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Numerical computations are performed to examine the flow and heat transfer characteristics for mixed 

convective flow past a sphere in an assisting flow arrangement with an aligned magnetic field. The flow 

is considered as laminar, steady and incompressible and the working fluids as Newtonian. A spherical 

geometry higher order compact scheme (SGHOCS) is employed to solve the set of non-linear govern- 

ing transport equations. The results are enumerated in terms of streamlines, isotherms, drag coefficient 

together with local and average Nusselt number on the surface of the sphere by varying the following pa- 

rameters: Reynolds number 1 ≤ Re ≤ 200; Prandtl number 0.72 and 7; Richardson number 0 ≤ Ri ≤ 1.5; 

interaction magnetic parameter 0 ≤ N ≤ 10. For lower values of Ri , although the flow separation phe- 

nomena in the downstream region suppresses for weaker strength of the magnetic field ( N ≤ 0.5), it 

again increases on further increase in N . For higher values of Ri , with an increase of N , the flow separa- 

tion phenomena completely suppresses. The drag coefficient ( C D ) increases with N for any values of Re, 

Ri and Pr and for N ≥ 1, C D = K 
√ 

N + B where K and B are constants that depends on Ri and Pr and K = 

0.32 for Ri = 0 which is consistent with the results in the literature. On the basis of variation of Nu on 

the sphere surface, three different regions are identified and moreover a strong interplay between N and 

Ri in dictating the characteristic of heat transfer is found for all values of Re . In the mixed convection 

domain the average Nusselt number ( Nu ) first decreases with N and then tends to a constant value for 

higher values of Reynolds number, in contrast with the forced convection case, when Nu decreases with 

N and then tends to increase almost linearly with N . Based on the numerical results for the considered 

range of parameters, correlations are developed for C D and Nu , which are relatively in good agreement 

with reported results in the literature for special cases of both forced and mixed convective flows past a 

sphere in the absence of a magnetic field. 

© 2020 The Author(s). Published by Elsevier Ltd. 
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( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

 

a  

fl  

s  

e  

d  

c  

B

t  

t  

l  

v  

h  

a  

t  

e  

a

h

0

(

. Introduction 

In recent times, researchers have put significant effort into an-

lyzing the hydrodynamic and thermal transport phenomena for

ow over bluff bodies due to various applications, such as de-

ign of heat exchangers, cooling of electronic chips, cooling tow-

rs used in steel and oil industries, spinners in food processing in-

ustries, cooling circuit of nuclear reactors, etc. When an electri-

ally conducting fluid flows past a solid object subjected to an ex-
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ernally imposed magnetic field, it generates a resisting effect due

o Lorentz force and accordingly the flow physics becomes convo-

uted because of the interplay of different forces, namely, inertia,

iscous, buoyancy and Lorentz forces. The flow separation and the

eat transfer rate can be modulated through the strength of the

pplied magnetic field as well as the buoyant force. This necessi-

ates a thorough investigation to analyze the transport phenom-

na for magnetohydrodynamic (MHD) mixed convective flow past

 heated sphere. 

Numerical works have been reported on MHD forced [1–11] as

ell as mixed convective [12,13] flow past a cylinder. Kumari and

ansal [1] considered Oseens approximation to study the drag

oefficient for MHD flow past a circular cylinder for different
under the CC BY-NC-ND license. 
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Nomenclature 

C D total drag coefficient 

d diameter (sphere), m 

R radius (sphere), m 

F D total drag on the sphere, N 

g gravitational acceleration, ms -2 

Gr Grashof number 

Nu local Nusselt number 

Nu average Nusselt number 

p dimensionless pressure 

Pr Prandtl number 

r dimensionless radial coordinate 

( r, θ ) spherical in dimensionless form 

Re Reynolds number 

N magnetic field interaction parameter 

Ri Richardson number 

T temperature, K 

k unit vector of dimensionless free stream velocity 

U ∞ 

free stream velocity, ms -1 

H ∞ 

magnetic field, wb m 

-2 

v dimensionless velocity 

y 1 , y 2 , y 3 Cartesian coordinates 

v r dimensionless radial velocity component 

v θ dimensionless angular velocity component 

α thermal diffusivity, m 

2 s -1 

β thermal volumetric coefficient, K 

-1 

σ electrical conductivity, Sm 

-1 

θ angular coordinate 

� dimensionless temperature 

ν kinematic viscosity, m 

2 s -1 

ξ modified coordinate defined as r = e ξ

ρ density, kgm 

-3 

ψ dimensionless stream function 

ω dimensionless vorticity 

φ1 value of θ up to which Nu either increases or de- 

creases 

φ2 value of θ at which flow separation starts 

D drag 

r radial component 

S surface 

θ angular component 

∞ free stream 

′ dimensional parameters 

Reynolds number ( Re ) and magnetic parameters. Josserand et al.

[2] experimentally studied the flow of liquid metal past a cylin-

der in presence of an aligned magnetic field to understand the

pressure distribution around the cylinder. Rao and Sekhar [3] stud-

ied the MHD flow past a circular cylinder using a finite difference

method (FDM) for Re = 500 and interaction parameter ( N = 1.2)

and they found that for small values of N , the drag decreases with

N and then increases with further increase of N . The MHD flow

past a circular cylinder was studied by Sekhar et al. [4] by em-

ploying FDM for N up to 15 and Re up to 40. The MHD flow past

a circular cylinder was studied by Kumar and Rajathy [5] for Re up

to 100 and different Hartmann number by employing FDM. The

MHD flow past a circular cylinder was studied by Sekhar et al.

[6] by employing FDM for large Re and N up to 12. Sekhar et al.

[7] analyzed the effect of aligned magnetic field on the flow past

a circular cylinder by employing FDM for large Re and different

Hartmann number. Yoon et al. [8] studied the MHD forced con-

vection heat transfer past a cylinder by varying Reynolds num-

ber, Prandtl number and magnetic field interaction parameter us-
ng spectral method. The MHD forced convection heat transfer past

 solid cylinder in presence porous media was studied by Ghadi

t al. [9] by employing finite volume method (FVM). The MHD

orced convective heat transfer from a circular cylinder was stud-

ed by Sivakumar et al. [10] by employing FDM for 0 ≤ Re ≤ 40;

.065 ≤ Pr ≤ 7 and 0 ≤ N ≤ 20. The effect of magnetic field on the

ow and heat transfer characteristics from a circular cylinder was

tudied by Aldoss et al. [11] analytically using the non-similarity

ethod. The mixed convection heat transfer from a cylinder under

he presence of aligned magnetic field was studied by Udhayaku-

ar et al. [12] using FDM for 0 ≤ Ri ≤ 3, 0.72 ≤ Pr ≤ 7, 0 ≤ N ≤ 7

nd Re = 20, 40. Roy and Gorla [13] studied the influence of chemi-

al reaction, magnetic field and radiation on mixed convection flow

f power-law fluid past a horizontal cylinder by employing an im-

licit FDM. 

Several researchers have also analyzed the transport character-

stics both for mixed and forced convective flow past spherical

bjects. Yonas [14] conducted experiments to measure the drag

or flow of liquid sodium past a sphere with an aligned magnetic

eld having large magnetic parameters. The flow past a sphere and

isks has been studied experimentally by Maxworthy [15] in pres-

nce of an aligned magnetic field. Sekhar et al. [16–20] conducted

everal numerical investigations to analyze MHD forced convective

ow and heat transfer past a sphere by varying Re, Pr and N . They

ave employed both second order accurate [16–19] and fourth or-

er accurate [20] schemes. Hieber and Gebhart [21] first analyzed

he mixed convective heat transfer from an isothermal sphere for

ow Grashof number ( Gr ) and Pr = 1 by employing the asymptotic

xpansions. Chen and Mucoglu [22] and Wong et al. [23] analyzed

he flow and heat transfer phenomena for mixed convection on an

sothermal sphere using FDM and finite element method (FEM) for

r = 0.7. Nguyen et al. [24] studied the problem of mixed convec-

ion heat transfer past a spherical particle using a spectral method.

he mixed and forced convective heat transfer past an isothermal

phere was studied by Alassar et al. [25] by employing series trun-

ation method for Ri : 0 to 10, Pr = 0.71. The mixed convective

eat transfer and fluid flow past a hot isothermal spherical parti-

le were analyzed by Bhattacharyya and Singh [26] by employing

 third-order accurate upwind scheme for Pr = 0.72 and Ri ≥ 1.

otouc et al. [27] studied the problem of mixed convection heat

ransfer past an isothermal sphere in loss of axis symmetry by em-

loying spectral element decomposition method for 0 ≤ Ri ≤ 0.7

nd 0.72 ≤ Pr ≤ 7. Ziskind et al. [28] and Mograbi et al. [29] con-

ucted experiments to analyse the mixed convective heat trans-

er past a sphere in different flow directions for low Gr and Pr

umbers. Raju et al. [30] and Nath et al. [31] analyzed the mixed

onvective heat transfer past a heated sphere using SGHOCS for

 ≤ Re ≤ 200, 0 ≤ Ri ≤ 1.5 and 0.72 ≤ Pr ≤ 40. 

Despite extensive studies have been reported in the literature

n MHD forced convective heat transfer from a bluff body, anal-

sis on MHD mixed convective heat transfer and fluid flow past

 sphere is lagging. Accordingly in the present work, the spher-

cal geometry higher order compact scheme (SGHOCS) has been

mployed to analyse the flow and heat transfer characteristics for

ixed convective flow past a sphere in an assisting flow arrange-

ent with an aligned magnetic field. 

. Formulation of the problem 

We consider laminar, steady, incompressible flow of Newtonian

uids (air and water) past an isothermal sphere (diameter d and

emperature T s ) in a vertically upward direction as shown in Fig. 1

a). The free stream velocity and temperature of the fluid are U ∞ 

nd T ∞ 

, respectively, and an aligned magnetic field of strength H ∞ 

s applied externally. Fluid properties are considered constant and

oussinesq approximation is applied for the density variation. The
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Fig. 1. (a) Schematic diagram describing the problem, (b) schematic diagram describing the type of the grid considered and (c) zoomed view of the grid near the sphere 

surface. 
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nduced magnetic field is small as compared to the applied one

nd hence neglected. The following dimensionless quantities are

efined 

 = 

v ′ 
U ∞ 

, p = 

p ′ 
ρU 

2 ∞ 

, �= 

T −T ∞ 

T s − T ∞ 

, Re = 

U ∞ 

d 

ν
, Gr = 

βg(T s −T ∞ 

) d 3 

ν2 
, 

 = 

σH 

2 
∞ 

d 

ρU ∞ 

, P r = 

ν

α
, Ri = 

Gr 

Re 2 
. 

he governing equations of conservation of mass, momentum and

nergy can be written in dimensionless form as follows. 

 · v = 0 , (1) 
( v · ∇ ) v = −∇ p + 

2 

Re 
∇ 

2 v + 

Ri 

2 

�k + N [ ( v × H ) × H ] (2)

nd 

 · ∇ � = 

2 

RePr 
∇ 

2 �. (3) 

ere, Gr, Pr, Re, N and Ri are respectively the Grashof number,

randtl number, Reynolds number, magnetic field interaction pa-

ameter and Richardson number. Eq. (2) can be expressed in terms
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Table 1 

Results of domain independence analysis. The parameters used are: Re 

= 200, Ri = 0.05, N = 0.1 and Pr = 0.72. 

Domain size Nu % Difference C D % Difference 

20 R 9.1871 — 0.9180 —

30 R 9.1824 0.052 0.9158 0.236 

40 R 9.1797 0.029 0.9146 0.135 

50 R 9.1773 0.026 0.9133 0.136 

T

N  
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of vorticity as 

∇ × ( v × ω ) = 

2 

Re 
[ ∇ × ( ∇ × ω ) ] − Ri 

2 

( ∇ × �k ) 

−N [ ∇ × { ( v × H ) × H } ] , (4)

where 

ω = ∇ × v (5)

is the dimensionless vorticity and k is unit vector of dimension-

less free stream velocity (see Fig. 1 (a)). First we write the expres-

sion for v θ = 

−1 

r sin θ

∂ψ 

∂r 
and then v r = 

1 

r 2 sin θ

∂ψ 

∂θ
. Using r = e ξ ,

Eqs. (5) to (3) can be written in spherical coordinate as 

∂ 2 ψ 

∂ξ 2 
− ∂ψ 

∂ξ
+ 

∂ 2 ψ 

∂θ2 
− cot θ

∂ψ 

∂θ
= −ωe 3 ξ sin θ, (6)

∂ 2 ω 

∂ξ 2 
+ 

∂ω 

∂ξ
+ cot θ

∂ω 

∂θ
+ 

∂ 2 ω 

∂θ2 
− ω csc 2 θ

−Ri 
Re 

4 

e ξ
(

∂�

∂ξ
sin θ + 

∂�

∂θ
cos θ

)

+ 

NRe 

2 sin θ
e −ξ

(
sin 2 θ

∂ψ 

∂θ
− sin 2 θ

∂ 2 ψ 

∂ ξ∂ θ

+ sin 

2 θ
∂ 2 ψ 

∂θ2 
+ cos 2 θ

∂ 2 ψ 

∂ξ 2 
− cos 2 θ

∂ψ 

∂ξ

)

= 

Re 

2 sin θ
e −ξ

(
∂ψ 

∂θ

∂ω 

∂ξ
− ∂ψ 

∂ξ

∂ω 

∂θ
+ 

∂ψ 

∂ξ
ω cot θ − ω 

∂ψ 

∂θ

)
(7)

and 

∂ 2 �

∂ξ 2 
+ 

∂�

∂ξ
+ cot θ

∂�

∂θ
+ 

∂ 2 �

∂θ2 

= 

ReP r 

2 sin θ
e −ξ

(
∂ψ 

∂θ

∂�

∂ξ
− ∂ψ 

∂ξ

∂�

∂θ

)
. (8)

The following boundary conditions are employed: 

ω = − 1 

sin θ

∂ 2 ψ 

∂ξ 2 
, ψ = 

∂ψ 

∂ξ
= 0 , � = 1 at ξ = 0 , (9a)

ψ = 

1 

2 

e 2 ξ sin 

2 θ, ω = � = 0 as ξ → ∞ , (9b)

ψ = 0 , ω = 0 , 
∂�

∂θ
= 0 at θ = 0 and θ = π. (9c)

The obtained velocity and temperature fields are characterized

in terms of two dimensionless parameters namely, drag coefficient

and Nusselt number. The drag coefficient is computed from 

 D = 

F D 

ρU 

2 ∞ 

πd 2 

8 

= − 8 

Re 

∫ π

0 

ω(0 , θ ) sin 

2 θdθ

+ 

4 

Re 

∫ π

0 

(
ω + 

∂ω 

∂ξ

)
ξ=0 

sin 

2 θdθ, (10)

where, the first term on the right-hand side of Eq. (10) represents

the drag coefficients due to viscous force and the second term rep-

resents the contribution of pressure force. The local Nusselt num-

ber on the sphere surface is computed as follows 

Nu = −2 

(
∂�

∂ξ

)
ξ=0 

, 0 ≤ θ ≤ π. (11)
he average Nusselt number is 

u = 

1 

2 

∫ π

0 

Nu (θ ) sin θ dθ . (12)

. Numerical methodology and validation 

Higher order compact scheme in spherical geometry has been

sed to solve the conservation Eqs. (6) - (8) together with bound-

ry conditions (9a) - (9c) . The details of discretization and bound-

ry conditions are presented in Sekhar and Raju [32] , Sekhar et al.

33] , Raju et al. [30,34] , Nath et al. [31] , Nath and Raju [35] . The

lgebraic equations as obtained after discretizing the governing

quations are solved by the tridiagonal matrix algorithm. The itera-

ions are continued until the L 2 norm of relative residual is smaller

han a certain convergence criterion ε and in this present work, ε
s set as 10 −6 . 

To justify the domain size used for the analysis, far-field domain

ndependence analysis are conducted using four different far-field

omains, particularly 20, 30, 40 and 50 times radius of the sphere.

he values of Nu and C D obtained by using domain of different

izes are presented in Table 1 for Re = 200, Ri = 0.05, N = 0.1 and

r = 0.72. It can be seen from Table 1 that the values are almost

ame for two refined domains namely 40 and 50 (the change of

u and C D are 0.026 % and 0.135 %, respectively, when the domain

ize has changed from 40 R to 50 R ). All numerical simulations have

een performed considering 40 times radius of the sphere as an

ptimum far-field domain. 

To demonstrate the grid independence analysis of the present

ourth order numerical code, the numerical computations have

een conducted using seven different grids, specifically 81 × 81,

01 × 101, 121 × 121, 141 × 141, 161 × 161, 181 × 181 and

01 × 201. The values of Nu , C D and p (0, 0) obtained from the

GHOCS in the above specified grid sizes are presented in Table 2

or Re = 200, Pr = 0.72, Ri = 0.05 and N = 0.1. It is seen from

able 2 that the values of C D , Nu and p (0, 0) are almost identi-

al for two consecutive grids 181 × 181 and 201 × 201. Hence in

his present study, all numerical simulations have been done us-

ng 181 × 181 grids. The grid used is shown in Fig. 1 (b), with a

oom-in of the grid near the sphere’s surface shown in Fig. 1 (c). 

Prior to conduct numerical experiments, we first validate our

n-house code extensively. Firstly, the values of C D and Nu obtained

rom the SGHOCS are compared in the absence of magnetic field

ith the values of Nirmalkar et al. [36] in Table 3 at Pr = 10, Re

 0.1 for various values of Ri . It can be noticed from Table 3 that

he present results vary from those of Nirmalkar et al. [36] with

 maximum relative difference 0.099 % for C D and 0.212 % for Nu .

ext, the values of Nu obtained from the current scheme are com-

ared in the absence of magnetic field with the results of Nir-

alkar and Chhabra [37] and Sreenivasulu and Srinivas [38] for

ifferent Ri ( = 1, 1.5) at Re = 100 and Pr = 100, as can be seen in

able 4 . Finally, the values of C D and Nu obtained from the present

cheme are validated with the results of Kotouc et al. [27] and

reenivasulu and Srinivas [38] for Pr = 20, 60, 100, Re = 100, N

 0 and Ri = 1 in Table 5 . It can be noticed from Tables 3 , 4 and

 that the present results are in line with results reported in the

iterature [27,36–38] . 
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Table 2 

Results of grid independence analysis. The parameters used are: Re = 200, Ri = 0.05, N = 0.1 

and Pr = 0.72. 

Grid size Nu % Difference C D % Difference p (0, 0) % Difference 

81 × 81 9.0297 — 0.8303 — -0.1196 —

101 × 101 9.1144 0.929 0.8769 5.315 -0.1849 35.314 

121 × 121 9.1519 0.410 0.8975 2.292 -0.2185 15.358 

141 × 141 9.1683 0.179 0.9071 1.053 -0.2347 6.919 

161 × 161 9.1759 0.083 0.9119 0.531 -0.2428 3.346 

181 × 181 9.1797 0.041 0.9146 0.294 -0.2471 1.737 

201 × 201 9.1816 0.021 0.9162 0.177 -0.2495 0.961 

Table 3 

Comparison of values of C D and Nu with [36] for different Ri at Pr = 10, Re = 0.1 and 

N = 0. 

Ri C D Nu 

Nirmalkar 

et al. [36] Present 

% 

Difference 

Nirmalkar 

et al. [36] Present 

% 

Difference 

0 244.56 244.40 0.065 2.3081 2.3032 0.212 

2 303.57 303.87 0.099 2.3448 2.3434 0.060 

Table 4 

Comparison of values of Nu with [37] and [38] for different Ri at Pr = 100, Re = 100 

and N = 0. 

Ri Nu 

Nirmalkar and 

Chhabra [37] 

Sreenivasulu and 

Srinivas [38] Present 

% Difference 

with [37] 

% Difference 

with [38] 

1 34.829 34.930 34.334 1.441 1.736 

1.5 35.607 36.670 35.186 1.196 4.218 

Table 5 

Comparison of values of C D and Nu with [27] and [38] for different Pr at Ri = 1, 

Re = 100 and N = 0. 

Pr C D 

Kotouc et al. 

[27] 

Sreenivasulu and 

Srinivas [38] Present 

% Difference 

with [27] 

% Difference 

with [38] 

20 1.41 1.46 1.39 1.418 4.794 

60 1.38 1.38 1.35 2.174 2.174 

100 1.32 1.34 1.34 1.515 0 

Pr Nu 

Kotouc et al. 

[27] 

Sreenivasulu and 

Srinivas [38] 

Present % Difference 

with [27] 

% Difference 

with [38] 

20 22.10 21.20 21.32 3.529 0.566 

60 30.08 29.80 29.59 1.629 0.705 

100 35.00 34.93 34.33 1.914 1.718 
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. Results and discussion 

The problem of mixed convection heat transfer past a sphere

ith an aligned magnetic field is considered in the present work

y employing SGHOCS. The working fluids are considered as air

 Pr = 0.72) and water ( Pr = 7). The numerical computations

re performed for different parameters in the following range

 ≤ Re ≤ 200, 0 ≤ Ri ≤ 1.5, 0 ≤ N ≤ 10. The results are presented

n terms of streamlines, isotherms, coefficient of drag, local and av-

rage Nusselt numbers. 

To interpret the intricacy involved associated with the transport

henomena, we first analyse the flow and thermal fields through

he streamlines, - and isotherms as presented in Figs. 2 and 3 for

ifferent values of N ( = 0, 0.25, 0.5, 5), Ri ( = 0, 0.1, 0.25, 1.5) with

r = 0.72 and Re = 200. For forced convective flow past the sphere

 Ri = 0), intuitively the flow separation takes place in the down-

tream region without imposition of magnetic field ( N = 0). Al-
hough with the imposition of external magnetic field, the flow

eparation phenomena suppresses initially for weaker strength of

he magnetic field ( N ≤ 0.5), it again increases on further increase

n N . For lower values of Ri ( ≤ 0.1), the effect of N on the distribu-

ion of streamlines is qualitatively similar to the case of Ri = 0 i.e,

ith increase in N , the flow separation phenomena first suppresses

lightly and then again increases with further increase in N . The

ow patterns are distinctly different for higher values of Ri as can

e seen in Fig. 2 . For higher values of Ri , with an increase of N ,

he flow separation phenomena starts suppressing and finally com-

letely suppresses. It can be summarized that for any specific N ,

here is a complete suppression of the flow separation phenomena

ith an increase of Ri although the value of Ri at which complete

uppression takes place depends on N . Thus, the phenomenon of

ow separation that would occur for magnetohydrodynamic forced

onvective flow past a sphere for a particular Reynolds number is

uppressed once the Richardson number is above its critical value,

he magnitude of which varies with the magnetic field parameter. 

The heat transfer characteristics for the current work can be ex-

lained through the distribution of isotherms around the sphere

nd accordingly Fig. 3 displays the isotherms around the sphere for

ifferent values of Ri, N with Pr = 0.72 at Re = 200. It can be seen

rom Fig. 3 that the distribution of isotherms is strongly depen-

ent on Ri and N . For any specific value of N and Ri , the thermal

oundary layer thickness ( δT ) is minimum at the front stagnation

oint, while it is maximum at the rear stagnation point and there

s a continuous variation of the thickness throughout the surface

f the sphere. At the front stagnation point, the thickness again

aries with both N and Ri and more specifically, δT decreases with

ncrease in Ri and decrease in N . The distribution of the isotherms

n the region of rear stagnation point is distinctly different de-

ending on whether there is any flow separation or not. It can

e clearly seen that for lower values of Ri and N, δT at the rear

tagnation point is minimum for N = 0 and it increases with in-

rease in both N and Ri . It can be seen that in the upstream region

180 ◦ ≤ θ ≤ φ1 ), δT increases with change in θ from 180 ◦ to φ1 

or N ≤ 1, while for N > 1, reverse trend is observed. Important

o mention here that, the value of φ1 strongly depends on N and

i . When θ changes from φ1 to a value where flow separation ini-

iates, δT increases continuously and moreover, δT decreases with

 . 

Figure 4 presents the effect of N on drag coefficient for different

alues of Ri, Pr = 0.72, 7 and Re = 10, 10 0, 20 0. It is seen that for

ny particular value of Ri, Re and Pr, C D increases with N because

f the increased resisting Lorentz force. Important to note that C D 
ecreases with increase in both Re and Pr , while it increases with

i keeping other parameters fixed. Although the relative contribu-

ions of skin friction and form drag on the total drag are changed

or lower and higher values of Ri and Re , both skin friction and

orm drag decreases with increase in Re and they increase with in-

rease in Ri . Such variation can be explained from the dependency

f the wake size in the downstream region with Re and the change

f hydrodynamic boundary layer thickness with Ri . Another impor-

ant feature that can be noted from the insets of Fig. 4 is that for
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Fig. 2. Streamlines around the sphere for different values of Ri = 0, 0.1, 0.25, 1.5, N = 0, 0.25, 0.5, 5 and Pr = 0.72 at Re = 200. 
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Fig. 3. Isotherms around the sphere for different values of Ri = 0, 0.1, 0.25, 1.5, N = 0, 0.25, 0.5, 5 and Pr = 0.72 at Re = 200. 
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Fig. 4. The C D values for different values of Ri, N, Pr = 0.72, 7 and Re = 10, 10 0, 20 0. The linear dependence of C D with 
√ 

N ( N > 1) for different Ri and Pr values at Re = 

200. Numbers in brackets represent the slopes of the linear fitting of the 
√ 

N data (inset). 

 

 

 

 

 

 

 

 

C  

 

 

any specific values of Pr and Ri , the variation of drag coefficient

with 

√ 

N is linear for N ≥ 1 and a functional relationship can be

established as follows: C D = K 

√ 

N + B where K = 0.32 for Ri = 0

and the value of K increases with Ri and decreases with Pr . More-

over, the value of B is different for different combinations of N, Ri

and Pr . The present results are consistent with the experimental

findings [14] for Ri = 0 and reported as K = 0.33 for the flow of

sodium past sphere and disks. 

A correlation for the drag coefficient ( C D ) as a function of the

relevant parameters is developed as follows: 

 D = 

24(1 + 0 . 16621 Re 0 . 66852 + aN 

b + cRi d ) 

Re 
, (13)

where a, b, c and d are coefficients, that are independent of Ri in

the range, 0 ≤ Ri ≤ 1.5 and N in the range 0 ≤ N ≤ 10, but that

are dependent on Re and Pr as given below: 
a = 0 . 12041 + 0 . 05476 Re − 0 . 00131 Re 2 

+1 . 59737 × 10 

−7 Re 3 , b = 0 . 71 , 

c = 0 . 26132 + 0 . 170747 Re −0 . 00314 Re 2 + 3 . 79749 × 10 

−5 Re 3 and 

d = 0 . 89865 for 1 ≤ Re ≤ 40 and P r = 0 . 72 . 

a = 0 . 4634 + 0 . 01994 Re − 5 . 61798 × 10 

−6 Re 2 

+2 . 71268 × 10 

−9 Re 3 , b = 0 . 63 , 

c = 0 . 94521 + 0 . 09344 Re − 1 . 2057 × 10 

−4 Re 2 

+2 . 4330 × 10 

−7 Re 3 and 

d = 1 . 03207 for 40 < Re ≤ 200 and P r = 0 . 72 . 

a = 0 . 15307 + 0 . 04388 Re − 0 . 00111 Re 2 

+1 . 42223 × 10 

−5 Re 3 , b = 0 . 7 , 

c = 0 . 14904 + 0 . 11964 Re − 0 . 00154 Re 2 
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Fig. 5. Comparison of present correlation values of C D with [26] for different values 

of Re, Ri = 0, 0.5 and 1.5 at Pr = 0.72 and N = 0. 
+1 . 77406 × 10 

−5 Re 3 and 

d = 0 . 94509 for 1 ≤ Re ≤ 40 and P r = 7 . 

a = 0 . 36027 + 0 . 0175 Re − 6 . 92398 × 10 

−6 Re 2 

+1 . 43595 × 10 

−8 Re 3 , b = 0 . 6545 , 

c = 0 . 59994 + 0 . 07771 Re − 5 . 84347 × 10 

−5 Re 2 

+1 . 00494 × 10 

−7 Re 3 and 

d = 0 . 97373 for 40 < Re ≤ 200 and P r = 7 . 

The present drag coefficient correlation ( Eq. (13) ) correlates to

he present numerical data with a maximum and average percent-

ge difference of 16.63% and 4.18%, respectively. Furthermore, a

omparison of the results of C D obtained from the correlation de-

eloped in this analysis is made with results available in literature

or forced as well as mixed convection past a sphere when there

s no magnetic field ( N = 0). In this context, Feng and Michaelides

39] proposed a correlation for C D for the forced convection past a

phere without magnetic field ( Ri = 0 ; N = 0 ) as 

 D = 

24 

(
1 + 0 . 167 Re 0 . 67 

)
Re 

. (14) 

he maximum and average percentage differences between the re-

ults obtained from the present correlation and by Eq. (14) are

.46% and 0.20%, respectively. For the mixed convection past a

phere without magnetic field ( N = 0), the results for C D as

btained from the present correlation are compared with Bhat-

acharyya and Singh [26] for 1 ≤ Re ≤ 200, Ri = 0, 0.5 and 1.5, and

r = 0.72 ( Fig. 5 ). It is shown in Fig. 5 that the results obtained

rom the present correlation are in very good agreement with the

ublished results. 

The temperature field is parametrized by Nusselt number to

epresent the rate of heat transfer from the sphere to the sur-

ounding fluid flowing over it. Fig. 6 displays the angular variation

f local Nusselt number ( Nu ) on the sphere surface for different

alues of Ri, N with Pr = 0.72, 7 and Re = 200. First of all, one can

ee from Fig. 6 that for any specific values of Ri, N and Pr , there is

 continuous variation of Nu along the surface of the sphere with

 maximum value at the front stagnation point ( θ = 180 ◦) and a

inimum one at the rear stagnation point ( θ = 0 ◦) which can be

xplained from the distribution of isotherms around the sphere. An

ntricate interplay between the buoyant force as represented by Ri

nd the Lorentz force due to imposition of applied magnetic field

s represented by N can be seen in altering the heat transfer phe-

omena. For N ≤ 1, and lower values of Ri ( ≤ 0.25), Nu decreases

rom θ = 180 ◦ to a point slightly away from the flow separation

oint and thereafter increases till θ = 0 ◦. Whereas Nu decreases

ontinuously from front stagnation point to rear stagnation point

or higher values of Ri and this is applicable to both the fluids con-

idered in the investigation. For N ≥ 2, Nu increases along the sur-

ace of the sphere from θ = 180 ◦ to a particular point and there-

fter decreases until θ = 0 ◦ for higher values of Ri . However, for

ower values of Ri, Nu increases along the surface of the sphere

rom θ = 180 ◦ to a particular point, then decreases near to flow

eparation point and beyond the separation point it again increases

ill θ = 0 ◦ and this is more prominent for Pr = 7.0. Three regions

ave been identified with respect to the angular variation of Nu . In

he first region (180 ◦ ≤ θ ≤ φ1 ), Nu either decreases or increases

s one moves from the front stagnation point to θ = φ1 depending

n the strength of the applied magnetic field. Note that for N ≤ 1,

u decreases, while N > 1, Nu increases. The value of φ1 varies

rom 140 ◦ to 80 ◦ depending on the values of N and Ri . In the sec-

nd region ( φ1 ≤ θ ≤ φ2 ), Nu monotonically decreases along the

urface of the sphere and in the third region ( φ2 ≤ θ ≤ 0 ◦), Nu

gain increases. The existence of third region totally depends on

hether there is flow separation in the downstream region or not.

or example, for Ri = 1.5, third region is absent for both Pr = 0.72
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Fig. 6. Angular variation of Nu on the sphere surface for different values of Ri, N and (a) Pr = 0.72 and (b) Pr = 7 at Re = 200. 
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Fig. 7. Variation of Nu with N for different values of Ri at Re = 200 and Pr = 0.72, 

7. 
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Fig. 8. Isosurfaces of Nu for different values of Ri, N and Re with Pr = 0.72, 7.0. 

 

0  

i  

N  

N  

h  

w  

c

 

t

nd 7 because of the fact there is no flow separation as can be

een in Fig. 6 . This can be explained from the variation of surface

orticity along the surface of the sphere and the consequence of it

n altering the thermal boundary layer thickness. 

Figure 7 displays the variation of average Nusselt number ( Nu )

ith N for different values of Ri with Pr = 0.72, 7 and Re = 200.

or any specific value of N , Nu increases with Ri, Re and Pr , which

s intuitive and well established in the literature. Starting from

ow separation up to a critical Reynolds number, a non-monotonic

decreasing-increasing) trend of Nu with N is observed for forced

onvective flow as well as mixed convection with lower values of

i , while for higher values of Ri , Nu increases continuously with

 . Although the trend (decreasing-increasing) for forced convective

ow is the same even for higher values of Re , for mixed convection

u first decreases with N and then it tends to a constant value. For

e = 200, both for Pr = 0.72 and 7.0, the variation of Nu is non-

onotonic with N for all Ri . The variation of Nu with N can be

xplained through close inspection a competing effect of change in

u with N at front stagnation point, the angular variation of Nu in

he first region (180 ◦ ≤ θ ≤ φ1 ), the rate of decrement of Nu in the

econd region ( φ1 ≤ θ ≤ φ2 ) and the increase in Nu in the third

egion due to the occurrence of flow separation. 
The results of average Nusselt number ( Nu ) for 1 ≤ Re ≤ 200,

 ≤ Ri ≤ 1.5, 0 ≤ N ≤ 10 and Pr = 0.72 and 7 are represented by

sosurfaces in the 3D phase space in Fig. 8 . This clearly shows that

u increases with Re, Ri and Pr . It is observed that the variation of

u with N is not monotonic except for mixed convective flow with

igher values of N and intermediate Re . Further, the variation of Nu

ith N is distinctly different for mixed convection and for forced

onvection, especially at higher values of Ri and Re . 

A correlation for the average Nusselt number ( Nu ) in terms of

he relevant parameters is developed as follows: 

For 1 ≤ Re ≤ 40 

Nu = 

0 . 90968 + 0 . 295 Ri + (P rRe ) 1 / 3 + 0 . 12404 P r 1 / 3 Re 2 / 3 (
1 + 0 . 01581 N 

2 / 5 P r −1 / 4 Re 4 / 9 
)1 / 5 

for 0 ≤ N ≤ N 

∗, (15) 

Nu = 

1 . 29095 + 0 . 295 Ri + (P rRe ) 1 / 3 + 0 . 19426 P r 1 / 3 Re 2 / 3 (
1 + 0 . 03378 2 

2 / 5 P r −1 / 4 Re 4 / 9 
)1 / 5 

(0 . 85233 + 0 . 00349 N) 
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Table 6 

Comparison of present correlation values of Nu with [40–43] for Pr = 0.72, 7, 

Ri = 0, 1 ≤ Re ≤ 200 and N = 0. 

Correlation Authors 

Maximum 

% difference 

Average % 

difference 

Nu = 2 . 0 + ( 0 . 4 R e 
1 
2 + 0 . 06 R e 

2 
3 ) P r 0 . 4 Whitaker [40] 17.045 6.260 

Nu = 2 . 0 + 

0 . 9 (Re Pr) R e 0 . 11 

1 . 8 R e 0 . 11 + ( Re Pr ) 
2 
3 

Finlayson and 

Olson [41] 

12.032 4.481 

Nu = 0 . 922 + (RePr) 
1 
3 + 0 . 1 R e 

2 
3 P r 

1 
3 Feng and 

Michaelides [42] 

8.7305 3.111 

Nu = 0 . 852 (RePr) 
1 
3 ( 1 + 0 . 233 R e 0 . 287 ) 

+ 1 . 3 − 0 . 182 R e 0 . 355 

Feng and 

Michaelides [43] 

8.013 3.161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Comparison of present correlation values of Nu with [26] for different values 

of Re, Ri = 0.5 and 1.5 with Pr = 0.72 and N = 0. 

5

 

e  

i  

p  

t

 

 

for N 

∗ < N ≤ 10 . (16)

For 40 < Re ≤ 200 

Nu = 

0 . 15788 + 1 . 295 Ri + (P rRe ) 1 / 3 + 0 . 12377 P r 1 / 3 Re 2 / 3 (
1 + 0 . 00639 N 

2 / 5 P r −1 / 4 Re 4 / 9 
)1 / 5 

for 0 ≤ N ≤ N 

∗, (17)

Nu = 

0 . 55149 + 1 . 295 Ri + (P rRe ) 1 / 3 + 0 . 15835 P r 1 / 3 Re 2 / 3 (
1 + 0 . 02679 2 

2 / 5 P r −1 / 4 Re 4 / 9 
)1 / 5 

(0 . 91407 + 0 . 0 0 0545803 N) 

for N 

∗ < N ≤ 10 . (18)

Note that N 

∗ varies with Ri, Re and P r and given as 

N 

∗ = a 1 + b 1 Ri c 1 + d 1 Re e 1 , (19)

where 

a 1 = −0 . 64768 , b 1 = −0 . 89504 , c 1 = 1 . 07915 , 

d 1 = 0 . 24314 , e 1 = 0 . 53376 

for 1 ≤ Re ≤ 40 and P r = 0 . 72 , 

a 1 = −3 . 21396 , b 1 = 0 . 42201 , c 1 = 2 . 75536 × 10 

−9 , 

d 1 = 0 . 26156 , e 1 = 0 . 6554 

for 40 < Re ≤ 200 and P r = 0 . 72 . 

a 1 = −0 . 65688 , b 1 = 0 . 13273 , c 1 = 0 . 10529 , 

d 1 = 0 . 19269 , e 1 = 0 . 46233 

for 1 ≤ Re ≤ 40 and P r = 7 , 

a 1 = −3 . 14538 , b 1 = 1 . 7845 , c 1 = 0 . 7034 , 

d 1 = 0 . 159474 , e 1 = 0 . 70637 

for 40 < Re ≤ 200 and P r = 7 and all the correlations are valid 

for 0 ≤ Ri ≤ 1 . 5 . 

The present average Nusselt number correlation correlates to

the present numerical data with maximum and average percentage

difference of 13.66% and 1.97%, respectively. Furthermore, the accu-

racy of the developed correlation for Nu is verified through exten-

sive comparison of the results with that available in literature for

forced as well as mixed convection past a sphere in the limiting

situation of no magnetic field. Table 6 shows the maximum and

average percentage differences between the results obtained from

the present correlation and reported in the literature [40–43] for

Ri = 0, N = 0. For the mixed convection past a sphere without

a magnetic field ( N = 0), the results for average Nusselt number

as obtained from the present correlation are compared with Bhat-

tacharyya and Singh [26] for 1 ≤ Re ≤ 200, Ri = 0.5 and 1.5 and

Pr = 0.72 ( Fig. 9 ). It is found from Fig. 9 that the results obtained

from the present correlation are in very good agreement with the

published results. 
. Conclusions 

The mixed convection heat transfer past a sphere with the pres-

nce of an aligned magnetic field has been studied by implement-

ng SGHOCS. The flow is considered as laminar, steady and incom-

ressible and the working fluids as Newtonian. The following are

he important findings from the current numerical investigations: 

• For lower values of Ri , although the flow separation phenomena

in the downstream region suppresses for weaker strength of the
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magnetic field ( N ≤ 0.5), it again increases on further increase

in N . For higher values of Ri , with an increase of N , the flow

separation phenomena completely suppressed. 
• The drag coefficient ( C D ) increases with N for any values of Ri,

Re and Pr . The variation of C D with 

√ 

N is linear for N ≥ 1

and a functional relationship can be established as follows:

C D = K 

√ 

N + B where K = 0.32 for Ri = 0 and the value of K

increases with Ri and decreases with Pr . Moreover, the values

of B are different for different values of N, Ri and Pr . 
• Three distinct regions have been identified with respect to the

angular variation of Nu . In the first region (180 ◦ ≤ θ ≤ φ1 ), Nu

either decreases or increases as one moves from the front stag-

nation point to θ = φ1 depending on the strength of the ap-

plied magnetic field. Note that for N ≤ 1, Nu decreases, while

N > 1, Nu increases. In the second region ( φ1 ≤ θ ≤ φ2 ), Nu

monotonically decreases along the surface of the sphere and in

the third region ( φ2 ≤ θ ≤ 0 ◦), Nu again increases. The exis-

tence of third region totally depends on whether there is flow

separation in the downstream region or not. 
• A strong interplay between N and Ri in determining the char-

acteristics of heat transfer is found for all values of Re . Start-

ing from flow separation up to a critical Reynolds number, a

non-monotonic (decreasing-increasing) trend of Nu with N is

observed for forced convective flow as well as for mixed con-

vection at lower values of Ri , while at higher values of Ri , Nu

increases continuously with N . Although the trend (decreasing-

increasing) for forced convective flow is the same even for

higher values of Re , for mixed convection Nu first decreases

with N and then it tends to a constant value. 
• Based on the numerical results for the considered range of pa-

rameters, correlations are developed for the drag coefficient and

average Nusselt number, which are in relatively good agree-

ment with results reported in the literature without a magnetic

field for either forced or mixed convective flows past a sphere. 
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