strated that neutrophils mediate the internalization of

opsonized Francisella tularensis via CR1 and CR3.

During bacterial colonization, different ‘strategies’

allow survival and spreading depending on whether

the species is extra- or intracellular. For example, eva-

sion of phagocytosis can be beneficial for extracellular

pathogens, while intracellular organisms can utilize

phagocytic receptors for invasion, simultaneously

inhibiting cytoplasmic killing mechanisms.

During Staphylococcus aureus infection, bacterial

ligand Ecb (extracellular complement binding protein)

has been shown to bind C3b and block direct interac-

tion between the soluble form of CR1 (sCR1) and

C3b. Thus, Ecb reduces cofactor activity of sCR1 in

the process of proteolytic inactivation of C3b [26].

CR1 expressed in the membrane of neutrophils can

also be utilized by S. aureus where Ecb binds to C3b

and prevents CR1 engagement, resulting in impaired

phagocytosis [26].

Pneumococcal surface protein A (PspA) has been

shown to interfere with complement deposition onto

Streptococcus pneumoniae. Results of a mouse study

revealed that PspA impairs mouse CR1/2-, as well as

CR3-, and CR4-mediated protection against pneumo-

coccal infection, since the bacterial protein modulates

opsonization by the components of the alternative

pathway [27].

Intracellular survival of Salmonella typhi has been

observed in human macrophages, and CR1 – along

with CR3 – was found to be involved in its internaliza-

tion. Correlation between CR1 mediated recognition

of the bacteria and survival rate has been found as

well [28].

Patients with Mycobacterium tuberculosis infection

were shown to have more circulating immune com-

plexes, a lower expression of CR1 on erythrocytes and

a higher prevalence of the HH genotype than in

healthy donors. The presence of the H allele of the

Cr1 gene may contribute to higher susceptibility to

pulmonary tuberculosis [29].

CR1 and CR3 blocking reduced adherence and

phagocytosis of Mycobacterium leprae by monocytes

[30], while CR1 polymorphisms have also been associ-

ated with the infection. Susceptibility to leprosy is

affected by the amount of soluble CR1 in blood which

competes with cell membrane receptors for pathogen

binding, subsequently affecting phagocytosis [31]. The

uptake of opsonized M. leprae is enhanced in the case

of a CR1 variant with a hidden cleavage site that

results in a lower concentration of sCR1 or a polymor-

phism that leads to an elevated level of CR1 produc-

tion [31].

Parasites

In the case of malaria, caused by the intracellular par-

asite Plasmodium falciparum, CR1 receptors expressed

on infected red blood cells can presumably facilitate

the infection by rosetting with uninfected erythrocytes

[32]. This process correlates with the severity of the

disease [33]. CR1 possibly serves as a point of entry

for the obligate intracellular pathogen during erythro-

cyte invasion. PfRh4 (P. falciparum reticulocyte-bind-

ing-homologue-4) is a major Plasmodium ligand

associated with sialic acid-independent invasion of red

blood cells. Its recognition site has been located at the

distal amino terminus of CR1 [34]. Simultaneous

engagement of CR1 by C4b and PfRh4 specifically

inhibits the receptor’s convertase decay-accelerating

activity [34]. Moreover, sCR1 was also shown to bind

PfRh4, resulting in the blocking of Plasmodium attach-

ment to erythrocyte CR1 [35], demonstrating that CR1

has a complex role in disease progression.

Soluble CR1 can also be associated with infections

with intracellular parasite Trypanosoma cruzi, responsi-

ble for Chagas disease (CD). Patients with chronic CD

have a decreased amount of sCR1 compared to

healthy controls. Certain haplotypes of CR1 have been

linked to augmented risk of T. cruzi infection and

developing chronic chagasic cardiomyopathy [36].

CR1 is a major receptor on macrophages for the

obligate intracellular protozoa Leishmania major.

Simultaneously blocking CR1 and CR3 significantly

decreases pathogen attachment, and CR1 inhibition

alone leads to attenuated binding. Data suggest higher

survival rate when pathogens enter via CR1 [37,38].
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Complement receptor type 2 (CR2,
CD21)

In humans, CR2 (CD21) is composed of 16 SCRs, a

transmembrane domain and a short cytoplasmic tail.

The protein is encoded by the CR2 gene, which is sep-

arate from the CR1 receptor coding gene, CR1. Con-

trarily, in mice both CR1 and CR2 are encoded by the

same gene (Cr2) and alternative splicing gives rise to

the two protein products. Thus, mouse CR2 is nearly

identical to CR1 both in function and structure. CR2

binds fragment C3d, the final cleavage product of C3.

CR2 has also been shown to serve as a receptor for

viruses.

Viruses

A large body of evidence indicates that CR2 mediates

EBV infection of human B lymphocytes via binding of

a virus outer membrane glycoprotein, gp350/220

[21,39–43].

C3b-opsonized HIV was shown to bind to erythro-

cyte CR1 [14,15] that is followed by the cleavage of

C3b to iC3b and C3d. This way C3d-bearing HIV tar-

gets CR2-expressing B cells and facilitates the B cell-

mediated transmission of opsonized HIV to T cells

[19,44].

Complement receptors CR3 (CD11b/
CD18) and CR4 (CD11c/CD18)

Complement receptors CR3 (aMb2, CD11b/CD18,

Mac-1) and CR4 (aXb2, CD11c/CD18, p150,95) are

members of the b2-integrin family, expressed on most

white blood cells. Both receptors bind multiple ligands

– for example iC3b, fibrinogen, ICAM-1 or pathogen-

related ligands like LPS – and thereby play an impor-

tant role in phagocytosis, adherence and migration.

Although it is clear that the two receptors exhibit

nonoverlapping functions, comparative studies are

barely available [45]. CR3 and CR4 are important

phagocytic receptors, leading either effective antimicro-

bial responses against pathogens or noninflammatory

phagocytosis of apoptotic cells under physiological

conditions of a healthy individual. Some pathogens

however evolved to hijack these functions of CR3 and

CR4. Extracellular pathogens are likely to avoid

phagocytosis by these receptors, by blocking their

function or even cleaving them from the surface of

phagocytes. In contrast, intracellular pathogens often

use them as an effective entry route into host cells,

thereby causing a more severe infection.

Viruses

As viruses are obligate intracellular pathogens, they

can benefit from their ability to exploit complement-

mediated phagocytosis. For instance, the opsonization

of HIV-1 by complement causes an up to 10-fold

higher productive infection of human dendritic cells

compared to nonopsonized or only antibody-opsonized

virus particles. Complement-dependent HIV infection

is mediated by CR3 [46], which also modulates the sig-

nal transduction of Toll-like receptor 8 (TLR8).

Modulated TLR8 signalling resulted in a lower expres-

sion of antiviral and inflammatory factors such as IL-

1b, IL-6, TNF-a, IFN-b, myxovirus resistance protein

A and IFN-stimulated genes, leading to enhanced

infection [47,48]. In addition, CR3 has been shown to

mediate the complement-dependent enhancement of

West Nile virus replication in mouse macrophages

[49,50], and the infection of human monocytes with

the Dengue fever virus [51]. The capsid of Rotavirus

contains integrin ligand motif bearing viral peptides,

which are shown to bind to b1 and b2 integrins includ-

ing CR4, and thereby promoting viral entry to host

cells [52]. A recent experiment suggests that comple-

ment receptors CR3 and CR4 also act as Hantavirus

entry receptors [53].

Bacteria

As phagocytic receptors, both CR3 and CR4 have

antimicrobial roles during the immune response to

infections. Both CR3 and CR4 are involved in the

uptake and killing of Escherichia coli [54] or M. tuber-

culosis [55]. Out of the two receptors, CR3 was shown

to be the dominant mediator of phagocytosis over

CR4 in the case of iC3b opsonized S. aureus on

human monocytes, neutrophils, monocyte-derived

macrophages and dendritic cells [56,57]. CR3 is also

involved in the phagocytosis of Salmonella enterica

[58], Borrelia burgdorferi [59] or Mycobacterium kansa-

sii [60], and has a key role in the effective immune

response against Listeria monocytogenes [61].

Phagocytosis via CR3 and CR4 is an effective

antimicrobial immune response; however, some patho-

gens try to evade it. For instance, Group A Strepto-

coccus (GAS), avoids phagocytosis by secreting the

CR3 homologue GAS Mac-1-like protein (Mac). The

Mac binds to CD16 (FccRIII) on the surface of

human polymorphonuclear cells (PMNs) and blocks

receptor–antibody interactions as well as the binding

of iC3b to CD11b, as CR3 and CD16 are physically

and functionally linked. By that Mac inhibits
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opsonophagocytosis and also the production of reac-

tive oxygen species, thereby decreasing pathogen kill-

ing [62].

While some pathogens evolved the ability to avoid

phagocytosis, others use this mechanism to enter host

cells. As CR3 and CR4 have a main role in noninflam-

matory phagocytosis of apoptotic cells, it is an ideal

target for intracellular pathogens to exploit for their

entry, especially if additional danger signals are

blocked by the microbe.

Uptake of F. tularensis, which is one of the most viru-

lent pathogens known, is mediated by CR3 and CR4 in

human dendritic cells. The internalization of F. tularensis

is followed by its rapid growth inside cells resulting in

cell death [63]. The same receptors are involved in the

infection of human macrophages, while in human neu-

trophils it is mediated by CR1 and CR3 [25].

The RrgA adhesin containing pili of Str. pneumoniae

enhances the CR3 dependent uptake of pneumococci

by murine and human macrophages through a direct

interaction with CR3. Macrophages harbouring higher

numbers of viable bacteria are more likely to be

destroyed prior to the complete eradication of the

ingested particles. Moreover, the interaction between

RrgA and CR3 leads to increased motility and migra-

tory behaviour of macrophages, resulting in an earlier

onset of septicaemia and a more rapid disease progres-

sion [64].

The obligate intracellular pathogen M. leprae invades

host cells via phagocytosis and proliferates within

mononuclear phagocytes. Both CR3 and CR4 (and

CR1) were shown to be involved in that process [30].

The causative agent of Legionnaires’ disease,

Legionella pneumophila, multiplies in human mono-

cytes and alveolar macrophages. CR1 and CR3 were

shown to mediate the adherence of Leg. pneumophila,

thereby contributing to the entry and intracellular pro-

liferation of the bacteria, as these processes could be

inhibited by specific antibodies for CR1 and CR3 [65].

Hajishengallis et al. described in detail the immune

evasion mechanism of Porphyromonas gingivalis. The

fimbriae of this bacteria serve as a ligand for CR3,

which mediates its phagocytosis, thus proactively pro-

moting its binding and entry into the host cells. The

fimbriae activate the high-affinity conformation of

CR3, which does not promote the killing but the per-

sistence of Po. gingivalis after internalization and

induces a selective suppression of IL-12 production

[66–68]. Therefore, Po. gingivalis enhances its survival

by exploiting CR3, as pharmacological blockade of

CR3 promotes its killing and suppresses Po. gingivalis-

induced periodontal bone loss in a mouse model

[66,69].

Fungi

CR3 and CR4 were shown to be involved in the bind-

ing of Cryptococcus neoformans [70] and are dominant

receptors in the uptake and killing of Candida albicans

[54]. However, the fungal pathogen Histoplasma capsu-

latum evades antimicrobial defences and proliferates

intracellularly in macrophages infected through CR3,

CR4 and LFA-1. The host macrophages are destroyed

by the multiplying yeast, and the released microbes are

phagocytosed by other macrophages attracted to the

infected site [71]. The major H. capsulatum ligand for

CR3 on macrophages was identified as heat shock pro-

tein 60 (hsp60), whereas dendritic cells recognize it via

a different ligand [72]. Similar to H. capsulatum, the

related dimorphic fungal pathogen Blastomyces der-

matitidis also expresses a CR3-interacting protein,

BAD1 (blastomyces adhesin 1). BAD1 helps pathogen

survival by binding via CR3 and CD14 that mediates

its internalization and the suppression of TNF-a pro-

duction of host cells [73].

The fungal pathogen Aspergillus fumigatus avoids

opsonization and phagocytosis by expressing proteases

that degrade complement proteins and CR3 [74]. As

surface-bound factor H can enhance the antifungal

activity via binding to CR3 and CR4, C. albicans

avoid phagocytosis by releasing the secreted aspartic

protease 2 (Sap2) to cleave both FH and the comple-

ment receptors CR3 and CR4 on macrophages [75].

Additionally, C. albicans expresses a CR3-like struc-

ture that mediates adhesion of the yeast to human

endothelium [76–78].

Parasites

CR3 and CR4 also contribute to the phagocytosis of

P. falciparum-infected erythrocytes [79], and Leishma-

nia ssp. are able to enter and survive in host macro-

phages in a CR3-mediated manner [80,81]. Moreover,

Leishmania is known to inhibit IL-12 production in

macrophages [82], which is also mediated by CR3, as

signalling via CR3 by L. major reduces IL-12 produc-

tion [83]. At the same time, dendritic cells were shown

to take up L. major in a CR3-independent, FccRI-

and FccRIII-mediated manner, which leads to a more

effective antigen presentation, indicating that CR3-me-

diated uptake is likely to represent a ‘decoy’ mecha-

nism for this pathogen [84].

CRIg

The complement receptor immunoglobulin [CRIg, also

known as V-set and Ig domain-containing 4 (VSIG4)
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and Z39Ig] is a phagocytic receptor expressed on

macrophage subpopulations. First, Helmy et al.

proved the expression of CRIg in CD68+ Kupffer cells

in the liver, interstitial macrophages in the heart, adre-

nal gland macrophages, alveolar macrophages, Hof-

bauer cells, synovial macrophages and lamina propria

histiocytes by immunohistochemistry [85]. In dendritic

cells, two groups showed the expression of CRIg, but

only at the mRNA level [86,87]. CRIg belongs to the

immunoglobulin (Ig) superfamily. In humans, it has

two splice variants. The long form (huCRIg(L)) con-

tains a V- and a C2-type Ig domain, and a short form

(huCRIg(S)) encodes only a V-type Ig domain [88].

The murine muCRIg receptor comprises only of a sin-

gle V-type Ig domain [85].

CRIg binds C3b and iC3b, providing the first line of

defence in the liver and spleen by quickly eliminating

opsonized pathogens. This receptor was shown to

swiftly resurface through recycling endosomes after

internalization, thus providing the means for a contin-

uous phagocytosis [85]. In contrast to CR3 and CR4,

which also bind iC3b-opsonized particles, CRIg is

regarded to have an anti-inflammatory role as well. It

is hypothesized that Kupffer cells internalize opsonized

microbes and apoptotic cells first through CRIg, with-

out the induction of inflammation [89,90]. A higher

number of microbial agents in the blood will prompt

the engagement of other pattern recognition and com-

plement receptors, leading to the initiation of an

immune response including leucocyte recruitment and

inflammation.

CRIg is additionally involved in the promotion of

immunological tolerance through the inhibition of the

alternative complement pathway convertases [91,92]

and the suppression of T-cell activation. However, the

tolerogenic function of CRIg might support the pro-

gression of cancer with keeping T cells in an unrespon-

sive state [93,94]. Recently, the downregulation of

CRIg in chronic Hepatitis B virus (HBV) infection was

shown to lead to a poor prognosis in hepatocellular

carcinoma patients probably due to reduced virus

clearance [95,96].

Studies on the CRIg-mediated phagocytosis proved

that this receptor is indispensable in the rapid internal-

ization of complement opsonized Adenovirus particles

[89], S. aureus [85], Li. monocytogenes [85] and C. albi-

cans [97,98]. The intracellular pathogen Li. monocyto-

genes survive inside macrophages by delaying

phagosome maturation and escaping into the cyto-

plasm [99]. Kim et al. proved a multistep counter

mechanism involving the engagement of CRIg. Sig-

nalling through CRIg facilitates phagosome acidifica-

tion and fusion with lysosomes, enhancing the killing

of internalized bacteria [100]. In addition, the ligation

of CRIg with opsonized Li. monocytogenes or an ago-

nistic mAb induces autophagosome formation,

enabling macrophages to eliminate cytoplasmic bacte-

ria already escaped from the phagolysosome system

[101].

Zeng et al. [102] proposed that the CRIg receptor is

able to clear bacteria directly without opsonization,

through the recognition of the gram-positive wall con-

stituent, lipoteichoic acid (LTA). However, Broadley

et al. [103] proved in a C3 knockout mouse, that

Kupffer cells still internalize both gram-positive and

gram-negative bacteria strains, but instead of CRIg,

they use pattern recognition receptors, that is scav-

enger receptors for LTA. Further studies are required

to clarify the individual participation of complement

and pattern recognition receptors expressed by Kupffer

cells, with consideration of the shear stress conditions

present in the liver [104].

Receptors for C1q and MBL

C1q and MBL are soluble recognition molecules,

which may serve as opsonins. Their structure is

described briefly in Box 2. Binding of these comple-

ment proteins to pathogens may either mediate their

direct uptake via their receptors expressed by phago-

cytes – including dendritic cells, macrophages and

PMNs, or may initiate the complement cascade, result-

ing in the fixation of C3- and C4-derived fragments,

leading to an enhanced engulfment of the microbe [5].

The attachment of C1q or MBL to microbial sur-

faces causes conformational changes in these mole-

cules, which subsequently initiate functions such as

complement activation and interaction with C1q or

MBL binding molecules leading to the uptake of the

microbe. MBL can act as a direct opsonin for

microbes through interaction with a cellular receptor

or binding protein [108,109]. The immunological sig-

nificance of MBL as an opsonin was established in

studies of MBL-deficient children with an opsonic

defect [110].

Several cell membrane molecules have been shown

to increase the binding of collectins and the struc-

turally related C1q, including CD93 (C1qRp), CD35

(CR1) and cC1qR (calreticulin, CRT) in complex with

CD91. Receptors for both the collagen-like tail

(cC1qR) and globular head regions (gC1qR) of C1q,

as well as receptors for MBL, have been proposed

(Table 1, Fig. 1) [111–117]. The best-accepted candi-

date is cC1qR, a protein nearly identical with CRT,

which is in complex with CD91. CRT, a chaperone

and Ca2+-binding, ubiquitous intracellular protein, is
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found in the membrane of cellular organelles, on the

cell surface, and it can also be released as a soluble

protein. It is unclear how CRT may become associated

with the cell surface, but together with CD91, surface

CRT is involved in the uptake and removal of cell

remnants when opsonized with C1q [117]. gC1qR is

specific to the globular head region, gC1q [115].

C1qRp – also known as the AA4 antigen in rodents –
enhances the uptake of C1q-opsonized particles and is

recognized by antibodies against CD93 [118].

In the next paragraphs, the biological consequences

of the interaction of C1q and MBL and their receptors

with various pathogens are summarized.

Viruses

MBL was shown to bind to HIV, SARS-CoV, Ebola,

Herpes simplex virus (HSV) and influenza virus. Sub-

sequent conformational changes of MBL were demon-

strated to allow the molecule to initiate viral

neutralization or kill them via complement activation

and opsonization [119–123].

The direct interaction of C1q and MBL was studied

in detail in the case of HIV [124] and Human

T-lymphotropic virus 1 (HTLV-1) [125,126]. The

importance of MBL in opsonizing HIV was proved by

the finding that the uptake of the opsonized virus by

tissue macrophages leads to clearance of the virus

from the blood [119].

Binding of MBL to Influenza A virus was shown to

involve the CRD domain of the molecule and man-

nose oligosaccharides of the viral haemagglutinin and

neuraminidase [127–129]. Interestingly, this interaction

was found to result in virus inactivation in a comple-

ment activation independent way [129].

Hepatitis C virus core protein interaction with the

gC1q receptor can contribute to the pathogenesis of

multiple diseases associated with HCV infection

[130]. Waggoner and colleagues demonstrated that

binding of the HCV core protein to gC1qR on

human monocyte-derived dendritic cells inhibited

TLR-induced IL-12 production but not the produc-

tion of other TLR-induced cytokines [131]. In addi-

tion, HCV core protein engagement of gC1qR on

dendritic cells promoted the production of Th2

cytokines such as IL-4 by cocultured CD4+ T cells.

These results suggest that the engagement of gC1qR

on dendritic cells by HCV limits the induction of a

Th1 response [131].

Bacteria

Agarwal et al. [132] demonstrated that the adherence

of Str. pneumoniae is facilitated by the interaction of

C1q collagen region with cC1qR resulting in an

enhanced invasion of host epithelial and endothelial

cells.

Using recombinant forms of the globular head

regions of C1q, it was found that LPS derived from

Salmonella typhimurium interacts specifically with the

B-chain of the gC1q domain in a calcium-dependent

manner. Since the LPS and the IgG-binding sites are

overlapping, binding of the bacterium can modulate

classical pathway activation [133].

In the case of S. aureus, the staphylococcal protein

A (SpA) has been shown to bind to the gC1qR,

which is highly expressed on the surface of activated

platelets and endothelial cells [134]. The bacterium

itself, however, was shown to bind MBL via peptido-

glycan and lipoteichoic acid [135,136], and MBL was

found to direct the bacterium to the phagosome

[137].

It has been described that MBL served alone as an

opsonin in the phagocytosis of Salmonella montevideo

by PMNs [138]. However, when MBL binds to CR1, it

cooperates with FccRs in the process of the phagocy-

tosis of Sa. montevideo by PMNs, as described by

Ghiran et al. [139].

Box 2. Structure of C1q and MBL complexes

C1q, a subunit of the C1 complex, is a 460 kDa hex-

americ glycoprotein containing 18 polypeptide chains

(A, B and C), which build up 6 identical units. The

tulip-like structure possesses a globular head region

(gC1q), a neck region and a collagen-like tail (cC1q)

[105]. The globular heads bind to the Fc region of

antigen-bound IgG or IgM, and it can also recognize

various structures present on self, nonself and altered

self molecules. In addition to these capacities, C1q has

a distinguished role in clearing apoptotic cells, and

therefore, C1q deficiency may provoke autoimmunity

like SLE [106].

MBL, the pattern recognition molecule of the lectin

pathway, is composed of three identical monomeric

subunits of 32 kDa glycoproteins, forming 3–6 tri-

mers. The bouquet-like structure of this collectin is

mainly held together via disulphide bonds, similarly to

that of complement C1q. Each polypeptide consists of

a carbohydrate recognition domain (CRD), a neck

domain and a collagen domain. MBL, a member of

the collectin family, is important in host defence, espe-

cially in early childhood, when the adaptive immune

response has not fully developed [107].
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Parasites

C1q has been proven to enhance eosinophil mediated

killing of schistosomula of Schistosoma mansoni [140].

Binding of MBL to L. major and Leishmania mexicana

promastigotes by mannose-containing lipophosphogly-

can was described by Green et al. [141] They suggested

that MBL may opsonize the major developmental

stages of Leishmania parasites.

Crosstalk of complement receptors
with other cell-membrane proteins

Pathogens invading the body may get opsonized by

plasma proteins other than complement – including

antibodies, pentraxins [129] and fibronectin – further-

more, microbes contain a wide variety of PAMPS. All

of these factors allow the interaction of the pathogens

with more than one receptor on the interacting

immune cell, providing an additional level of regula-

tion. Still, in most studies only the effect of single

receptor–ligand interactions is dissected (Fig. 2).

In addition to complement proteins, pathogen pat-

terns can be recognized by several innate receptor fam-

ilies, such as C-type lectin receptors (CLR), NOD-like

receptors (NLR) or Toll-like receptors (TLR). The

complex microbial surfaces offer multiple binding sites

for these receptors, which modulate host-cell response.

Both synergistic and antagonistic interactions have

been described for complement receptors and TLRs

[142].

In the next paragraph, some examples of the cooper-

ation between complement receptors and other sensors

of nonopsonized and Ig-opsonized microbes are

described briefly.

CR1-BCR

Simultaneous engagement of CR1 and BCR via com-

plement opsonized antigens can significantly alter B-

cell responses. Previously, our group was the first to

show that in human system CR1 is a potent inhibitor

of BCR-dependent B-cell activation – such as prolifer-

ation, cytokine and antibody production of cells – in

both physiological and pathological conditions [9–12].

Since then the inhibitory function of CR1 was con-

firmed by others, using in vivo model systems as well

[143–145].

CR1-TLR7, TLR9-BCR

In physiological and pathological conditions, when

both complement and TLR activating microbial

products are present in the B-cell environment, the

interaction between the two innate sensory systems has

the potential to fundamentally alter or fine-tune B-cell

responses. It has been shown recently that CR1 clus-

tering has no effect on the TLR7-induced activation of

tonsillar B cells. However, the TLR9-dependent

responses of these cells were significantly and dose-

dependently reduced by CR1 ligation [12]. These

observations highlight diverse mechanisms of the inter-

play between CR1 and TLR7 or CR1 and TLR9, in

regulating humoral immune responses.

CR2-BCR

In mouse system, it is well accepted that C3d-op-

sonized antigens, which crosslink CR2 with the BCR,

augment antibody production by several order of mag-

nitudes. Therefore, C3d is known as a molecular adju-

vant with a capacity to bridge innate and adaptive

immune responses [146]. However, in the case of

human B cells the enhancement of antibody produc-

tion by the C3-derived ligand has not been proven so

far.

CR3-FccRII, FccRIII

Zhou and Brown reported that human neutrophils pla-

ted on a surface coated with both anti-CR3 and anti-

FccRIII antibodies, exert a strong respiratory burst.

They showed that the lectin-like site of CR3, which is

sensitive to saccharides, binds to the extensively glyco-

sylated FccRIIIB molecule. Furthermore, it has also

been demonstrated that coligation of FccRIII is

required for the tyrosine phosphorylation of FccRII.

Thus, the cooperation of these three receptors leads to

the FccRII-dependent assembly of the NADPH oxi-

dase [147].

CD14-TLR4-CR3

Hawley et al. [59] demonstrated that CD14, the GPI-

linked LPS receptor expressed by phagocytes and CR3

are not associated under resting conditions; however,

their interaction is rapidly induced in the presence of

LPS, when they colocalize within lipid rafts.

Perera et al. [148] observed a combined participation

of CR3, CD14 and TLR4 in the response to LPS and

taxol, suggesting the formation of a receptor complex

of these molecules on the surface of mouse macro-

phages. Later Han et al. [149] showed that TLR4 sig-

nalling activates CR3, which in turn provides negative

feedback by enhancing the phosphorylation and subse-

quent degradation of TLR signalling molecules,
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MyD88 and TRIF. This inhibitory effect of CR3 was

also proved for the TLR7/8-induced inflammatory

response on human macrophages [150].

uPAR-CR3

The most studied interaction between integrins and

GPI-linked proteins involves the urokinase-type plas-

minogen activator receptor (uPAR; CD87) [151]. This

receptor is expressed on a wide variety of cell types,

including neutrophils and activated monocytes. uPAR-

mediated calcium signalling was observed in the pres-

ence of CR3, while it did not occur in cells of leuco-

cyte adhesion deficiency (LAD) patients or in normal

neutrophils treated with anti-CR3 mAb. It has also

been shown that complex formation with uPAR facili-

tates the adhesive functions of CR3 [152].

CR3-CR4

Our group found a division of work between CR3 and

CR4 in the process of the phagocytosis of iC3b-op-

sonized S. aureus. In the case of monocyte-derived

macrophages, we observed that blocking CR4 only

decreased the amount of surface-bound particles,

whereas internalization and digestion of the particles

were dependent on CR3. While CR4 participates in

the binding of iC3b-opsonized S. aureus, further steps

leading to the digestion of the coccus are mediated by

CR3 [56].

MBL-TLR2

MBL binds to the surface of S. aureus through lipotei-

choic acid (LTA) that is also the ligand of TLR2/6. Ip

et al. [137] showed that the presence of S. aureus

Fig. 2. Crosstalk between complement receptors and other host-cell membrane proteins induced by encountering pathogens. Crosstalk through

direct association or via signalling cascade intersection has been described for complement receptors. The presence of pathogen-associated

molecular patterns (PAMP) and opsonins on microbial surfaces promotes the simultaneous engagement of pattern recognition, complement, Fc-

receptors and the BCR. CR3 may associate with FccRIIIB and uPAR, and in the presence of LPS, it forms a complex with TLR4 and CD14. In

macrophages, there is a division of labour between CR3 and CR4 in the binding and internalization of iC3b-opsonized particles. MBL and TLR2/6

both bind the bacterial lipoteichoic acid (LTA) and become associated in the phagosomes after internalization. The cooperation between CR1 and

TLR7 or TLR9 inhibits human B-cell functions. In mouse, C3d-opsonized antigens crosslink CR2 with the BCR, which augments B-cell activation.
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induced the association of MBL and TLR2 in phago-

somes, and this interaction resulted in an enhanced

inflammatory response.

Conclusion

The complement system is a major component of

innate immunity, which contributes to the maintenance

of host homeostasis. The activation of the complement

cascade generates various biologically active comple-

ment protein-derived polypeptides that opsonize

pathogens. Complement receptors interacting with

these polypeptides are expressed by several cell types –
including monocytes, macrophages, dendritic cells,

neutrophil granulocytes, and T and B lymphocytes.

Engagement of the receptors leads to a wide array

of responses, in many cases leading to the elimination

of viruses, bacteria, fungi and parasites. On the other

hand, pathogens utilize the same receptors to evade

recognition and elimination. Learning more about the

interaction and crosstalk between cells and microbes

will help develop vaccines and treatment of

infections.
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