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a b s t r a c t

In this study flow around a circular cylinder undergoing transverse-only vortex-induced
vibrations is investigated using a two-dimensional in-house CFD code. The Navier–Stokes
equations, the continuity and pressure Poisson equations written for an incompressible
constant property Newtonian fluid coupled with the structural equation are solved
using the finite difference method. Systematic computations are carried out for different
damping ratio values between ζ = 0% and 5%. Reduced velocity is varied in U∗

=

2.5 − 7.5, while Reynolds number and mass ratio are fixed at Re = 300 and m∗
= 10,

respectively. Up until now, researchers have reported an upper branch only at high
Reynolds numbers and low m∗ζ values. However, in this study we have observed a
three-branch behavior (initial, upper and lower branches) at Re = 300 for ζ ≤ 1%.
The upper branch is bounded by two gradual phase changes: at the boundary adjacent
to the initial branch, the time-averaged phase difference of vortex force, and at the
boundary to the lower branch, the time-averaged phase difference of transverse fluid
force relative to the cylinder displacement changes between 0◦ and 180◦. Unbounded
variations and phase slips are observed in the time-dependent phase differences, which
explains the gradual changes in their time-mean values. In some ranges of the upper
branch the second harmonic frequency component plays an important role in the spectra
of transverse fluid force, which is closely related to the observed asymmetrical vortex
structure. Increasing the structural damping above ζ = 1%, only initial and lower
branches are found. The comparison of peak oscillation amplitude against an empirical
relationship provided in the literature shows very good agreement for ζ ≥ 1%. A Griffin
plot is also used for the comparison of peak response data where the currently obtained
results and those in the literature collapse onto almost a single curve.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fluid flow around bluff bodies has been thoroughly investigated in the past few decades due to its large number of
engineering applications. It plays an important role for instance in offshore structures, high slender buildings or heat
exchangers. Vortices shedding from bluff bodies can induce the vibration of the structure, which is referred to as vortex-
induced vibrations (VIV). Various effects of VIV were shown for example by Bearman (1984, 2011), Blevins (1990), Sarpkaya
(2004), and Williamson and Govardhan (2004).
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Nomenclature

Latin symbols

b Structural damping [kg s−1]
Cv Vortex force coefficient, 2Fv/(ρU2

∞
d) [–]

CA Added mass coefficient [–]
Cy Transverse fluid force coefficient, 2Fy/(ρU2

∞
d) [–]

D Dilation, non-dimensionalized by U∞/d
d Cylinder diameter, length scale [m]
f ∗ Vibration frequency, non-dimensionalized by U∞/d
f ∗

Cv
Frequency of vortex force, non-dimensionalized by U∞/d

f ∗

Cy Frequency of transverse fluid force, non-dimensionalized by U∞/d
fN Natural frequency of the cylinder in vacuum, 1/(2π )

√
k/m [s−1]

Fp Potential added mass force per unit length of the cylinder [N m−1]
Fv Vortex force per unit length of the cylinder [N m−1]
Fy Transverse fluid force per unit length of the cylinder [N m−1]
fv0 Vortex shedding frequency for a stationary cylinder [s−1]
k Spring constant [kg s−2]
m Cylinder mass per unit length [kg m−1]
m∗ Mass ratio, m∗

= 4m/(ρd2π ) [–]
mA Added mass of fluid per unit length of the cylinder, CAρd2π/4 [kg m−1]
p Pressure, non-dimensionalized by ρU2

∞
[–]

R Radius, non-dimensionalized by d [–]
Re Reynolds number, ρU∞d/µ [–]
St Dimensionless vortex-shedding frequency for a stationary cylinder, Strouhal number, fv0d/U∞ [–]
t Time, non-dimensionalized by d/U∞ [–]
u, v Velocity components in x and y directions, non-dimensionalized by U∞ [–]
U∗ Reduced velocity based on the cylinder’s natural frequency in vacuum, U∞/(fNd) [–]
U∞ Free steam velocity, velocity scale [m s−1]
x, y Cartesian coordinates, non-dimensionalized by d [–]
y0 Cylinder displacement, non-dimensionalized by d [–]

Greek symbols

ηmax Number of grid points in radial direction [–]
Φ Phase difference between Cy and y0, transverse phase [–]
Φv Phase difference between Cv and y0, vortex phase [–]
µ Dynamic viscosity of the fluid [Pa s]
ρ Fluid density [kg m−3]
ξmax Number of grid points in peripheral direction [–]
ζ Structural damping ratio, b/(2

√
km) [–]

Subscripts and superscripts

x Streamwise
y Transverse
0 Cylinder response
1, 2 On the cylinder surface, at the outer boundary of the computational domain

In this study vortex-induced vibration of a circular cylinder is analyzed using a numerical approach. Although in reality
he cylinder moves in two degrees of freedom (both streamwise with and transverse to the main stream), transverse-
nly vibration is often used to model VIV. Feng (1968), Brika and Laneville (1993), and Khalak and Williamson (1999)
howed that the cylinder response (amplitude and frequency values) depends highly on the mass-damping parameter
∗ζ , where m∗ is the mass ratio (cylinder mass divided by the mass of the displaced fluid), and ζ is the structural damping

ratio. Feng (1968) and Brika and Laneville (1993) investigated high-m∗ζ cases. Plotting the amplitude of cylinder oscillation
against reduced velocity they found two response branches — initial and lower branches, where the initial branch was
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associated with the peak oscillation amplitude. In addition, Brika and Laneville (1993) showed that the transition between
initial and lower branches is hysteretic, due to the abrupt change in the vortex structure. Using the notations introduced
by Williamson and Roshko (1988), Brika and Laneville (1993) observed 2S mode (two single vortices are shed from the
cylinder in each motion cycle) in the initial branch, while 2P mode (two vortex pairs are shed) was present in the lower
ranch.
Khalak and Williamson (1999) identified three response branches (initial, upper, and lower branches) for very low

ass-damping values, where peak vibration amplitude is associated with the upper branch. They found hysteresis in
he initial↔upper branch transition range, whereas vortex structure switches between 2S and 2P modes. The transition
between upper and lower branches is found to be intermittent, since the wake mode does not show changes (2P mode is
observed both in the upper and lower branches). Govardhan and Williamson (2000) investigated also low mass-damping
cases using experimental techniques. Following Lighthill (1986), Govardhan and Williamson (2000) decomposed the
transverse fluid force into vortex force and potential added mass force components. The phase differences for transverse
fluid force and vortex force relative to the cylinder displacement Φ and Φv were calculated using the Hilbert transform
of the corresponding signals. They showed that Φv jumps between approximately 0◦ and 180◦ in the initial↔upper
branch transition range, where the vortex structure switches from 2S to 2P mode. In this range the cylinder displacement
remained in-phase with the transverse fluid force. However, in the transition domain between upper and lower branches
(where no significant changes were identified in the wake mode) Φ was found to jump from 0◦ to 180◦, and the vortex
force remained out-of-phase with the cylinder displacement.

Klamo et al. (2006) investigated the effects of structural damping ratio and Reynolds number on the cylinder response.
They showed that by increasing ζ the high-amplitude three-branch response switches to two-branch response, where the
oscillation amplitude is significantly lower. Soti et al. (2018) carried out a systematic experimental study for different
ζ values. In addition to the cylinder response, they analyzed the power transfer between the oscillating cylinder
and the surrounding fluid. They identified three-branch response for a wide damping ratio range; they showed the
occurrence of upper branch even at low oscillation amplitudes (down to ŷ0 = 0.2, where ŷ0 is the oscillation amplitude
non-dimensionalized by the cylinder diameter). Bernitsas et al. (2008) and Lee and Bernitsas (2011) investigated the
possibilities of energy harvesting from vortex-induced vibrations. Bernitsas et al. (2008) derived an analytical formula for
the calculation of power transfer based on harmonic approximations. They found that power transfer is zero when Φ

(or Φv) equals to 0◦ and 180◦, i.e. for undamped vibrations. Their formula reveals also that increasing structural damping
ratio, power transfer can be increased, which agrees well with the experimental results of Soti et al. (2018). Konstantinidis
et al. (2019) analyzed energy transfer (analogous with the power transfer) from another perspective using laboratory
measurements at very low mass-damping values. They decomposed the total hydrodynamic force acting on the cylinder
into components parallel with and normal to the time-dependent vector of the cylinder’s relative velocity, i.e. the drag
and lift forces, respectively. They showed that drag does only negative work on the vibrating cylinder, while the work
done by the lift is positive in most of the investigated cases.

Klamo et al. (2006) and Govardhan and Williamson (2006) showed that cylinder response is significantly influenced by
Reynolds number Re = ρU∞d/µ, where ρ is the fluid density, U∞ is the free stream velocity, d is the cylinder diameter,
and µ is the dynamic viscosity of the fluid. Most of the experiments are carried out in the Reynolds number range of
Re = O(103

− 104). However, due to the high computational time demand numerical simulations are usually carried out
in the low-Reynolds-number range [Re = O(102)]. Another issue is the three-dimensionality of the flow structure. Barkley
and Henderson (1996), using linear stability analysis, found that the flow around a stationary cylinder is fully two-
dimensional up to Re ∼= 189. They reported three-dimensional (3D) instabilities at Re ∼= 189 (Mode A) and at Re ∼= 259
(Mode B). Koide et al. (2002) carried out laboratory measurements for a mechanically oscillated cylinder at the Reynolds
number of Re ∼= 3500. They demonstrated that the cross-correlation coefficient of the velocities measured at different
locations along the cylinder’s span significantly increases when the cylinder is oscillated at relatively large amplitudes.
This effect indicates that the synchronization between cylinder vibration and vortex shedding (i.e. lock-in) increases the
two-dimensionality of the flow. Bearman and Obasaju (1982) showed a similar phenomenon using fluctuating pressure
measurements for a square cylinder: by oscillating the body at relatively high amplitudes, the spanwise coherency of
the flow structure increases. Poncet (2002) carried out 3D computations at Re = 500 for a stationary cylinder, where
Mode B instability developed. He showed that soon after beginning to apply high-amplitude rotary oscillations the
three-dimensional instability vanished and the flow became fully two dimensional. Since there are several independent
parameters for the case of a vibrating cylinder (e.g. Reynolds number, oscillation amplitude, and frequency values), the
upper limit of the two-dimensionality has not yet been determined. There are several important studies in the literature
performing 2D computations at higher Reynolds numbers (Re > 189). For example Blackburn and Henderson (1999)
investigated the flow around a transversely oscillated cylinder at the Reynolds number of 500, while Singh and Mittal
(2005) analyzed two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re ranging between 50 and
500.

Computational results available in the literature show that oscillation amplitudes for low Reynolds numbers are signif-
icantly lower (ŷ0 ∼= 0.55, see Navrose and Mittal, 2017) compared to high-Re experiments (ŷ0 ∼= 0.8, see Govardhan and
Williamson, 2000). Anagnostopoulos and Bearman (1992) obtained similar characteristics using measurement techniques
in the range of Re = 90 − 150. Using CFD simulations Leontini et al. (2006b) found two-branch cylinder response at
the parameter combination of Re = 200, m∗

= 10, and ζ = 1%. The vortex structures are markedly different from
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hose observed at high Reynolds numbers: 2S and C(2S) wake modes were found in the initial and lower branches,
espectively. Here C refers to the coalescence of the positive and negative vortices in the cylinder wake. Navrose and
ittal (2017) carried out numerical simulations at Re = 100 and ζ = 0% using different mass ratio values in the range

of m∗
= 30 − 150. They found a narrow reduced velocity U∗

= U∞/(fNd) range in the middle of the lower branch where
the oscillation amplitude was low and the vibration frequency did not synchronize with the cylinder’s natural frequency.
They also showed that the width of this low-amplitude domain extends with m∗.

As was pointed out earlier, the vortex structures at low and high-Reynolds-number flows are quite different. Williamson
and Roshko (1988) carried out forced vibration experiments in the range of Re = 300 − 1000, and created a wake mode
map (the well-known Williamson-Roshko map). It can be seen from their results that the 2P vortex structure plays an
important role in the fundamental lock-in domain, which was confirmed by the free vibration results of Brika and Laneville
(1993), Khalak and Williamson (1997, 1999), and Govardhan and Williamson (2000). In addition, Williamson and Roshko
(1988) identified the P + S asymmetrical mode (a vortex pair and a single vortex are shed) at high vibration amplitudes
(ŷ0 = 1 − 2), which is not so typical in VIV cases. They found that decreasing the Reynolds number below Re = 300
the 2P mode in the fundamental synchronization range may be replaced by the P + S vortex structure. The forced
vibration CFD results of Meneghini and Bearman (1995) and Blackburn and Henderson (1999) confirmed this finding:
they did not observe the 2P mode of vortex shedding but they found the P + S vortex structure. Leontini et al. (2006a)
carried out systematic forced vibration computations at Re ≤ 300. Similar to the experiments of Williamson and Roshko
(1988), Leontini et al. (2006a) investigated the effects of forcing frequency and amplitude and created wake mode maps
at Re = 100 and 300. At Re = 100 the P + S mode occurred only over ŷ0 = 0.9. However, at Re = 300 they did identify
the P + S vortex structure around ŷ0 = 0.55 (and near the fundamental lock-in domain) that can be reached in low-Re
VIV.

The numerical studies investigating vortex-induced vibrations at low Reynolds numbers have not reported an upper
branch even for undamped systems (see e.g. Leontini et al., 2006b and Navrose and Mittal, 2017). However, Evangelinos
and Karniadakis (1999) reported that the P + S vortex pattern may also be associated with the upper branch, which
is rarely identified in VIV cases. Singh and Mittal (2005) investigated two-degree-of-freedom vortex-induced vibrations
numerically, and found the P + S vortex structures above Re = 300. Dorogi and Baranyi (2019) also observed the
asymmetrical P + S wake mode close to Re = 300, which caused an asymmetrical orbital (‘‘raindrop-shaped’’) cylinder
motion.

The main objective of this study is to explore whether an upper branch, i.e. three-branch cylinder response, can exist at
the Reynolds number of Re = 300. To accomplish this aim, two-dimensional numerical simulations are carried out at this
Reynolds number using mass ratio value of m∗

= 10. Damping ratio values in the range of ζ = 0% and 5% are considered,
and reduced velocity is varied between U∗

= 2.5 and 7.5. Oscillation amplitude and frequency, time-dependent and
time-averaged phase angles, frequency spectra, and vortex structures are analyzed.

2. Governing equations and solution methodology

In this study vortex-induced vibration (VIV) of a circular cylinder placed into a uniform stream is investigated by
means of CFD (Computational Fluid Dynamics) computations at low Reynolds numbers Re = ρU∞d/µ. Here ρ is the fluid
density, U∞ is the free stream velocity, d is the cylinder diameter and, µ is the dynamic viscosity of the fluid. The cylinder
is elastically supported only in transverse direction. Its displacement, velocity, and acceleration values are obtained by
solving Newton’s second law of motion. This equation in non-dimensional form can be written as follows:

ÿ0 +
4πζ

U∗
ẏ0 +

(
2π
U∗

)2

y0 =
2Cy

πm∗
, (1)

where y0, ẏ0, and ÿ0 are the dimensionless cylinder displacement, velocity, and acceleration, respectively, U∗
= U∞/(fNd)

is the reduced velocity based on the cylinder’s natural frequency in vacuum fN , ζ is the damping ratio (structural over
critical damping), and m∗ is the ratio of the cylinder’s mass to that of the displaced fluid, i.e. the mass ratio. On the
right-hand side of Eq. (1) Cy = 2Fy/(ρU2

∞
d) is the transverse fluid force coefficient where Fy is the transverse fluid force

per unit length of the cylinder.
The fluid is assumed to be two-dimensional incompressible constant property and Newtonian. Its motion is governed

by the two components of the Navier–Stokes equations and the continuity equation. The equations of motion are written
in a non-inertial frame of reference attached to the oscillating cylinder. These equations in non-dimensional forms are
written as follows:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
∂p
∂x

+
1
Re

(
∂2u
∂x2

+
∂2u
∂y2

)
, (2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

∂p
∂y

+
1
Re

(
∂2v

∂x2
+

∂2v

∂y2

)
− ÿ0, (3)

D =
∂u

+
∂v

= 0. (4)

∂x ∂y
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Here x and y are the non-dimensional Cartesian coordinates in streamwise and transverse directions, respectively, u and v
are the dimensionless velocity components in x and y directions, p is the dimensionless pressure, t is the non-dimensional
time, and D is the dilation. Instead of solving Eq. (4) explicitly, a Poisson equation is derived and used for computing fluid
pressure (Harlow and Welch, 1965 and Baranyi, 2008), which can be written in non-dimensional form as follows:

∇
2p =

∂2p
∂x2

+
∂2p
∂y2

= 2
(

∂u
∂x

∂v

∂y
−

∂u
∂y

∂v

∂x

)
−

∂D
∂t

. (5)

Although dilation is zero for an incompressible fluid, ∂D/∂t is kept in Eq. (5) to reduce numerical inaccuracies.
The physical domain of the computations is confined by two concentric circles. The dimensionless radius of the cylinder

is denoted by R1 while that of the far field by R2. Dirichlet-type boundary conditions are applied for the two velocity
components, and Neumann type of boundary condition is used for fluid pressure both on the cylinder surface R = R1 and
in the far field R = R2 (see Baranyi, 2008). In order to obtain accurate results, the physical domain is transformed into a
computational domain. It is advantageous that using appropriate mapping functions, on the physical domain the grid is
fine in the vicinity of the cylinder and relatively coarse in the far field, while the mesh is equidistant in the computational
domain. Following Baranyi (2008), linear mapping functions are used in this study.

An in-house CFD code based on finite difference method is used to solve the transformed governing equations with
the transformed boundary conditions. Space derivatives are approximated using fourth-order accurate difference schemes
except for the convective terms for which a third-order modified upwind difference scheme (developed by Kawamura
et al., 1986) is employed. The linear algebraic equation system obtained from the discretization of pressure Poisson
equation is solved using the successive over-relaxation (SOR) method, and continuity equation is satisfied in each time
step. Fourth-order Runge–Kutta scheme is applied to determine the displacement, velocity, and acceleration of the
cylinder, while the two components of the Navier–Stokes equations are integrated explicitly using the first-order Euler
method. Additional details of the computational approach are given in Baranyi (2008).

3. Verification and validation

In this section, first, independence studies are carried out to determine the optimal combination of computational
parameters. Afterwards, the results obtained using the in-house code are validated against those presented in Bourguet
and Lo Jacono (2014) and Blackburn and Henderson (1996).

3.1. Independence studies

The currently applied in-house CFD approach is used with the following parameters: radius ratio R2/R1, grid resolution
ξmax × ηmax (number of grid points in peripheral and radial directions, see details in Baranyi (2008)), and dimensionless
time step ∆t . In order to find the optimal combination of these computational parameters, which is the best compromise
between accuracy and computational time, independence studies are required. During these investigations, Reynolds
number, mass ratio, structural damping ratio, and reduced velocity are fixed at Re = 300,m∗

= 10, ζ = 0%, and U∗
= 4.65,

respectively, and the cylinder is allowed to oscillate only in transverse direction. The root-mean-square (rms) values of
cylinder displacement y0′ , dimensionless vibration frequency f ∗, the rms values of transverse fluid force coefficient Cy′ ,
and the time-mean and rms values of streamwise fluid force coefficient Cx and Cx′ are investigated.

First, the effect of radius ratio R2/R1 is analyzed. The number of grid points around the cylinder surface is fixed
at ξmax = 360, and the dimensionless time step is chosen to be ∆t = 10−4U∗ ∼= 0.0004. Radius ratio values of
2/R1 = 200, 240, and 280 are considered. In order to create an equidistant grid on the computational domain, the
umber of grid points in radial direction is varied with R2/R1; ηmax = 304, 314, and 323 are applied. The results are

shown in Table 1. It can be seen that Cy′ shows the highest relative difference; for R2/R1 = 200 and 240 its value is
1.47%. The time-mean of streamwise fluid force coefficient displays a smaller error: 0.21% for the same R2/R1 values,
while between y0′ , f ∗, and Cx′ the relative difference (for R2/R1 = 200 and 240) is under 0.04%. Comparing the results
obtained for R2/R1 = 240 and 280, the relative difference for all of the investigate quantities is under 0.4%. For this reason,
2/R1 = 240 seems to be appropriate for the further systematic computations.
Second, a grid dependence study is carried out to analyze the influence of ξmax (number of grid points in peripheral

direction) on the results. ξmax = 300, 360, and 420 are investigated, while the radius ratio and dimensionless time step
values are fixed at R2/R1 = 240 and ∆t = 0.0004, respectively. To generate an equidistant grid on the computational
domain, ηmax is varied with ξmax; ηmax = 262, 314, and 366 are used. The results of the grid dependence test are shown

Table 1
Effect of radius ratio on the computational results for (Re,U∗,m∗, ζ ) = (300, 4.65, 10, 0%).

R2/R1 y0′ f ∗ Cy′ Cx Cx′

200 0.3961 0.2135 0.2080 2.0158 0.6497
240 0.3962 0.2134 0.2111 2.0112 0.6498
280 0.3962 0.2134 0.2120 2.0094 0.6498
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Table 2
Results of grid dependence study for (Re,U∗,m∗, ζ ) = (300, 4.65, 10, 0%).

ξmax y0′ f ∗ Cy′ Cx Cx′

300 0.3963 0.2135 0.2065 2.0156 0.6486
360 0.3962 0.2134 0.2111 2.0112 0.6498
420 0.3962 0.2134 0.2125 2.0103 0.6504

Table 3
Effect of dimensionless time step for (Re,U∗,m∗, ζ ) = (300, 4.65, 10, 0%).

∆t y0′ f ∗ Cy′ Cx Cx′

0.0008 0.3964 0.2134 0.2146 2.0102 0.6518
0.0004 0.3962 0.2134 0.2111 2.0112 0.6498
0.0002 0.3962 0.2134 0.2097 2.0112 0.6489

in Table 2. Similarly to the data included in Table 1, Cy′ shows the highest relative difference: 2.18% for ξmax = 300 and
360. As seen, the relative differences in Cx and Cx′ are smaller; 0.22% and 0.18%, respectively, when comparing the results
at ξmax = 300 and 360. Between y0′ and f ∗ (also for ξmax = 300 and 360), the relative difference does not exceed 0.05%. It
is also shown in Table 2 that for ξmax = 360 and 420 the relative difference between y0′ , f ∗, Cy′ , Cx, and Cx′ is under 0.7%.
herefore, ξmax = 360 seems to be adequate for further systematic simulations.
Finally, computations are carried out to test the dependence of computational results on the dimensionless time step.

t1 = 2 · 10−4U∗, ∆t2 = 10−4U∗, and ∆t3 = 5 · 10−5U∗ time step values are considered. At the reduced velocity value
pplied in this particular independence study (U∗

= 4.65), ∆t1, ∆t2, and ∆t3 are 0.0008, 0.0004, and 0.0002, respectively.
he radius ratio and grid resolution values are fixed at R2/R1 = 240 and ξmax × ηmax = 360 × 314. The results are shown
n Table 3. Again, the highest relative difference is observed in Cy′ : 1.66% for ∆t1 and ∆t2, and 0.66% for ∆t2 and ∆t3. The
rrors in Cx′ are smaller: 0.31% when comparing the results for ∆t1 and ∆t2, and 0.1% for ∆t2 and ∆t3. It is also shown
hat the relative difference between y0′ , f ∗, and Cx are negligible; these are under 0.05% for ∆t1 and ∆t2, and also for ∆t2
nd ∆t3. Thus, the dimensionless time step value of ∆t = 10−4U∗ seems to be appropriate for further computations.

3.2. Validation

Validation is carried out using the previously determined computational parameters. Bourguet and Lo Jacono (2014)
investigated undamped (ζ = 0%) transverse-only vortex-induced vibrations of a rotating cylinder at the Reynolds number
and mass ratio values of Re = 100 and m∗

= 40/π , respectively, using a numerical approach. Fig. 1 shows the
dimensionless oscillation amplitude ŷ0 against reduced velocity for a non-rotating cylinder. It can be seen that our results
and those obtained by Bourguet and Lo Jacono (2014) compare well.

Blackburn and Henderson (1996) analyzed two-degree-of-freedom VIV of a circular cylinder by means of two-
dimensional CFD computations. Reynolds number, mass ratio, and structural damping ratio values are fixed at Re = 250,
m∗

= 40/π , and ζ = 1%, respectively. Fig. 2a shows the dimensionless oscillation amplitude, and in Fig. 2b the non-
dimensional vibration frequency normalized by the dimensionless vortex shedding frequency for a stationary cylinder
(Strouhal number) f ∗/St is shown against (U∗St)−1. The calculation methodology of f ∗ is the same as that applied in Dorogi
and Baranyi (2019); the dimensionless vibration frequency of the cylinder appears to be the highest intensity frequency
peak in the FFT (Fast Fourier Transform) spectra of the non-dimensional cylinder displacement. It can be seen in Fig. 2
that the currently obtained results agree well with those presented in Blackburn and Henderson (1996). Note that higher
discrepancies can be observed between (U∗St)−1 ∼= 1 and 1.2 at the boundary of the lock-in domain where the solution
depends highly on the reduced velocity.

Baranyi (2008) and Dorogi and Baranyi (2018, 2019) show further validation against numerical and experimental
results available in the literature for both stationary and oscillating cylinder cases. All of these studies reported good
agreement.

4. Results and discussion

As mentioned in Section 1, the vortex-induced vibration shows very different features at high and low Reynolds
numbers. For high-Re cases, depending on the combined mass-damping parameter m∗ζ and also on the Reynolds number,
two and three-branch responses can be found. In contrast, in the low-Reynolds-number domain, independently of m∗ζ ,
only two-branch cylinder response has been identified; an upper branch has not yet been observed.

The main objective of this study is twofold; first, to investigate whether an upper branch (i.e. a three-branch cylinder
response) can exist in the low-Re domain, and second, to analyze the effect of structural damping ratio on the cylinder
response. For these aims, systematic CFD computations are carried out at fixed Reynolds number and mass ratio values
of Re = 300 and m∗

= 10, respectively. Damping ratio between ζ = 0% and 5% is considered, that is, the combined mass-
damping parameter is chosen to be in the range of m∗ζ = 0 and 0.5. Reduced velocity based on the natural frequency of
the cylinder in vacuum is varied from U∗

= 2.5 to 7.5.
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Fig. 1. Transverse-only vibration results: dimensionless oscillation amplitude ŷ0 against U∗ for (Re,m∗, ζ ) = (100, 40/π, 0%). Present study;
Bourguet and Lo Jacono (2014).

Fig. 2. Two-degree-of-freedom vibration results: dimensionless oscillation amplitude ŷ0 (a) and non-dimensional vibration frequency normalized by
the Strouhal number f ∗/St (b) against (U∗St)−1 for (Re,m∗, ζ ) = (250, 40/π, 1%). Present study; Blackburn and Henderson (1996).

Fig. 3a shows the root-mean square (rms) values of non-dimensional cylinder displacement y0′ , and in Fig. 3b the
vibration frequency normalized by the cylinder’s natural frequency in vacuum f /fN is plotted against U∗ for ζ = 0%.
Similarly to that presented in Section 3.2, the oscillation frequency is calculated using the Fast Fourier Transform (see
also Dorogi and Baranyi, 2019). The dashed line in Fig. 3b represents fv0/fN , where fv0 is the vortex shedding frequency
or a stationary cylinder. The different response branches, namely the initial branch (IB), the upper branch (UB), and the
ower branch (LB) identified in this study are shaded in different colors. It can be seen in Fig. 3 that in the range of
.5 ≤ U∗

≤ 3.5 the oscillation amplitude is low and the vibration frequency is close to the vortex shedding frequency for
stationary cylinder (f ∼= fv0). From U∗

= 3.5 to 4 an initial branch is identified, where f /fN represents an approximately
onstant value of f /fN ∼= 0.95 and y0′ increases intensively.
Between U∗

= 4 and 5.9 lock-in or synchronization is observed, where the vibration frequency locks to approximately
he natural frequency of the cylinder (see Fig. 3b). The entire lock-in domain can be divided into two subdomains.
elatively high oscillation amplitudes are observed in the range of 4 < U∗

≤ 4.89 (see Fig. 3a), where the vibration
requency is slightly lower than the cylinder’s natural frequency (f /fN < 1, Fig. 3b). This reduced velocity domain
ppears to correspond to the upper branch. In order to confirm this, additional analyses are needed, which are presented
n Section 4.1. At the higher boundary of the suggested upper branch y0′ drops abruptly by 7%, and f passes through
N . Govardhan and Williamson (2000) identified similar phenomena at the boundary separating upper and lower branches
or Re ∼= 103

− 104. Between U∗
= 4.89 and 5.9 the lower branch is observed, where f is slightly higher than fN (see

ig. 3b), and y0′ reaches intermediate values (Fig. 3a). The reduced velocity range above U∗
= 5.9 is out of the lock-in

omain; the oscillation amplitude is low (y0′ ∼= 0.1), and the vibration frequency is close again to the vortex shedding
requency for a stationary cylinder.
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Fig. 3. Root-mean-square values of transverse cylinder displacements y0′ (a) and vibration frequency normalized by the natural frequency of the
cylinder in vacuum f /fN (b) against reduced velocity for zero structural damping ratio ζ = 0%. Each response branch is shaded in a different color.

Govardhan and Williamson (2000), based on the methodology introduced by Lighthill (1986), applied the following
decomposition on the instantaneous transverse fluid force Fy:

Fy = Fv + Fp. (6)

In this formula Fv and Fp are the instantaneous vortex force and potential added mass force, respectively, per unit
length of the cylinder. The potential added mass force is defined as follows (Govardhan and Williamson, 2000):

Fp = −CAmd ¨̃y0, (7)

where CA is the potential added mass coefficient, which is equal to unity for a circular cylinder (Blevins, 1990), md = ρ d2π
4

is the displaced mass per unit length of the cylinder, and ¨̃y0 is the dimensional cylinder acceleration. Rearranging and
ormalizing Eq. (6) by 1

2ρU
2
∞
d, the following expression can be obtained for the instantaneous vortex force coefficient:

Cv = Cy +
π

2
ÿ0, (8)

here ÿ0 =
d

U2
∞

¨̃y0 is the non-dimensional cylinder acceleration.
Fig. 4a and b show the rms values of transverse fluid force and vortex force coefficients Cy′ and Cv′ , respectively,

gainst U∗ for ζ = 0%. It can be seen that for low cylinder displacements, i.e. in the domains of 2.5 ≤ U∗
≤ 3.45

nd 5.9 < U∗
≤ 7.5, Cy′ and Cv′ are approximately identical and near the value obtained for a stationary cylinder

Cy′ ∼= Cv′ ∼ 0.5, see Norberg, 2003). Govardhan and Williamson (2000) found Cy′ ∼= Cv′ ∼= 0.1 in the very low oscillation
mplitude range (in U∗ < 4 and U∗ > 10.5 in their study), which is close to Cy′ ∼= 0.05, the value identified for a
on-oscillating cylinder at Re ∼ 103 (Norberg, 2003). In this sense, the currently obtained CFD results for Re = 300
nd the experimental findings of Govardhan and Williamson (2000) for high Reynolds numbers show good qualitative
greement.
Increasing the reduced velocity in the initial branch, Cy′ increases gradually, and reaches its peak value at the beginning

f the suggested upper branch (at U∗
= 4, see Fig. 4a). Between U∗

= 4 and 4.89 Cy′ drops dramatically, moreover at
∗

= 4.36 (in the middle of the proposed upper branch) it suffers a sudden change from Cy′ ∼= 0.71 to approximately
.25. It is also seen in Fig. 4a that at U∗

= 4.89 Cy′ shows another but much smaller jump, above which it increases. The
xperimental results of Govardhan and Williamson (2000) and the above-mentioned tendencies in the current results
re very similar. However, an abrupt change in Cy′ in the middle of the upper branch has not been identified in the
igh-Reynolds-number domain; this jump may indicate other important flow phenomena.
The rms values of vortex force coefficient (see Fig. 4b) found to decrease in the initial branch until it reaches its

inimum value. The locations of the extreme values in Cy′ and Cv′ are near to each other. In the proposed upper branch
v′ strongly increases, and at U∗

= 4.36 (the corresponding reduced velocity value where Cy′ showed to jump) Cv′ changes
uddenly between Cv′ ∼= 0.53 and 1.02. Similarly again to the tendencies observed in Cy′ , at U∗

= 4.89 Cv′ shows another
ut much smaller jump. The peak value in Cv′ is observed at the beginning of the lower branch, which qualitatively agrees
ell with the finding of Govardhan and Williamson (2000).
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Fig. 4. Root-mean-square values of transverse fluid force coefficient Cy′ (a) and vortex force coefficient Cv′ (b) against reduced velocity for ζ = 0%.
ach response branch is shaded in a different color.

.1. Phase dynamics for undamped vibrations

The results presented earlier show that the upper branch most likely exists at the Reynolds number of 300. In order
o confirm this proposal, additional analyses are required. Vortex-induced vibration of a circular cylinder is commonly
nvestigated analytically using the harmonic oscillator model (Govardhan and Williamson, 2000). Let us assume that the
otion of the cylinder and the aerodynamics force coefficients are sinusoidal functions of time:

y0(t) = ŷ0 sin 2π f ∗t, (9)
Cy(t) = Ĉy sin(2π f ∗t + Φ), (10)

Cv(t) = Ĉv sin(2π f ∗t + Φv), (11)

here the hat symbol ( ˆ. . .) refers to amplitude. In these formulæ Ĉy and Ĉv are the amplitude of the transverse fluid force
nd vortex force coefficients, and ŷ0 and f ∗ are the non-dimensional oscillation amplitude and frequency values. In these
xpressions Φ and Φv are the phase differences (or phase angles) for transverse fluid force and vortex force, respectively,
elative to the cylinder displacement. For the sake of simplicity, Φ and Φv will be referred to as the transverse and vortex
hases, respectively. Substituting Eqs. (9) and (10) into the cylinder equation of motion (see Eq. (1)), and equating the
oefficients of sine and cosine terms, the following expressions can be obtained:

cosΦ = 2π3 m∗ŷ0
ĈyU∗2

(1 − f ∗2U∗2), (12)

sinΦ = 4π3m
∗ζ ŷ0

ĈyU∗
f ∗. (13)

It can be seen in Eq. (13) that for zero structural damping, sinΦ = 0; therefore, the cylinder motion can only be
in-phase (Φ = 0◦) or out-of-phase (Φ = 180◦) with the transverse fluid force. Eq. (12) shows that the transverse phase
changes abruptly between Φ = 0◦ and 180◦ at the boundary where the vibration frequency passes through the natural
frequency of the cylinder in vacuum, i.e. at f ∗U∗

= 1.
Introducing Eqs. (8), (9), and (11) into Eq. (1), and equating the coefficients of sine and cosine functions, the following

formulæ are obtained:

cosΦv = 2π3 (m
∗
+ CA)ŷ0

ĈvU∗2
A

(1 − f ∗2U∗2
A ), (14)

sinΦv = 4π3
√
m∗(m∗ + CA)ζ ŷ0

ĈvU∗

A

f ∗, (15)

where U∗

A = U∞/(fN,ad) is the reduced velocity based on the cylinder’s natural frequency in still fluid fN,a. Eq. (15) indicates
that for undamped vibrations the cylinder displacement can only be in-phase or out-of-phase with the vortex force, similar
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Fig. 5. Time histories of transverse phase Φ (left) and vortex phase Φv (right) at reduced velocity values of U∗
= 3 (a) and 3.36 (b) corresponding

to the very low amplitude range, and at U∗
= 4 (c) in the initial branch for ζ = 0%.

to Φ , as shown earlier. As can be seen in Eq. (14), Φv changes suddenly between 0◦ and 180◦ at f ∗U∗

A = 1, i.e. at the point
where f crosses fN,a.

Govardhan and Williamson (2000) carried out an experimental study at high Reynolds numbers [Re = O(103
− 104)]

and low mass and damping values. They found that Φv and Φ jump at different reduced velocity values. The U∗ domain
which is enclosed between the two phase jumps (in Φv at its beginning, and in Φ at its higher boundary) corresponds
to the frequently mentioned upper branch. In other words, to confirm that the range of 4 < U∗

≤ 4.89, where relatively
high oscillation amplitudes are found, represents the upper branch, Φ and Φv should be investigated.

Pikovsky et al. (2001) defined phase angle as the phase difference between the displacement and the force. For the
sake of comparison, we defined phase angles such that Φ = ΦCy − Φy0 and Φv = ΦCv − Φy0 . In these expressions

Cy , ΦCv , and Φy0 are the time-dependent phases of Cy, Cv , and y0, respectively, which are computed using the Hilbert
ransform of the corresponding signals (Khalak and Williamson, 1999; Pikovsky et al., 2001; Konstantinidis et al., 2020).
n the figures mostly time-dependent phase differences (Φ and Φv) are plotted in radian as unwrapped signals. However,
heir time-average values (Φ and Φv) are shown in degrees, and are calculated via averaging Φ and Φv wrapped in
[−π/2, 3π/2].

Fig. 5 shows Φ (on the left-hand side) and Φv (right) for different reduced velocity values in the very low amplitude
range (see Fig. 5a and b) and in the initial branch (Fig. 5c). It can be seen that in the domain of 2.5 ≤ U∗

≤ 3.45
transverse and vortex phases are approximately constant; only small oscillations are observed near U∗

= 3.45 (Fig. 5b).
In the initial branch (3.45 < U∗

≤ 4) Φ shows intermediate oscillations, but its time-mean value is roughly zero (Fig. 5c).
However, in the same range Φv shows an unbounded decrease, which corresponds to the loss of synchronization between
cylinder motion and the vortex force coefficient (Pikovsky et al., 2001). Konstantinidis et al. (2020) found an unbounded
change (increase) in the time-dependent transverse phase Φ in the second half of the upper branch at high Reynolds
umbers. In Pikovsky et al. (2001) this phenomenon is interpreted by analyzing the relationship between motion and
orcing frequencies.

In Fig. 6 differences of vibration frequency relative to the frequency of transverse fluid force and vortex force
oefficients, i.e. f ∗

− f ∗

Cy and f ∗
− f ∗

Cv
, respectively, are shown against U∗ in the initial, proposed upper, and lower branches.

hese quantities are called detuning. It can be seen that in the initial branch f ∗ > f ∗

Cv
, which explains why the time-

ependent vortex phase decreases in this domain (Pikovsky et al., 2001). In addition, the difference between the two
requency values is relatively large in this range (3.45 < U∗

≤ 4), which causes the roughly uniform drop in the vortex
hase (see Fig. 5c). It is also shown in Fig. 6 that f ∗

− f ∗

Cy
∼= 0 in the initial branch, which implies the roughly constant

alue of transverse phase.
Based on Fig. 3, the upper branch is expected to appear in the domain of 4 < U∗

≤ 4.89. This reduced velocity
ange comprises five subregions with (slightly) different characteristics, which are denoted by UB(I), UB(II), UB(III), UB(IV ),
nd UB(V ). These regimes will be detailed in the following part of this study. Fig. 7a and b show the times histories of
ransverse and vortex phases in UB(I), which covers the domain of 4 < U∗

≤ 4.28. In contrast to the trends observed in
he initial branch, in UB(I) f ∗ is lower than f ∗

Cv
(see Fig. 6), which leads to increasing Φv (Fig. 7). It can also be seen in

ig. 6 that |f ∗
− f ∗

Cv
| is significantly lower in UB(I) compared to that in the initial branch. Pikovsky et al. (2001) found that

hen the value of detuning decreases, the time history of the phase difference changes remarkably. As shown in Fig. 7,
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Fig. 6. Detuning values f ∗
− f ∗

Cy and f ∗
− f ∗

Cv
against reduced velocity in the initial, upper, and lower branches for ζ = 0%. Here f ∗ , f ∗

Cy , and f ∗

Cy are
the frequency values of cylinder displacement, transverse fluid force, and vortex force coefficients, respectively. Each response branch is shaded in
a different color.

Fig. 7. Time histories of transverse phase Φ (left) and vortex phase Φv (right) at U∗
= 4.2 (a) and 4.28 (b) in UB(I) for ζ = 0%.

instead of unbounded growth, Φv consists of time intervals, so called epochs (Pikovsky et al., 2001), where the vortex
phase is approximately constant. It can be observed that the time length of an epoch extends with the reduced velocity.
Two neighboring epochs are separated by so-called phase slips, where the vortex phase shows rapid change (Pikovsky
et al., 2001). Konstantinidis et al. (2020) identified similar tendencies (i.e. epochs separated by phase slips) in the time-
dependent transverse phase close to the boundary between the upper and lower branches. In addition, Fig. 7a and b show
‘‘approximately constant’’ Φ values, which is expected because |f ∗

− f ∗

Cy |
∼= 0 in UB(I) (Fig. 6). Note that in this context, the

hrase ‘‘approximately constant’’ refers to that the phase difference varies around a constant value (in this case around
ero).
Fig. 8 shows the time histories of vortex phase wrapped between −π/2 and 3π/2 at different reduced velocity values

orresponding to the initial branch (Fig. 8a) and the onset of proposed upper branch (UB(I), see Fig. 8b and c). Pikovsky
t al. (2001) showed that the change of Φv via a phase slip (see Fig. 7) cannot be arbitrary, it is always the whole number
ultiples of π . This finding is confirmed in Fig. 8b and c. It is also important to see that at an epoch Φv varies periodically
round π (see Fig. 8a and b), and Φ represents an almost constant zero value (Fig. 7). For this reason, conditions for
he existence of the upper branch (Φv = π and Φ = 0) seem to be satisfied in UB(I). However, in-between two epochs
in phase slips) vortex phase deviates marginally from π , which causes discrepancies in its time-mean value. As shown
efore, time lengths of epochs increase with U∗, that is, deviation in Φv from its theoretically expected value (Φv = 180◦)

decreases with reduced velocity. Similar issues appear in the initial branch (see Fig. 8a), where the wrapped phase angle
shows high spikes that influences Φv significantly. In further time-averaged phase difference plots, non-synchronous cases
– where unbounded changes or phase slips are identified – will be indicated by empty symbols.

Fig. 9 shows the time histories of transverse and vortex phases in the remaining part of the upper branch. As can
be seen in Fig. 6, the frequencies of vortex force and transverse fluid force are equal to the vibration frequency of the
cylinder between U∗

= 4.28 and 4.7. Consequently, ‘‘approximately constant’’ Φ and Φ values are expected in this
v
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Fig. 8. Time-dependent vortex phase at U∗
= 4 (a): initial branch, 4.2 (b): UB(I), and 4.28 (c): UB(I) for ζ = 0%. Here, phase difference is wrapped

in [−π/2; 3π/2].

domain. Fig. 9a–c corroborate these expectations: neither unbounded change nor phase slips are identified in Φ and Φv .
It is also seen in these figures that the time-mean values of Φv and Φ equal approximately to π and 0, respectively,
which are consistent with the experimental results for the upper branch. This finding strengthens our previous evidence
concerning the existence of the upper branch at Re = 300.

It can also be observed in Fig. 9a–c that the fluctuations in transverse and vortex phases are amplified when U∗ is
increased. As can be seen, in UB(II) (4.28 < U∗

≤ 4.35), both Φ and Φv show small periodic oscillations (see Fig. 9a).
Varying the reduced velocity in UB(III) (from U∗

= 4.36 to 4.48), Φ oscillates randomly with very high rms values (Fig. 9b).
Random oscillations are also observed in the time history of Φv , but its fluctuation is significantly lower. Shifting to UB(IV )
(takes place in 4.48 < U∗

≤ 4.7), transverse and vortex phases return back to periodic, but the high fluctuations in Φ are
still observed (see Fig. 9c).

Finally, increasing the reduced velocity through UB(V ) (in the range of U∗
= 4.7 − 4.89), we found that detuning

f ∗
− f ∗

Cy drops to approximately −0.2 (see Fig. 6), which causes an unbounded increase in the transverse phase (Fig. 9d). It
is interesting to note that the absolute value of this detuning is close to the Strouhal number at Re = 300, i.e. f ∗

−f ∗

Cy
∼= −St .

esides, the vibration frequency is also close to St in UB(V ) (f ∗ ∼= St , see Fig. 3b). Consequently, the detuning value of
0.2 can only be achieved when the frequency of transverse fluid force, more precisely, the most dominant frequency
omponent in the spectra of Cy is double the frequency of cylinder oscillation, f ∗

Cy
∼= f ∗ ∼= 2St . Moreover, the unreasonably

igh fluctuations in Φ in the UB(III) and UB(IV ) subdomains appear to be caused by the occurrence of higher order
armonics in the spectra of Cy. These effects are further investigated in Section 4.4.
Fig. 10 shows Φ and Φv in the range of 4.89 < U∗

≤ 5.9, the domain corresponding to the lower branch, because
Φ ∼= Φv

∼= 180◦ (Govardhan and Williamson, 2000; Soti et al., 2018). It can be seen that the rms values of transverse and
vortex phases decrease with reduced velocity.

Fig. 11 displays the time-mean values of transverse and vortex phases Φ and Φv , respectively, in degrees, where filled
and empty symbols indicate synchronous and non-synchronous cases. Although phase differences show gradual variations
between 0◦ and 180◦, the transitions in Φv and Φ are observed in different U∗ ranges, which is the distinctive feature
f three-branch response. However, experimental studies at high Reynolds numbers and low mass and damping values
eported abrupt phase changes in the initial↔upper and upper↔lower branch transition domains. As discussed earlier,
he reason behind the gradual and not abrupt variations in Φv and Φ is the unbounded changes and phase slips found in
the time-dependent transverse and vortex phases.

To conclude, the initial branch is observed in the range of 3.45 < U∗
≤ 4, the upper branch between U∗

= 4 and 4.89,
and the lower branch in the domain of 4.89 < U∗

≤ 5.9. The most important observations related to the dynamics of Φ

and Φv at the different response branches are summarized in Table 4.

4.2. Analysis for non-zero damping ratios

In this study the effect of structural damping ratio is also investigated. We would like to learn more about the effect
of ζ on the cylinder response, particularly on the occurrence of upper branch. Fig. 12a and b show y0′ and f /fN against
reduced velocity for damping ratio values between ζ = 0% and 5%. It can be seen that the results obtained harmonize
well with the expectations: the oscillation amplitude decreases with damping ratio (see Fig. 12a). It can also be clearly
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Fig. 9. Time-varying phase differences Φ (left) and Φv (right) at U∗
= 4.35 (a): UB(II), 4.4 (b): UB(III), 4.65 (c): UB(IV ), and 4.89 (d): UB(V ) for

= 0%.

Fig. 10. Time-dependent phase differences Φ (left) and Φv (right) at U∗
= 4.9 (a) and 5.5 (b) in the lower branch for ζ = 0%.

Table 4
Summary of phase dynamics in the three response branches.
Branch Abbrev. U∗ domain Φ Φv

– – [2.50, 3.45] Low periodic osc. Low periodic osc.

Initial IB ]3.45, 4.00] Intermediate osc. Unbounded decrease

Upper

UB(I) ]4.00, 4.28] Low random osc. Phase slips
UB(II) ]4.28, 4.35] Low periodic osc. Low periodic osc.
UB(III) ]4.35, 4.48] High random osc. Low random osc.
UB(IV ) ]4.48, 4.70] High periodic osc. Low periodic osc.
UB(V ) ]4.70, 4.89] Unbounded increase Low periodic osc.

Lower LB ]4.89, 5.90] Low periodic osc. Low periodic osc.

observed that structural damping causes significant changes in the cylinder response. When the damping ratio is varied
in the range of ζ = 0−1%, y0′ and f /fN curves are very similar to each other; they form a three-branch response. As seen
in the figure, the beginning of the initial branch (where y ′ starts to increase intensively) and the beginning of the lower
0
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Fig. 11. Time-mean values transverse and vortex phases against U∗ for ζ = 0%. Here synchronous and non-synchronous cases are denoted by filled
nd empty symbols, respectively. Each response branch is shaded in a different color.

Fig. 12. Root-mean square values of transverse cylinder displacement y0′ (a) and vibration frequency normalized by the natural frequency of the
cylinder in vacuum f /fN (b) against reduced velocity for ζ = 0% ( ), 0.1% ( ), 0.5% ( ), 1% ( ), 3% ( ), and 5% ( ). The areas
orresponding to upper and lower branch are shaded in red and gray, respectively. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

ranch (where y0′ shows a sudden downward jump and f passes through fN ) depend strongly on the damping ratio; as we
ncrease ζ , they shift to higher and lower U∗ values, respectively. Klamo et al. (2006) showed somewhat different features,
s in their study the upper↔lower branch transition range remained independent of the structural damping. Soti et al.

(2018) investigated a wider ζ range, and showed that the boundary between the upper and lower branches occurred at
lower U∗ values when damping was increased.

Fig. 13 shows the time-dependent transverse and vortex phases in the initial branch (Fig. 13a), upper branch (Fig. 13b
and Fig. 13c), and lower branch (Fig. 13d) for ζ = 0.5%. It can be seen in Fig. 13a that Φv shows an unbounded decrease
n the initial branch, similar to that observed for undamped vibrations. At the beginning of the upper branch phase slips
re found in the vortex phase (Fig. 13b), a tendency that is similar to that observed in the UB(I) subdomain identified for
= 0%. However, interestingly, Φv remains ‘‘approximately constant’’, because the detuning f ∗

− f ∗

Cv
is zero in this range.

ncreasing the reduced velocity in the further part of the upper branch, the results show similar features to those reported
or ζ = 0%. However, the range where transverse phase displays an unbounded increase (i.e. the UB(V ) subdomain found
or zero structural damping) seems to diminish with the structural damping ratio, and at ζ = 0.5% it is not observed.
ig. 13c shows Φ and Φ in the upper branch, just before the jump to the lower branch, and here the transverse phase
v
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Fig. 13. Time histories of phase differences Φ (left) and Φv (right) at reduced velocity values of U∗
= 3.8 (a), 4.25 (b), 4.68 (c), and 4.8 (d) for

= 0.5%.

s ‘‘approximately constant’’; it does not show an unbounded increase. The possible reason behind this phenomenon is
hat the role of the second harmonic frequency component changes with the structural damping ratio. This effect will be
urther analyzed in Section 4.4.2.

It can also be seen in Fig. 12 that cylinder responses for ζ = 3% and 5% are different from those for ζ = 0 − 1%. For
these high-damping cases y0′ and f /fN show smooth variations; no sudden changes are identified in these quantities. Since
he condition of f /fN ∼= 1 does not satisfy, no classic lock-in domains are found for high structural damping values. This
s in contrast to the phenomenon observed for ζ ≤ 1%. Although Prasanth et al. (2011) investigated the effect of mass
atio, they carried out CFD computations for ζ = 0.1% and 10%. For ζ = 10% they observed a similar phenomenon; f /fN
increased almost linearly with U∗. It is important to note that for ζ = 3% and 5% and Re = 300, the upper branch does not
occur, only initial and lower branches, namely two-branch responses are identified. Feng (1968), Khalak and Williamson
(1999), Klamo et al. (2006), and Soti et al. (2018) found also that increasing the damping ratio (or the combined mass-
damping parameter) can lead to the transition from three-branch to two-branch response. In order to show explicitly that
upper branch does not occur for ζ = 3% and 5%, transverse and vortex phases are analyzed.

As already discussed in Section 4.1, theoretically, the upper branch is characterized by abrupt phase jumps at its lower
and higher boundaries. Although for zero damping ratio, phase difference values of 0◦ and 180◦ are the only theoretically
possible values (as shown by Eqs. (13) and (15)), for ζ > 0% Φ and Φv are allowed to vary between 0◦ and 180◦ (Leontini
et al., 2006b). Fig. 14a and b show Φ and Φv against reduced velocity for different damping ratio values. Similarly to the
notations employed in Fig. 11, filled and empty symbols refer to synchronous and non-synchronous cases. It can be seen in
Fig. 14 that for relatively high cylinder displacements, time-averaged phase differences, especially Φ , depend on structural
damping. Similarly to undamped vibrations, Φv increases gradually at the initial↔upper branch transition range, while Φ

transitions at the boundary separating upper and lower branches. It is also seen in Fig. 14 that the change of Φv through
he initial↔upper branch transition range is a weak function of the damping ratio. For instance, for ζ = 0.1% Φv changes
by 175.08◦ and for ζ = 1% by 159.77◦. However, the increment observed in Φ depends strongly on ζ ; for ζ = 0.1% Φ

jumps roughly by 158.1◦ and for ζ = 1% only by 43.4◦. Moreover, for high structural damping cases (at ζ = 3% or 5%)
umps in Φ disappear, resulting in an almost continuous increase of the time-averaged phase angle. This finding compares
qualitatively well with the experimental results of Soti et al. (2018).

In Table 5 we compare the currently obtained computational results for Re = 300 with the high-Reynolds-number
xperimental results presented in Klamo et al. (2006) and Soti et al. (2018). This table involves the mass ratio values, the
eynolds numbers at the peak oscillation amplitude points Re(ŷ0max), the lower limits of upper and lower branches U∗

UB
nd U∗

LB, and the widths of the upper branch ∆U∗
= U∗

UB−U∗

LB. Note that in Table 5 U∗

UB, U
∗

LB, and ∆U∗ are reduced velocity
alues based on the cylinder’s natural frequency in vacuum f . However, Klamo et al. (2006) and Soti et al. (2018) defined
N
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Fig. 14. Time-mean values of transverse Φ (a) and vortex phases Φv (b) against reduced velocity for different ζ values for ζ = 0% ( ), 0.1%
( ), 0.5% ( ), 1% ( ), 3% ( ), and 5% ( ). Filled and empty symbols refer to synchronous and non-synchronous cases, respectively.
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

able 5
ffect of damping ratio on cylinder response compared to the experimental data in Klamo et al. (2006) and Soti et al. (2018). Here U∗

UB and U∗

LB are
he reduced velocity values where cylinder response shifts to upper and lower branches, respectively, and ∆U∗ is the width of the upper branch.
Present study
m∗

= 10, Re = 300
Klamo et al. (2006)
m∗

= 78.3, Re(ŷ0max) ∼= 1000
Soti et al. (2018)
m∗

= 3, Re(ŷ0max) ∼= 3200

m∗ζ U∗

UB U∗

LB ∆U∗ m∗ζ U∗

UB U∗

LB ∆U∗ m∗ζ U∗

UB U∗

LB ∆U∗

0.00 4.00 4.89 0.88 – – – – – – – –
0.01 4.03 4.84 0.80 – – – – 0.015 4.16 6.42 2.26
0.05 4.06 4.69 0.63 0.047 4.97 5.66 0.69 0.060 4.31 6.24 1.93
0.10 4.30 4.61 0.31 0.120 5.21 5.65 0.44 0.110 4.50 6.23 1.73
0.30 – 4.68 – – – – – 0.370 4.67 5.89 1.22
0.50 – 4.66 – – – – – 0.500 4.49 5.53 1.04

reduced velocity based on natural frequency in still fluid fN,a. In order to convert between the two U∗ values (based on
fN and fN,a) the following approximate relationship is used:

U∞

fNd
∼=

U∞

fN,ad

√
m∗

m∗ + 1
. (16)

It can be seen in Table 5 that our computational results and the experimental data in Klamo et al. (2006) and Soti
et al. (2018) show similar trends; as we increase the damping ratio, the U∗ range of the upper branch diminishes. The
currently obtained CFD results show that upper branch completely disappears before reaching the damping ratio value
of 3%; for ζ = 3% and 5% only initial and lower branches remain. In other words, for low-damping cases (0% ≤ ζ ≤ 1%)
three-branch responses are identified, and for high-damping cases (at ζ = 3% and 5%) two-branch responses are found.

Surprisingly, the width of the upper branch obtained in this study agrees relatively well with the data presented
in Klamo et al. (2006). However, Soti et al. (2018) found much larger ∆U∗ values; for example at m∗ζ = 0.11 they showed
∆U∗ ∼= 1.7, which is almost four times larger than the value obtained by Klamo et al. (2006) at approximately the same
mass-damping value (m∗ζ ∼= 0.12). Govardhan and Williamson (2006) and Klamo et al. (2006) found that the Reynolds
number strongly influences the cylinder response. Table 5 shows that in Klamo et al. (2006) the Reynolds number at the
peak oscillation amplitude point Re(ŷ0max) ∼= 1000 is relatively close to Re = 300 employed in this study, while in Soti
et al. (2018) Re(ŷ0max) was much larger [Re(ŷ0max) ∼= 3200]. This observation may explain why the currently obtained ∆U∗

values shows better agreement with Klamo et al. (2006)’s data than with those in Soti et al. (2018).

4.3. Mechanical energy transfer and peak vibration amplitudes

The non-dimensional mechanical energy transferred between the oscillating cylinder and the surrounding fluid is
defined as follows (Blackburn and Henderson, 1999; Baranyi, 2008):

E =
1

∫ nT

Cy(t)ẏ0(t)dt, (17)

n 0
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Fig. 15. Mechanical energy transfer against reduced velocity for ζ = 0% ( ), 0.1% ( ), 0.5% ( ), 1% ( ), 3% ( ), and 5% ( ). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where T is the motion period and n is the number of oscillation cycles taken into account when evaluating the integral
bove. In this study mostly n = 100 is used for calculation of the mechanical energy transfer.
Using the harmonic assumptions introduced by Eqs. (9)–(11), E can be expressed as follows (Jauvtis and Williamson,

004; Bernitsas et al., 2008; Tang et al., 2017):

E = π ŷ0Ĉy sinΦ. (18)

Multiplying the equation of cylinder motion (see Eq. (1)) by the instantaneous velocity of the cylinder, and integrating
t over one cycle of cylinder oscillation, the following expression is obtained also for the mechanical energy transfer:

E = 4π4ŷ20f
∗U∗−1m∗ζ . (19)

Bernitsas et al. (2008) derived the power transfer between the oscillating cylinder and the surrounding fluid, which
s analogous with Eq. (19). Fig. 15 shows E (calculated based on Eq. (17)) against reduced velocity for different damping
atio values. It can be seen that the mechanical energy transfer is approximately zero for undamped cylinder vibrations.
qs. (18) and (19) verify this finding; zero energy transfer can only be achieved when the transverse fluid force is in-phase
r out-of-phase with the cylinder displacement (Φ = 0◦ and 180◦), i.e. for ζ = 0% (see Fig. 14). However, in the initial

branch and at the beginning of the upper branch E shows low but non-zero values; these errors can be explained by
the quasi-periodic nature of signals. It was shown earlier that for ζ > 0%, the time-mean values of transverse and vortex
phases vary between 0◦ and 180◦ (Fig. 14), which implies E > 0 (see Eq. (19)). Fig. 15 shows exactly the same: for positive
amping, E is always positive. Note that positive E means that the energy is transferred from the fluid to the cylinder. It
an also be seen in Fig. 15 that increasing damping ratio up to ζ = 3% the energy transfer curves shift upwards. Since
0′ is very low at ζ = 3% and 5% (Fig. 12), energy transfer cannot further increase; thus, there is a negligible difference
etween E values obtained for ζ = 3% and 5%. Soti et al. (2018) carried out a large number of experiments for high
e analyzing the effects of damping ratio. Based on the displacement of the cylinder and the aerodynamic forces they
valuated the power transfer which is proportional to E. They found also that the power (and energy) transfer can be
agnified by applying higher structural damping.
Equating Eqs. (18) and (19) the following formula is obtained (Morse and Williamson, 2009):

Ĉy sinΦ = 4π3f ∗U∗−1m∗ζ ŷ0. (20)

andiver (2012) introduced dimensionless damping c∗
= 4πcf /(ρU2

∞
), which appears in Eq. (20) as c∗

= 4π3f ∗U∗−1m∗ζ .
or this reason, the relationship between the excitation force coefficient Ĉy sinΦ and the oscillation amplitude can be
ritten simply as:

Ĉy sinΦ = c∗ŷ0. (21)

In the experimental results of Lee and Bernitsas (2011) the maximum excitation force coefficient was Ĉy sinΦ ∼= 0.79.
Substituting this value into Eq. (21), Vandiver (2012) obtained ŷ0max = 0.79/c∗ for the peak oscillation amplitude. Based
on the total energy balance, Konstantinidis (2013) reconsidered c∗, and created the formula of ŷ0max = kc/

√
c∗ describing

also the peak oscillation amplitude. He suggested kc in the range of kc = 0.46 − 0.78. Konstantinidis (2013) compared
his and Vandiver (2012)’s empirical relationship with the experimental data of Lee and Bernitsas (2011). He found that
ŷ = 0.79/

√
c∗ estimates the peak amplitude data well in a wider c∗ range.
0max
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Fig. 16. Dimensionless oscillation amplitude against nondimensional damping for ζ = 0.1% ( ), 0.5% ( ), 1% ( ), 3% ( ), and 5% ( ).
Blue dashed line represents the peak oscillation amplitude approximated by Konstantinidis (2013). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 6
Comparison of the peak vibration amplitude values for undamped cylinder vibrations at the low–Re
domain.
Citation DoF Re m∗ ŷ0max

Zhang et al. (2015) 1 60 50 0.509
Shiels et al. (2001) 1 100 0 0.580
Shen et al. (2009) 1 100 10/π 0.570
Bourguet and Lo Jacono (2014) 1 100 40/π 0.572
González Cornejo et al. (2017) 1 100 1 0.560
Navrose and Mittal (2017) 1 100 30–150 ∼0.55
Zhao et al. (2015) 1 150 2 0.591
Garg et al. (2019) 1 150 2 0.581
Present computations 1 300 10 0.570

Mittal and Singh (2005) 2 33 4.73 0.433
Étienne and Pelletier (2012) 2 30–45 0 0.428–0.567
Prasanth et al. (2011) 2 ∼77.15 2 0.583
Prasanth et al. (2011) 2 ∼82.9 10 0.559
Prasanth and Mittal (2008) 2 ∼86.85 10 0.571
Singh and Mittal (2005) 2 100 10 0.572

In Fig. 16 the oscillation amplitude ŷ0 is plotted against the dimensionless damping c∗ for damping ratio values between
= 0.1% and 5%. Note that results belonging to the initial branch and the beginning of the upper branch (where cylinder
otion and aerodynamic force coefficients are most likely quasi-periodic signals) are not shown in the figure. It can be
een that, as expected, the peak oscillation amplitude ŷ0max decreases with ζ , and occurs at increasing c∗. This figure
hows also the ŷ0max curve suggested by Konstantinidis (2013), where kc = 0.46 is applied. As seen, this empirical
elationship predicts the peak vibration amplitude very well for damping ratio values of ζ = 3% and 5%. It is also shown
hat peak response data from the current CFD computations for ζ = 1% and those predicted by Konstantinidis (2013)
using kc = 0.46) compare relatively well. However, peak oscillation amplitude is overpredicted for ζ = 0.1% and 0.5%.

Peak cylinder response has been investigated extensively in the literature mainly in the high-Re domain. Govardhan
nd Williamson (2006) and Klamo et al. (2006) found that Reynolds number and the mass-damping parameter (m∗

+CA)ζA
ave a substantial effect on ŷ0max. Although Govardhan and Williamson (2006) carried out experiments in the range of
e = 103

− 104, they collected CFD data for low-Reynolds-number flows. Table 6 summarizes peak oscillation amplitude
ata ŷ0max currently available in the literature for undamped low-Reynolds-number vortex-induced vibrations, and ŷ0max
btained in this study. In this table the most important parameters (DoF, Re, and m∗) are also included. It can be seen
hat ŷ0max is a weak function of the Reynolds number in the range of Re ∼= 70 − 300; peak vibration amplitude is fairly
onstant in this range. This finding agrees well with that of Govardhan and Williamson (2006). Surprisingly, comparing
ransverse-only and two-degree-of-freedom VIV results, there is no significant difference in the peak response data.
owever, between Re = 30 and 70 the peak oscillation amplitude depends highly on Re for both 1DoF and 2DoF cases;

ˆ seems to increase with the Reynolds number.
0max
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Fig. 17. Peak vibration amplitude values against mass-damping parameter; comparison of currently obtained results ( ) with those obtained
by Anagnostopoulos and Bearman (1992) ( ), Nomura (1993) ( ), Anagnostopoulos (1994) ( ), Wei et al. (1995) ( ), Newman and Karniadakis
(1996) (m∗

= 1, ), Newman and Karniadakis (1996) (m∗
= 10, ), Schulz and Kallinderis (1998) ( ), Zhou et al. (2004) ( ), Leontini et al. (2006b)

( ), Yang et al. (2008) ( ), Bahmani and Akbari (2010) ( ), and Han et al. (2016) ( ). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

For non-zero damping ratio cases the Griffin plot is used for comparison, where the peak oscillation amplitude
values ŷ0max are shown against (m∗

+ CA)ζA (Griffin, 1980). Here ζA is the damping ratio in which fluid added mass is
included. Fig. 17 shows the Griffin plot, where ŷ0max obtained in this study and the values available in the literature
are compared. The scales are logarithmic on both horizontal and vertical axes. It is very important to emphasize that
Reynolds number is not identical in the studies whose results are compiled in Fig. 17; Re varies in Re ≤ 300. Nonetheless,
the computed/measured data points collapse almost onto a single curve; only a small scatter is observed. This observation
is in contrast with the tendencies in the high-Re domain; in those cases ŷ0max shows high scatter (Griffin, 1980; Govardhan
and Williamson, 2006). Govardhan and Williamson (2006) employed experiments for ζ = 0%, and showed that the peak
oscillation amplitude varies strongly with Re. They realized that by normalizing ŷ0max obtained for non-zero damping by
the peak vibration amplitudes for ζ = 0%, and plotting it against mass-damping parameter, the high scatter is eliminated.
That plot is always referred to as the ‘‘modified Griffin plot’’. However, Govardhan and Williamson (2006) also showed
that peak oscillation amplitude is almost constant for low Reynolds numbers. The present findings harmonize with their
results (see Table 6). This fact explains why ŷ0max data points obtained for different Reynolds numbers collapse very well
in the Griffin plot (see Fig. 17).

4.4. Investigation of frequency spectra and vortex formation

In Section 4.1 the harmonic oscillator model is described in detail. Rearranging Eq. (13), the following expression is
obtained:

Ĉy sinΦ = 4π3 f
∗ŷ0
U∗

m∗ζ . (22)

This expression shows that Ĉy sinΦ (responsible for the mechanical energy transfer) varies linearly with f ∗ŷ0/U∗, where
he proportionality factor is proportional to the mass-damping parameter m∗ζ . Fig. 18 shows Ĉy sinΦ against 4π3f ∗ŷ0/U∗

or different damping values between ζ = 0% and 5% and constant m∗
= 10. Empty and filled symbols refer to data points

elonging to upper and lower branches, respectively. Dashed lines represent the results from the harmonic oscillator
odel described by Eq. (22) and the numbers (belonging to the dashed lines) show damping ratio values. It can be seen

n Fig. 18 that harmonic approximation seems to be accurate in the lower branch and at the beginning of the upper
ranch. However, at the remaining part of the upper branch the results are far from the harmonic solutions, which
uggests that in these domains transverse fluid force is not a harmonic function of time. The results presented earlier
re consistent with this proposal. For undamped vibrations we found very high detuning values (around f ∗

− f ∗

Cy = −0.2)
n the UB(V ) subdomain, which may refer to the fact that the most remarkable frequency in the spectra of Cy is equal to the
ouble of the vibration frequency. Besides, in UB(III) and UB(IV ) the time-dependent transverse phase shows unreasonable
luctuations, which may also indicate the occurrence of higher order harmonics in the spectra of the transverse fluid force.
n order to confirm the non-harmonic nature of C (in some ranges), time histories and frequency spectra of cylinder
y
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Fig. 18. Ĉy sinΦ against 4π3f ∗ŷ0/U∗ in the upper branch (empty symbols) and in the lower branch (filled symbols) for ζ = 0% ( ), 0.1% ( ),
0.5% ( ), 1% ( ), 3% ( ), and 5% ( ). The dashed lines represent solutions obtained from the harmonic oscillator model given by Eq. (22).
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

isplacement and transverse fluid force coefficient are further analyzed. The analyses are carried out first for undamped
ylinder vibrations and then for non-zero damping ratio values.

.4.1. Undamped cylinder vibrations
Fig. 19 shows the time histories of non-dimensional cylinder displacement (left-hand side of the figure) and transverse

luid force (middle) at different U∗ values in the initial (see Fig. 19a), upper (Fig. 19b–e), and lower branches (Fig. 19f)
or ζ = 0%. Frequency spectra of signals (displacement and transverse fluid force) normalized by the cylinder’s natural
requency in vacuum obtained using Fast Fourier Transform (FFT) are shown in the right-hand plots of the figures. Here
SD denotes Power Spectral Density, and the vertical axis has logarithmic scale.
It can be seen in Fig. 19a that the signals in the initial branch show a quasi-periodic nature; y0 and Cy contain multiple

requency components. This is the reason why time-dependent transverse phase shows random fluctuations in the same
educed velocity range (see Fig. 5c). At U∗

= 4 high jumps are observed in y0′ and f /fN at the location where the cylinder
esponse shifts from the initial to the upper branch (see Fig. 3). The high cylinder displacement in the upper branch can be
bserved in Fig. 19b. This figure shows also that in the UB(I) subregion (4 < U∗

≤ 4.28, see the classification in Table 4)
he cylinder motion and the transverse fluid force are quasi-periodic signals. These effects are expected, because in this
ange the time-dependent transverse phase shows random variation (see Fig. 7a). Due to the quasi-periodic behavior, the
requency spectra of y0 and Cy contain multiple frequency components, of which f /fN ∼= 1 and 3 have the highest PSD
alues. Note that f /fN ∼= i frequency peak is usually referred to as the ith harmonic frequency component. Switching
o UB(II) (which occurs in 4.28 < U∗

≤ 4.35, see Table 4), the time-varying phase differences show periodic variations
see Fig. 9a), which suggests periodic cylinder vibrations. It can be seen in Fig. 19c that, reassuringly, both y0 and Cy are
eriodic signals; transverse fluid force contains relevant frequency components at f /fN ∼= 1 (highest intensity) and 3
relatively low intensity), while in the spectrum of cylinder displacement only f /fN ∼= 1 is identified (Fig. 19c).

Increasing the reduced velocity through UB(III) (between U∗
= 4.36 and 4.48), slightly above the jumps found in Cy′

nd Cv′ (see Fig. 4), the transverse fluid force and the cylinder displacement become quasi-periodic again (Fig. 19d). These
ignals show similar behavior to the time-varying phases; in UB(III) random oscillations have been found in Φ and Φv .
esides, in the frequency spectra of Cy first, second and third harmonic components are identified as high-intensity peaks.
arying reduced velocity in the remaining part of the upper branch (in UB(IV ) and UB(V ), see Table 4), Cy is found to be
eriodic again, and the f /fN ∼= 2 frequency component is found to play a significant role in its spectra (see Fig. 19e). This
inding, which we expected, explains why the computational results do not agree with the harmonic solutions represented
y Eq. (22) at some parts of the upper branch (see Fig. 18), and implies why the transverse phase shows unreasonably
igh fluctuations in UB(III) (Fig. 9c).
Many studies have dealt with the frequency components occurring in the spectra of transverse fluid force. Without

iming to give an exhaustive list, Jauvtis and Williamson (2004), Dahl et al. (2006, 2007, 2010), and Wang et al.
2017) discussed the relevance of first and third harmonic components in Cy for two-degree-of-freedom vortex-induced
ibrations. However, the second harmonic component is not so typical in VIV. Bao et al. (2012) and Dorogi and Baranyi
2019) investigated also two-degree-of-freedom VIV, and they identified the f /fN = 2 frequency peak in the spectra of
y. Dorogi and Baranyi (2019) showed that the second harmonic frequency component has a fundamental effect on the

ath of the cylinder; it makes the cylinder path asymmetric.
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Fig. 19. Time histories (left and middle) and fast Fourier spectra (right) of cylinder displacement and transverse fluid force at U∗
= 4 (a): initial

branch, 4.2 (b): UB(I), 4.3 (c): UB(II), 4.4 (d): UB(III), 4.6 (e): UB(IV ), and 5.5 (f): lower branch for ζ = 0%. In the FFT spectra red and blue colors
mark the frequency spectra of transverse fluid force and cylinder displacement, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

In the lower branch (from U∗
= 4.9 to 5.9) both y0 and Cy are periodic signals. As seen in Fig. 19f, the second harmonic

component completely disappears, only f /fN = 1 and 3 peaks remain (see Fig. 19f). Since the intensity of f /fN = 3 is
much smaller than the first harmonic component, the f /fN = 3 peak influences the vibration only slightly. This is why
data points corresponding to the lower branch fit very well on the model results based on harmonic approximations (see
Fig. 18).

As can be seen in Fig. 6, a high detuning value of f ∗
− f ∗

Cy
∼= −0.2 occurs at the end of the upper branch (in UB(V ), see

Table 4), which value approximately agrees with the Strouhal number at Re = 300. Since the vibration frequency in this
range is also close to the Strouhal number, this detuning value can only be reached when the second harmonic frequency
component is the most dominant in the spectra of Cy. Although we showed that f /fN ∼= 2 occurs in the upper branch, it
was not confirmed whether it is the most relevant harmonic in the UB(V ) subdomain. Fig. 20 shows the frequency spectra
of transverse fluid force at different U∗ values, where Power Spectral Density normalized by the maximum PSD in the
spectra PSDnorm = PSD/PSDmax is plotted against f /fN . Note that vertical axis is scaled linearly. It can be seen that in UB(IV )
(see Fig. 20a) f /fN ∼= 1 is the most intensive peak, while the normalized PSD at f /fN ∼= 2 is very low. As expected, in UB(V )
the roles of first and second harmonic components are switched; f /fN ∼= 2 is the most dominant, while the normalized
PSD of f /f ∼ 1 is relatively low (see Fig. 20b and c). However, switching to the lower branch causes a dramatic change in
N =
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Fig. 20. Frequency spectra of transverse fluid force at U∗
= 4.5 (a): UB(IV ), 4.8 (b): UB(V ), 4.89 (c): UB(V ), and 4.9 (d): lower branch for ζ = 0%.

he FFT of Cy. As shown in Fig. 20d, the second harmonic component completely disappears but first and third harmonic
omponents remain in the spectra, where f /fN ∼= 1 is the most relevant component.
Singh and Mittal (2005), Prasanth and Mittal (2008), and Bahmani and Akbari (2010) found that the formation of

ortices shedding from the body is sensitive to the value of reduced velocity. Fig. 21 shows the vortex structures at
he same U∗ values where the time histories and FFT spectra of cylinder displacement and transverse fluid force were
reviously analyzed (see Fig. 19). As shown in Fig. 19a, y0 and Cy are quasi-periodic signals in the initial branch, that is,
he vortex structures at the corresponding reduced velocity values change dynamically with time (see Fig. 21a).

Shifting to the UB(I) subdomain the cylinder motion and the fluid force coefficients are still quasi-periodic signals,
hat is, the vortex structure is also highly time-dependent (see Fig. 21b). It was found that time histories of y0 and Cy
re periodic in UB(II), and the FFT spectra of Cy contain relevant frequency peaks at f /fN = 1 and 3 (Fig. 19c). It can
e seen in Fig. 21c that in the corresponding range a 2PO wake mode seems to develop, which means that two pairs
f vortices are shed from the cylinder in each motion period, but the secondary vortex in each pair is much weaker
han the primary vortex (Morse and Williamson, 2009). Morse and Williamson (2009) found that when the vortex
air is moving downstream from the cylinder, the secondary vortex decays, which is also seen in Fig. 21c. Khalak and
illiamson (1997, 1999) identified 2P vortex shedding mode in the upper branch, where strengths of the primary and

econdary vortex are approximately identical. It has to be noted that the 2PO vortex structure has not been found earlier
or low-Reynolds-number cases.

At the closing part of the upper branch [i.e. in UB(III), UB(IV ) and UB(V )] the f /fN ∼= 2 peak was found to occur, which
trongly influences the vortex structure (Bao et al., 2012; Dorogi and Baranyi, 2019). Although the structure of vortices
hanges in UB(III), due to the modulations in the aerodynamic forces, the wake modes are similar to the P + S vortex
hedding mode (Fig. 21d). Here P + S denotes that a pair of vortices and a single vortex are shed from the cylinder. In
he UB(IV ) and UB(V ) subranges time traces of y0 and Cy return back to periodic. As seen in Fig. 20, the second harmonic
requency component plays an important role in Cy in these subdomains, which makes the vortex structure asymmetric;
table P + S modes are seem to form here (see Fig. 21e). However, the vorticity contours shown in Fig. 21e are not a
egular P + S mode. As can be seen, the positive vortex (in red) in the vortex pair is noticeably smaller than the negative
ortex (blue). In the P + S wake mode obtained by Blackburn and Henderson (1999) using forced vibration computations,
he size of the positive and negative vortex are approximately equal. Besides, it can be seen that in the top row vortex
rain, a small positive vortex is connected to every second negative vortex. This suggests that a P + S vortex structure is
hed in every two oscillation cycles. In order to investigate the dynamics of vortex shedding, further analyses are planned,
ut these are not in the scope of this paper.
As shown in Figs. 19 and 20, in the lower branch the f /fN = 2 frequency peak completely disappears from the spectra

f Cy. For this reason the vortex structure becomes symmetric; 2S wake modes (two single vortices) are found in this
omain (4.89 < U∗

≤ 5.9, see Fig. 21f).

.4.2. Damped cylinder vibrations
It was shown earlier that structural damping ratio strongly influences the cylinder response; a three-branch response

as identified for ζ ≤ 1%, and two-branch response for ζ = 3% and 5%. It can be seen in Fig. 13c that for ζ = 0.5%, at the
oundary separating upper and lower branches no unbounded change can be observed in the transverse phase, which
s in contrast with the findings for ζ = 0%. It was confirmed in Section 4.4.1 that the unbounded increase of transverse
hase (which is closely related to the high detuning value of f ∗

− f ∗

Cy ) is caused by the fact that second harmonic frequency
omponent is the most dominant in the spectrum of Cy. For this reason, the lack of unbounded variation in Φ for ζ = 0.5%
uggests that the intensity of f /fN ∼= 2 is not the highest in the upper↔lower branch transition range. Fig. 22 shows
SDnorm against f /fN at different reduced velocity values in the upper branch for ζ = 0.5%. This figure corroborates the
ormer assumption; the role of f /fN ∼= 2 increases with U∗ but at the boundary of the upper and lower branches (at
∗

= 4.688, see Fig. 22d) the first harmonic component dominates, and f /fN ∼= 2 occurs only with low intensity. The
dditional findings related for example to the vortex formation downstream from the cylinder hold true for the ζ ≤ 1%
ange where three-branch responses are found; these are not repeated here again.
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Fig. 21. Vortex structures (red: positive vorticity, blue: negative) at U∗
= 4 (a): initial branch, 4.2 (b): UB(I), 4.3 (c): UB(II), 4.4 (d): UB(III), 4.6 (e):

UB(IV ), and 5.5 (f): lower branch for ζ = 0%. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

Fig. 22. Frequency spectra of transverse fluid force at U∗
= 4.5 (a), 4.56 (b), 4.6 (c), and 4.688 (d) for ζ = 0.5%.

As mentioned above, increasing the structural damping ratio over ζ = 1%, only initial and lower branches are found,
the upper branch disappears from the response. The question arises what the difference is between three- and two-
branch responses in terms of frequency spectra and vortex structures. Fig. 23 shows the frequency spectra of cylinder
displacement and transverse fluid force (top row), and vortex contours (bottom row) at different reduced velocity values
for ζ = 3%. As can be seen in Fig. 23a, the FFT spectra of transverse fluid force for U∗

= 4.2 contains several frequency
components, that is, y0 and Cy are quasi-periodic signals, and vortex structures are highly time-dependent but similar
to the regular 2S vortex shedding mode. The above-mentioned properties of flow and vibration characteristics between
reduced velocity values of U∗

= 4 and 4.66 are similar to those of the initial branch at the ζ ≤ 1% domain. Increasing
reduced velocity up to U∗

= 4.68, cylinder response reaches the lower branch, where both y0 and Cy return back to
periodic. In contrast to the results reported in the low-damping domain, vibration frequency does not lock exactly to
the cylinder’s natural frequency in vacuum (see also Fig. 12). Fig. 23b and c show the spectra of y0 and Cy in the range
here oscillation amplitude is relatively high. As seen, first and third harmonic frequency components can be found in
he spectra of Cy. Since the peak of f /fN = 2 is not present in the spectra, 2S vortex structures are captured in these
omputational points.

. Conclusions

In this study two-dimensional incompressible Newtonian fluid flow around a circular cylinder undergoing transverse-
nly vortex-induced vibrations is investigated at fixed Reynolds number and mass ratio values of Re = 300 and m∗

= 10,
espectively. Reduced velocity based on the natural frequency of the cylinder in vacuum is varied between U∗

= 2.5 and
.5, and the structural damping ratio is chosen to be in the range of ζ = 0 − 5%.

5.1. Undamped (ζ = 0%) vibrations

Plotting the root-mean-square (rms) values of cylinder displacement y0′ and the vibration frequency normalized
y the cylinder’s natural frequency in vacuum f /fN against reduced velocity, a three-branch cylinder response can be
bserved, which has up to now not been identified for low Reynolds numbers. Time-averaged phase differences of
ransverse fluid force and vortex force Φ and Φv relative to the cylinder displacement (referred to as transverse and
vortex phases, respectively) are used to confirm the existence of the upper branch. These time-mean values are computed
by time-averaging the time-dependent phase differences (Φ and Φ ) wrapped in [−π/2; 3π/2].
v
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Fig. 23. Frequency spectra of cylinder displacement (blue curves) and transverse fluid force (red curves), and the corresponding vorticity contours
red: positive vorticity, blue: negative) at U∗

= 4.2 (a), 4.68 (b) and 5.4 (c) for ζ = 3%. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

The initial branch is found to occur in the range of 3.45 < U∗
≤ 4, where y0′ shows rapid increase, and the vibration

requency is relatively far from the natural frequency of the cylinder. In this domain Φ varies around zero, and Φv shows
n unbounded decrease. Following Pikovsky et al. (2001), the unbounded decrease can be explained by the high positive
etuning values f ∗

−f ∗

Cv
, where f ∗ and f ∗

Cv
are the frequencies of cylinder vibration and vortex force coefficient, respectively.

In the upper branch (4 < U∗
≤ 4.89) relatively high oscillation amplitudes are observed, and the vibration frequency

s slightly below the cylinder’s natural frequency. Based on the tendencies observed in the time-dependent phases, the
pper branch can be divided into five subdomains. In UB(I) (between U∗

= 4 and 4.28), f ∗
− f ∗

Cv
< 0, that is, vortex phase

ncreases. Since the detuning is very small compared to that observed in the initial branch, the unbounded variation in
v is replaced by epochs and phase slips. At the time interval of an epoch, wrapped vortex phase varies around π (180◦)
satisfying an important condition of the upper branch), and at phase slips Φv deviates significantly from π . Since epochs
engthen with U∗, Φv approaches 180◦ when U∗ is increased. Besides, time-averaged transverse phase Φ is approximately
zero in this range.

At the rest of the upper branch (i.e. from UB(II) to UB(V )), although the corresponding phases show both periodic and
andom features, they vary around Φ = 0◦ and Φv = 180◦, which are the conditions that characterize the upper branch.
n UB(III) and UB(IV ) (4.35 < U∗

≤ 4.7) second harmonic frequency component f /fN ∼= 2 is identified as a dominant
eak in the spectra of transverse fluid force, which causes the unreasonably high fluctuations in the transverse phase.
owever, in UB(V ) (between U∗

= 4.7 and 4.89) f /fN ∼= 2 is found to be the most dominant frequency component, which
xplains the high detuning values around f ∗

− f ∗

Cy = −0.2, and the unbounded increase in transverse phase. Here f ∗

Cy is

he frequency of the transverse fluid force coefficient.
The lower branch is located in 4.89 < U∗

≤ 5.9 (above a sudden jump in the cylinder response), where y0′ is in
he intermediate range, and f is slightly above fN . The results obtained in the lower branch agree with those expected,

Φ ∼= Φv
∼= 180◦. The fluctuations observed in the time-dependent phases decrease with U∗.

Different vorticity contours are identified in this study. In the initial and lower branches the classic 2S wake mode is
found, while in the upper branch 2PO and P+S modes seem to occur. It was found that the occurrence of the asymmetrical
ortex structure is closely related to the second harmonic frequency component identified in the spectra of transverse
luid force. This finding agrees with those reported in the literature (Bao et al., 2012; Dorogi and Baranyi, 2019).

.2. Damped vibrations

Similar to the experimental findings for high Reynolds numbers, increasing structural damping ratio leads to the
ransition from a three-branch to a two-branch response. In ζ ≤ 1% the upper branch is found to occur, whose reduced
elocity range decreases with damping ratio. For ζ = 3% and 5%, the upper branch completely disappears from the
esponse, only initial and lower branches remain.

The three-branch response for damped vibrations shows similar characteristics to that for ζ = 0%. In the initial branch
time history of vortex phase shows unbounded decreases. Switching to the upper branch, although Φv contains epochs
and phase slips, it does not show increasing effects. The reduced velocity range where Φ increases unboundedly (close
to the boundary separating upper and lower branches) diminishes with the damping ratio; at ζ ≥ 0.5% this domain is
not identified, Φ is approximately constant at the higher boundary of the upper branch. For ζ = 0.5% the f /fN ∼= 2
peak does not play a dominant role in the spectra of transverse fluid force (its intensity is low), which explains why Φ is
approximately constant at the higher end of the upper branch.
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Mechanical energy transfer is approximately zero for undamped cylinder vibrations, because time-averaged transverse
nd vortex phases are approximately 0◦ or 180◦. Small discrepancies occur in the initial branch and in the transition ranges
hich bound the upper branch. As the damping ratio is increased, the mechanical energy transfer shifts upwards, because

Φ and Φv are allowed to be between 0◦ and 180◦.
The peak oscillation amplitudes ŷ0max for ζ = 3% and 5% compares very well with the empirical relationship of

ŷ0max = 0.46/c∗ suggested by Konstantinidis (2013). Although ŷ0max for ζ = 1% shows relatively good agreement, peak
esponse data for ζ = 0.1% and 0.5% are far from the empirical curve. Peak response data obtained in this study and those
vailable in the literature plotted against mass-damping parameter (i.e. using the ‘‘Griffin plot’’) collapse almost into a
ingle curve. This finding is in contrast to the experimental results at high Reynolds numbers; large scatter is observed in
hose cases. The possible reason for the small scatter is that peak vibration amplitude is roughly independent of Reynolds
umber in the low-Re domain.
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