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A B S T R A C T

It is unclear how implicit prior knowledge is involved and remains persistent in the extraction of the statistical
structure underlying sensory input. Therefore, this study investigated whether the implicit knowledge of second-
order transitional probabilities characterizing a stream of visual stimuli impacts the processing of unpredictable
transitional probabilities embedded in a similar input stream. Young adults (N=50) performed a four-choice
reaction time (RT) task that consisted of structured and unstructured blocks. In the structured blocks, more
probable and less probable short-range nonadjacent transitional probabilities were present. In the unstructured
blocks, the unique combinations of the short-range transitional probabilities occurred with equal probability;
therefore, they were unpredictable. All task blocks were visually identical at the surface level. While one-half of
the participants completed the structured blocks first followed by the unstructured blocks, this was reversed in
the other half of them. The change in the structure was not explicitly denoted, and no feedback was provided on
the correctness of each response. Participants completing the structured blocks first showed faster RTs to more
probable than to less probable short-range transitional probabilities in both the structured and unstructured
blocks, indicating the persistent effect of prior knowledge. However, after extended exposure to the unstructured
blocks, they updated this prior knowledge. Participants completing the unstructured blocks first showed the RT
difference only in the structured blocks, which was not constrained by the preceding exposure to unpredictable
stimuli. The results altogether suggest that implicitly acquired prior knowledge of predictable stimuli influences
the processing of subsequent unpredictable stimuli. Updating this prior knowledge seems to require a longer
stretch of time than its initial acquisition.

1. Introduction

Acquiring implicit knowledge of the statistical structure organizing
environmental events is crucial for many cognitive functions and con-
tributes to the automatization of behaviors (Armstrong, Frost, &
Christiansen, 2017; Aslin, 2017; Kaufman et al., 2010; Maheu,

Dehaene, & Meyniel, 2019). This ability involves not only the mere
extraction of various statistical structures but also the efficient use of
the acquired implicit knowledge across situations that differ in specific
features at the surface level but share common features at the structural
level. In everyday life, if conditions are substantially similar, we usually
learn fast how to use the updated versions of applications or operating
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systems without checking manuals, running online searches, or even
consciously accessing the course of our actions by using previous ex-
periences. However, the potential stability of the already acquired im-
plicit knowledge when applied in similar situations has not been com-
pletely elucidated (Bulgarelli & Weiss, 2016; Conway, 2020; R. Frost,
Armstrong, & Christiansen, 2019). Therefore, we investigate the stabi-
lity of implicit knowledge of a statistical structure underlying a stream
of visual stimuli that remains the same at the surface level but, in time,
becomes unpredictable at the structural level.

According to the broad frameworks of cognitive processing,
learning, and decision making, the processing of new information and
the formation of expectations about future events are guided by in-
ferences based on prior experiences (e.g., Daw, Gershman, Seymour,
Dayan, & Dolan, 2011; Friston, 2005; Friston, 2010; Friston, Stephan,
Montague, & Dolan, 2014; Griffiths, Kemp, & Tenenbaum, 2008;
Shohamy & Daw, 2015). This also pertains to randomness perception
(Hahn & Warren, 2009; Sun et al., 2015; Sun & Wang, 2010; Teigen &
Keren, 2020; Warren, Gostoli, Farmer, El-Deredy, & Hahn, 2018),
binary choice behavior (Feher da Silva & Baldo, 2012; Gaissmaier &
Schooler, 2008; James & Koehler, 2011) as well as implicit statistical
learning (Conway, 2020; Qian, Jaeger, & Aslin, 2012). The persistence
of the primarily learned statistical structure and its influence on further
processing have been evidenced by behavioral (e.g., Bulgarelli & Weiss,
2016; Gebhart, Aslin, & Newport, 2009; Lany, Gómez, & Gerken, 2007)
as well as neurocognitive measures (e.g., Honbolygó & Csépe, 2013;
Karuza et al., 2016; Mullens et al., 2014; Todd, Frost, Fitzgerald, &
Winkler, 2020; Todd, Provost, & Cooper, 2011). However, statistical
structures can differ in characteristics and complexity (Conway, 2020),
and multiple statistical structures can be acquired even from the same
stimulus sequence (Conway & Christiansen, 2001; Daltrozzo & Conway,
2014; Frost et al., 2019; Kóbor et al., 2018; Simor et al., 2019).

According to the model proposed by Meyniel, Maheu, and Dehaene
(2016), instead of simpler statistics such as frequencies and alternations
of events, the computation of time-varying, non-stationary, local tran-
sitional probabilities between consecutive events could be considered
as the “building block” of implicit statistical learning and knowledge
(see also Maheu et al., 2019; Orbán, Fiser, Aslin, & Lengyel, 2008).
Humans have been found to be highly proficient in extracting even the
nonadjacent transitional probabilities, referring to predictive relations
between elements of a sequence that includes ordered stimuli inter-
spersed with random ones (Conway, 2020; Frost & Monaghan, 2016;
Malassis, Rey, & Fagot, 2018; Mueller, Milne, & Männel, 2018; Rey,
Minier, Malassis, Bogaerts, & Fagot, 2018).

Using transitional probabilities in a series of experiments, Gebhart
et al. (2009) changed the underlying statistical structure of stimuli in
the middle of an auditory statistical learning task. They successively
presented two different but overlapping artificial speech streams com-
posed of trisyllabic nonsense words characterized by transitional
probabilities. In this way, the surface of the stimuli remained similar
throughout the task while their structure changed. If the change was
not explicitly signaled or the second structure was not presented for a
tripled duration, participants only learned the first structure. This in-
dicated that the primarily experienced structure limited the capacity to
acquire the successive structure. However, in this study, a certain sta-
tistical structure determined by transitional probabilities was always
present during the task (see also Bulgarelli & Weiss, 2016; Weiss,
Gerfen, & Mitchel, 2009; Zinszer & Weiss, 2013). Therefore, it is unclear
whether the results would have been the same if the statistical structure
per se had been eliminated. For instance, it could be clarified whether
changing only the predictability of the same nonadjacent transitional
probabilities over the course of learning influences their later extrac-
tion.

Furthermore, in the study by Gebhart et al. (2009), after exposure to
the speech stream, knowledge of the statistical structures was measured
with two-alternative forced-choice test trials in which familiarity
judgments were provided. Meanwhile, processing-based or “online”

tasks should be favored, since these tasks more likely reflect implicitly
acquired statistical knowledge about which no consciously accessible
representations are available. These tasks could also capture the tra-
jectory of acquisition and provide information about the stability of the
underlying processes when these processes actually operate
(Christiansen, 2018; Frost et al., 2019). Therefore, it remains to be
tested with an online, unsupervised statistical learning task (Fiser &
Aslin, 2001; Qian et al., 2012) how changing the predictability of
nonadjacent transitional probabilities impacts further acquisition.

Consequently, in the present study, we used a four-choice reaction
time (RT) task to online measure the implicit processing and acquisition
of a sequence composed of second-order nonadjacent transitional
probabilities. In this sequence, elements in position n – 2 predicted
elements in position n with high or low probability. Unknown to par-
ticipants, half of the task blocks included an alternating regularity be-
tween nonadjacent trials, yielding more probable and less probable
short-range transitional probabilities (see Fig. 1). The short-range
transitional probabilities were three successive trials, hereafter referred
to as triplets. In the other half of the task blocks, the alternating reg-
ularity was absent, and unique triplets appeared with equal probability.
The task blocks were labeled as structured and unstructured blocks,
according to the presence or absence of the alternating regularity. By
creating either biased (high or low) or equal probabilities of triplets,
stimuli were predictable in the structured blocks and unpredictable in
the unstructured blocks. With this design, it could be tested how prior
knowledge of the predictability of triplets influences their processing
when predictability changes from the first to the second half of the task.
To this end, while one-half of the fifty participants completed the
structured blocks first followed by the unstructured blocks, the other
half of the participants completed the unstructured blocks first followed
by the structured blocks. Participants of both groups received neither
explicit information on the midstream change in structure nor feedback
on the correctness of each response throughout the task.

If the influence of the biased probabilities acquired over the struc-
tured blocks persisted throughout the task, the RT difference between
the more probable and less probable triplets would be similar across the
structured and unstructured blocks for participants completing the
structured blocks first. Moreover, it could also be explored how long the
influence of this already acquired knowledge would last. Meanwhile,
prior knowledge of equal probabilities emerging over the unstructured
blocks could also persist and influence the further acquisition of biased
probabilities. Accordingly, for participants completing the unstructured
blocks first, no RT difference between the triplets is expected over the
unstructured blocks. The RT difference over the structured blocks
would emerge only in a slower, more gradual manner (cf. Zhao et al.,
2019). However, as the lack of RT difference could persist throughout
the task, it is also conceivable that these participants would not acquire
the biased probabilities over the structured blocks.

2. Material and methods

2.1. Participants

Fifty healthy young adults took part in the experiment.2 They were
undergraduate students from Budapest, Hungary. Participants had
normal or corrected-to-normal vision, and according to the predefined

2 Studies using the Alternating Serial Reaction Time (ASRT) task with effect
size measures for the prior knowledge effect were not available. Therefore,
when determining the sample size per group, we followed the guidelines set by
some of the previous behavioral ASRT-studies (Hallgató, Győri-Dani, Pekár,
Janacsek, & Nemeth, 2013; Horváth, Török, Pesthy, Nemeth, & Janacsek, 2019;
Nemeth, Hallgato, Janacsek, Sandor, & Londe, 2009; Nemeth & Janacsek, 2011;
Nemeth, Janacsek, & Fiser, 2013; Szegedi-Hallgató et al., 2017; Vékony et al.,
2020). On average, the sample size in these studies was approximately 23 per
group (SD=10.6).
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Fig. 1. Design of the experiment. (A) The presentation of stimuli in the structured sequence followed an eight-element regularity, within which pattern (P) and
random (r) elements alternated with one another. Numbers denote the four different stimulus positions on the screen. The alternating regularity made some runs of
three consecutive trials (triplets) more probable than others. High-probability triplets are denoted with gold shading and low-probability triplets are denoted with
coral shading. (B) From the unstructured (pseudorandom) sequence, the alternating regularity was omitted, but the same unique triplets as in the structured sequence
appeared with equal probability. Note that the probability of triplets only differs in the structured sequence and their probability is equal in the unstructured
sequence. However, triplets in the unstructured sequence are still labeled as either high- or low-probability according to their actual probability in the structured
sequence. Gold shading (upper row) and capital letter “H” (lower row) denote the third element of high-probability triplets, coral shading and “L” denote the third
element of low-probability triplets, while white shading and “T” as “trill” denote the third element of some of those low-probability triplets that were eliminated from
the analyses (see Statistical analysis section). Numbers denote the four different stimulus positions on the screen. Note that each stimulus (trial) is categorized as
either the third element of a high- or a low-probability triplet in both sequences. For a given participant, at the level of unique triplets, the high- and low-probability
triplets are the same in the structured and unstructured sequences. (C) In this version of the task, a stimulus appeared in one of four horizontally arranged empty
circles on the screen in every 700ms. Participants had to respond with one of the four response keys that corresponded to the position of the stimulus. They
completed altogether 96 blocks, and eight-block-long units of the task were collapsed into larger time bins labeled as epochs. (D) While the Structured-first group
(n=25) completed 48 structured blocks followed by 48 unstructured blocks, the Unstructured-first group (n=25) completed 48 unstructured blocks followed by 48
structured blocks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Descriptive data and performance on neuropsychological tests in the two groups.

Structured-first group
n=25
M(SD)

Unstructured-first group
n=25
M(SD)

Between-groups
Difference
t/U/χ2

Gender [male/female] 8/17 8/17 1.00
Age [years] 21.5 (2.6) 20.8 (1.5) 274.50a

Education [years] 14.6 (2.1) 14.3 (1.6) 0.69
Handedness [LQ] 53.5 (49.3) 65.8 (28.7) 330.50a

Wisconsin Card Sorting Task [perseverative error percentage] 11.67 (3.81) 10.41 (2.02) 1.46b

Corsi blocks task [visuospatial short-term memory span; range: 3–9] 5.13 (0.54) 5.04 (0.68) 0.49
Counting span task [working memory span; range: 2–6] 3.80 (0.86) 4.08 (0.85) −1.16
Go/No-Go task [discriminability index: hit rate minus false alarm rate] 0.72 (0.14) 0.71 (0.15) 0.40

Note. The two groups did not differ in any of the dependent variables and all participants performed in the normal range on the neuropsychological tests. Handedness
was assessed with the Edinburgh Handedness Inventory revised version (Dragovic, 2004a, 2004b; Oldfield, 1971); LQ= Laterality Quotient, −100 means complete
left-handedness, 100 means complete right-handedness.

a In the case of violating the assumption of normality, the Mann-Whitney U test was performed, and the U statistic is provided.
b In case of violating the assumption of homogeneity of variances, the robust Welch test of equality of means was performed, and the t statistic is provided.
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inclusion criteria, none of them reported a history of any neurological
and/or psychiatric condition, and none of them was taking any psy-
choactive medication. Half of the participants were randomly assigned
to the Structured-first group (n=25), while the other half was assigned
to the Unstructured-first group (n=25). The groups were differ-
entiated by which half of the experimental task they started with; this is
explained in the Procedure section below. Descriptive characteristics of
participants in the two groups and their performance on standard
neuropsychological tests are presented in Table 1. All participants
provided written informed consent before enrollment and received
payment (ca. 12 Euros) or course credit for taking part in the experi-
ment. The study was approved by the United Ethical Review Committee
for Research in Psychology (EPKEB) in Hungary and was conducted in
accordance with the Declaration of Helsinki.

2.2. Experimental task

2.2.1. The Alternating Serial Reaction Time (ASRT) task
Implicit acquisition of second-order transitional probabilities was

measured by a modified version of the ASRT task (Howard & Howard,
1997; Nemeth et al., 2010; Takács et al., 2018), which was optimized
for a future fMRI study using a block design. In this task, a stimulus (a
dog's head) appeared in one of four horizontally arranged empty circles
on the screen (see Fig. 1C). Participants were instructed to press as
quickly and accurately as possible one of the four response keys (Q, Y,
M, or, O on a QWERTZ keyboard) that corresponded to the position of
the stimulus (Q= leftmost position [left index finger], Y= second
position from left to right [left thumb], M= third position from left to
right [right thumb], O= rightmost position [right index finger]). In
this task version, participants were clearly informed about the unusual
mapping between spatial positions and response keys in the task in-
struction. During a practice phase with at least two mini-blocks of fif-
teen random trials each, participants had the chance to practice these
stimulus-response mappings until they felt confident in proceeding to
the main task. (The experimenters also required them to achieve 98%
accuracy at least in the final mini-block).

In the ASRT task, unbeknownst to participants, the stimuli are
presented according to an eight-element sequence, within which pre-
determined/pattern (P) and random (r) elements alternate with one
another (Howard & Howard, 1997). For instance, 2 – r – 1 – r – 3 – r – 4
– r is one of the sequences, where numbers denote the four pre-
determined positions on the screen from left to right, and rs denote the
randomly chosen positions out of the four possible ones (see Fig. 1A).
There are 24 permutations of the four positions that could determine
the applied sequence; however, because of the continuous presentation
of the stimuli, there are only six unique permutations: 1 – r – 2 – r – 3 – r –
4 – r, 1 – r – 2 – r – 4 – r – 3 – r, 1 – r – 3 – r – 2 – r – 4 – r, 1 – r – 3 – r – 4
– r – 2 – r, 1 – r – 4 – r – 2 – r – 3 – r, and 1 – r – 4 – r – 3 – r – 2 – r (see
also Figs. S1–S2). Note that each of these six permutations can start at
any position; e.g., 1 – r – 3 – r – 4 – r – 2 – r and 2 – r – 1 – r – 3 – r – 4 – r
are identical sequence permutations.

The alternating regularity yields a probability structure in which
some chunks of three successive trials (triplets) occur more frequently
than others. This characteristic of the task ensures that sensitivity to a
biased distribution of triplets can be quantified. In the case of the 2 – r –
1 – r – 3 – r – 4 – r sequence, 2 – X – 1, 1 – X – 3, 3 – X – 4, and 4 – X – 2
triplets (X denotes the middle trial of the triplet) occur frequently since
these triplets could have P – r – P or r – P – r structure. Meanwhile, for
instance, 1 – X – 2 and 4 – X – 3 triplets occur less frequently since they
could only have a r – P – r structure (see Fig. 1A). The former triplets are
referred to as high-probability triplets, while the latter ones are referred
to as low-probability triplets (e.g., Nemeth & Janacsek, 2011; Nemeth,
Janacsek, Polner, & Kovacs, 2013). The construction of triplets could be
considered as a method for identifying the hidden probability structure
of the ASRT task. Namely, the final trial of a high-probability triplet is a
probable (predictable) continuation for the first trial of the triplet,

while the final trial of a low-probability triplet is a less probable con-
tinuation. For instance, in the case of the above-mentioned sequence, if
the first trial of a triplet is position 3, it is more likely (with 62.5%
probability) to be followed by position 4 as the third trial than either
position 1, 2, or 3 (with 12.5% probability each). Each trial (stimulus) is
categorized as either the third trial of a high- or a low-probability tri-
plet. Accordingly, the construction of triplets is applied as a moving
window throughout the entire stimulus set: The third trial of a triplet is
also the second trial of the following triplet, and so on; thus, all stimuli
are categorized this way (Kóbor et al., 2018; Kóbor, Janacsek, Takács, &
Nemeth, 2017; Szegedi-Hallgató et al., 2017). There are 64 possible
triplets in the task: 16 of them are high-probability triplets, and 48 are
low-probability ones. With respect to the unique triplets, the third trials
of high-probability triplets are five times more predictable based on the
first trials than those of the low-probability triplets (see Figs. S1–S2).

2.2.2. Generation and selection of the unstructured sequences
Besides the structured ASRT sequences that included the alternating

regularity, unstructured sequences were used, in which the alternating
regularity was absent. The unstructured sequences had to meet two
requirements. First, unstructured sequences had to contain the same 64
triplets as the structured sequences; however, the probability of oc-
currence of each unique triplet type had to be equal. Therefore, each of
the 64 triplets had to occur 30 times in any of the unstructured se-
quences but without the presence and repetition of the alternating
regularity (1920 triplets in total, see the second requirement). In this
way, unstructured sequences could also be considered as pseudor-
andom sequences with the constraint that all triplets occurred with
equal probability (25%). Second, unstructured sequences had to contain
the same number of trials as structured sequences because they de-
termined stimulus presentation in an equal number of blocks. This
meant the presentation of altogether 1920 triplets distributed over 48
blocks with 40 triplets in each, respectively (see below). For this pur-
pose, without the use of the alternating regularity, several trial sets were
generated in MATLAB 2015a (The MathWorks Inc., Natick, 224 MA,
USA). Particularly, by randomly changing one trial of the trial sets at a
time, the trial set minimizing the deviation from the optimal 30 times of
occurrence was selected (the maximal error was set to two). Using this
algorithm, a dozen trial sets satisfying this criterion were kept.

These trial sets were then subjected to three further constraints: (1)
the maximal repetition of a unique triplet in any of the blocks could be
no more than four; (2) the maximal immediate repetition of a trial
[position] could be no more than five across the entire trial set; (3) in
larger time bins (16 blocks) of the unstructured trial set, the overall
occurrence probability of triplets that can be categorized as high- vs.
low-probability in the structured ASRT sequences should approximate
25% and 75%, respectively, since there are 16 unique high-probability
and 48 unique low-probability triplets for a given ASRT sequence (see
above the ASRT task description). This third constraint ensured that at
the level of unique triplets, the transitional probabilities were equal. Six
of the trial sets were appropriate regarding constraints (1) and (2).
Stimuli of these six trial sets were categorized into triplets following
either of the six unique structured ASRT sequences (see Fig. 1B); and,
constraint (3), i.e., the ratio of the high- and low-probability triplets,
was checked on these categorized trial sets. Finally, altogether 19 trial
sets satisfied all three constraints and were kept using as unstructured
sequences.

When assigning the structured ASRT and unstructured sequences to
participants, we ensured that the distribution of the six unique ASRT
sequence types was even across the two groups. The 1 – r – 2 – r – 3 – r –
4 – r sequence was used five times, and all the other sequences were
used four times in each of the groups (i.e., for 25 participants per
group). For each participant, the selection of a sequence from the six
unique types was pseudorandom. The applied files containing the
structured ASRT and unstructured sequences were matched one-to-one
across the two groups. Note that for each respective participant, at the
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level of unique triplets, the identified high- and low-probability triplets
were the same in the unstructured sequences as in the structured ASRT
sequences (see Fig. 1A–B). Indeed, the probability of triplets differed
only in the structured sequences and their probability was equal in the
unstructured sequences (see Figs. S1–S2). Meanwhile, in the remainder
of the paper, triplets in the unstructured sequences are still referred to
as either high- or low-probability according to their actual probability
in the structured sequences.

As a result of the procedure used for generating, selecting, and
matching the sequences, in the present sample, the distribution of high-
and low-probability triplets did not differ across the four stimulus po-
sitions either in the structured ASRT (χ2(3)= 4.86, p= .183) or in the
unstructured sequences (χ2(3)= 0.02, p= .999); in addition, these
associations between triplet distribution and stimulus position did not
differ across the sequence types (Wald χ2(3)= 2.34, p= .504). When
the high- and low-probability triplet categories were collapsed, the
distribution of stimulus positions across sequence types also did not
differ (χ2(3)= 1.56, p= .670). In this way, lower-level characteristics
of the sequences would not account for the assumed between-sequence
RT variations related to acquiring the second-order transitional prob-
ability structure (cf. Reed & Johnson, 1994).

2.3. Procedure

An experimental trial started with the presentation of the stimulus
at one of the four positions for 500ms. After stimulus offset, the image
of the four positions was displayed for 200ms. Then, the next trial
started, yielding a 700-ms-long inter-trial interval. The behavioral re-
sponse (keypress) was expected during the whole trial from stimulus
onset until the end of the trial (i.e., for altogether 700ms, see Fig. 1C).
These trial events were always the same with fixed durations, irre-
spective of whether participants provided correct, incorrect, or missing
response(s). In this task version, no feedback was presented as a func-
tion of the quality of the response. The lack of feedback presentation
and the fact that participants could proceed with the trial without
providing the correct response ensured that each trial and each block
had the same lengths, respectively. Importantly, only correctly re-
sponded trials were analyzed in the present study.

One block of the task contained 42 trials. There were 48 blocks with
the structured ASRT sequence and 48 blocks with the unstructured
sequence. In each of the structured blocks, the eight-element-long al-
ternating regularity repeated five times after two starter trials that were
not categorized as triplet elements (since also the foremost triplet
technically required three successive trials). The alternating regularity
was missing from the unstructured blocks, but, as in the structured
blocks, 40 triplets followed the two starter trials that were not cate-
gorized as triplet elements. After each block, participants received
feedback about their mean reaction time and accuracy in the given
block. The length of this between-blocks “rest period” with feedback
was jittered to be methodologically optimal for a future fMRI experi-
ment (it lasted for 10, 12, or 14 s [mean=12 s]). Altogether 96 blocks
were completed (4032 trials in total).

The Structured-first group completed 48 structured blocks followed
by 48 unstructured blocks. The Unstructured-first group completed 48
unstructured blocks followed by 48 structured blocks. All participants
proceeded with the task from its structured/unstructured to un-
structured/structured half without receiving information about any
change in the task (see Fig. 1D). Two breaks (1.5 mins each) were in-
serted after the 32nd and 64th blocks, in which participants could have
had a short rest. The experimental procedure lasted about 1.5 h in-
cluding the administration of a short post-task questionnaire. This as-
sessed participants' task-solving strategies and their consciously acces-
sible knowledge about the structure of the task and the transitional
probabilities (Kóbor et al., 2017; Nemeth, Janacsek, & Fiser, 2013;
Song, Howard, & Howard, 2007). Namely, participants were asked
whether (1) they followed any task-solving strategies to improve their

performance, (2) if yes, to what extent they found it efficient; (3)
whether they noticed anything special regarding the task; (4) whether
they noticed any regularity in the sequence of stimuli; and (5) whether
they noticed any substantial change in the sequence of stimuli. The first
author (AK) qualitatively rated participants' answers to questions (1)
and (2), and rated the answers to questions (3), (4), and (5) on a 5-item
scale (1= “Nothing noticed”, 5= “Total awareness”). None of the
participants reliably reported noticing the alternating regularity, the
presence and repetitions of the triplets, or any change in the stimulus
sequence between the task halves (the mean score for the three ques-
tions was 1.006, SD=0.082). Although participants reported several
strategies they found somewhat facilitating (e.g., counting the stimuli,
fixating to the center of the screen, catching the rhythm of trials by
silently singing, bouncing their legs, or moving their fingers), these
were unrelated to the hidden structure of the task. Only one participant
reported trying to search for some “logic” in the sequence but as a
subjectively inefficient strategy.

The current ASRT task version was written in and controlled by
MATLAB 2015a using the Psychophysics Toolbox Version 3 (PTB-3)
extensions (Brainard, 1997; Pelli, 1997). Stimuli were displayed on a
15″ LCD screen at a viewing distance of 100 cm. Neuropsychological
tests (see Participants section) were administered a few days before the
main experiment during a one-hour-long session.

2.4. Statistical analysis

Following the standard data analysis protocol established in pre-
vious studies using the ASRT task (e.g., Howard & Howard, 1997; Kóbor
et al., 2017; Nemeth, Janacsek, Polner, & Kovacs, 2013; Song et al.,
2007; Virag et al., 2015), two types of low-probability triplets – re-
petitions (e.g., 1 – 1 – 1, 4 – 4 – 4) and trills (e.g., 1 – 2 – 1, 2 – 4 – 2, see
Fig. 1B) – were eliminated from the analyses because preexisting re-
sponse tendencies have often been shown to them (Howard et al.,
2004). In addition, eight-block-long units of the task were collapsed
into larger time bins labeled as epochs, yielding altogether six structured
epochs (containing the ASRT sequence) and six unstructured epochs
(containing the unstructured sequence). From this point of view, while
the Structured-first group performed six structured epochs followed by
six unstructured epochs, the Unstructured-first group performed six
unstructured epochs followed by six structured epochs. Epochs are la-
beled consecutively in this paper (1, 2, etc.) within each sequence type.
For each participant and epoch, separately for high- and low-prob-
ability triplets, median RT was calculated only for correct responses.

Triplet learning on the RTs, i.e., faster RTs to high-probability than
to low-probability triplets, was first quantified with a four-way mixed
design analysis of variance (ANOVA) with Sequence (structured vs.
unstructured), Triplet (high- vs. low-probability), and Epoch (1–6) as
within-subjects factors and Group (Structured-first group vs.
Unstructured-first group) as a between-subjects factor. Second, to more
directly test the change in triplet learning as a function of the different
sequence types, three-way mixed ANOVAs with Triplet and Epoch as
within-subjects factors and Group as a between-subjects factor were
performed on the RTs related separately to the structured and un-
structured epochs. In all ANOVAs, the Greenhouse-Geisser epsilon (ε)
correction (Greenhouse & Geisser, 1959) was used when necessary.
Original df values and corrected (if applicable) p values are reported
together with partial eta-squared (ηp2) as the measure of effect size. LSD
(Least Significant Difference) tests for pairwise comparisons were used
to control for Type I error.

Regarding the possible experimental effects and their interpretation,
the Triplet main effect implies triplet learning (faster RTs to high- than to
low-probability triplets) and the Triplet ∗ Epoch interaction implies
changes in triplet learning as the task progresses, usually an increase
across epochs (e.g., Janacsek, Ambrus, Paulus, Antal, & Nemeth, 2015;
Kóbor et al., 2017; Nemeth et al., 2010; Nemeth, Janacsek, Polner, &
Kovacs, 2013; Takács et al., 2017; Tóth et al., 2017). The Epoch main
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effect implies general skill (RT) improvements reflecting more efficient
visuomotor and motor-motor coordination due to practice (Hallgató
et al., 2013; Juhasz, Nemeth, & Janacsek, 2019). The prior knowledge
effect is indicated by the Sequence ∗ Triplet ∗ Group and/or the Se-
quence ∗ Triplet ∗ Epoch ∗Group interactions: Namely, if prior knowl-
edge of the transitional probabilities influences later stimulus proces-
sing, triplet learning per se or its change over time should differ
between structured and unstructured epochs and across the two groups
experiencing the structured and unstructured epochs in the opposite
order. In the Results section below, we use these terms when describing
the observed statistical effects.

To follow up the prior knowledge effect, triplet learning scores in
the structured and unstructured epochs were calculated as the RT dif-
ference between the triplet types (RTs to low-probability triplets minus
RTs to high-probability triplets). Overall triplet learning scores were
considered for the structured and unstructured epochs, respectively, as
the mean of the scores calculated for each of the six epochs. The overall
triplet learning scores for the structured and unstructured epochs were
first compared within each group. Then, these scores were compared
between the groups. Finally, the change in mean RTs across the struc-
tured and unstructured epochs separately for the high- and low-prob-
ability triplets was compared within each group.

To test the persistence of the prior knowledge effect, triplet learning
scores were further analyzed in the Structured-first group. To find a
balance between increased power and capturing the time course of
persistence, triplet learning scores were averaged over two consecutive
epochs (i.e., “thirds”) of the structured and unstructured sequences,
respectively. Then, these scores were compared against zero in each
sequence type. Finally, these scores were compared between the cor-
responding thirds of the structured and unstructured sequences.

3. Results

3.1. Overall analysis

The Sequence (structured vs. unstructured) by Triplet (high- vs. low-
probability) by Epoch (1–6) by Group (Structured-first group vs.
Unstructured-first group) overall ANOVA on the RTs revealed the sig-
nificant main effects of Sequence, F(1, 48)= 6.77, p= .012,
ηp2= .124, Triplet, F(1, 48)= 45.90, p < .001, ηp2= .489, and Epoch,
F(5, 240)= 35.91, ε = .612, p < .001, ηp2= .428. As these main ef-
fects were qualified by significant higher-order interactions, only the
latter effects are detailed below.

3.1.1. Triplet learning
The Sequence ∗ Triplet, F(1, 48)= 22.92, p < .001, ηp2= .323,

and the Triplet ∗ Epoch, F(5, 240)= 2.42, p= .036, ηp2= .048, inter-
actions were significant, while the Sequence ∗ Triplet ∗ Epoch, F(5,
240)= 2.18, ε = .814, p= .072, ηp2= .043, interaction was a trend
level. These effects indicated that the change in triplet learning over the
course of the task differed between the structured and unstructured
epochs.

3.1.2. General skill improvements
The significant Sequence ∗Group, F(1, 48)= 69.87, p < .001,

ηp2= .593, and the Sequence ∗ Epoch ∗Group, F(5, 240)= 33.59,
ε = .706, p < .001, ηp2= .412, interactions showed that between-
groups differences emerged as a function of first experiencing the
structured or the unstructured half (i.e., six epochs) of the task.
Particularly, while the Structured-first group became increasingly faster
over the structured epochs due to practice and showed similar RTs over
the unstructured epochs, this was reversed in the Unstructured-first
group, where increasingly faster RTs were observed over the un-
structured epochs and similar RTs over the structured epochs (see
Fig. 2). This effect suggests that general skill improvements were found
in the first half of the task, irrespective of whether this half was

structured or unstructured and the distribution of triplets. Relatedly,
the following nonsignificantmain effects and interactions emerged: main
effect of Group, F(1, 48)= 1.96, p= .168, ηp2= .039, Epoch ∗ Group
interaction, F(5, 240)= 0.47, ε= .612, p= .706, ηp2= .010, and Se-
quence ∗ Epoch interaction, F(5, 240)= 1.20, ε = .706, p= .313,
ηp2= .024.

3.1.3. Prior knowledge effect
The significant Triplet ∗Group interaction, F(1, 48)= 4.92,

p= .031, ηp2= .093, was qualified by the significant
Sequence ∗ Triplet ∗ Group interaction, F(1, 48)= 7.96, p= .007,
ηp2= .142. Importantly, the latter indicated that the difference in tri-
plet learning between the structured and unstructured epochs varied
across the groups, which is regarded as the prior knowledge effect (see
Fig. 2). This effect did not reliably vary as a function of practice with
the task, as shown by the nonsignificant Se-
quence ∗ Triplet ∗ Epoch ∗Group interaction, F(5, 240)= 0.61,
ε = .814, p= .661, ηp2= .012. Relatedly, the modulating effect of
structured vs. unstructured epochs on triplet learning was also sup-
ported by the significant Triplet ∗ Epoch ∗ Group interaction, F(5,
240)= 2.31, p= .045, ηp2= .046, showing that if both task halves
with structured and unstructured epochs were collapsed, the trajectory
of triplet learning would differ across the groups.

3.2. Follow-up of the prior knowledge effect

To follow up the prior knowledge effect, pairwise comparisons
contrasting the overall triplet learning scores were performed (see
Fig. 3). In the Structured-first group, the triplet learning score was si-
milar between the structured and unstructured epochs (6.3ms vs.
4.6 ms, p= .171). Thus, the behavioral effect of biased triplet prob-
abilities (i.e., high- and low-probability triplets in the structured
epochs) persisted even after this bias was eliminated (i.e., the unique
triplets occurred with equal probability in the unstructured epochs).
Meanwhile, in the Unstructured-first group, the triplet learning score
was significantly higher over the structured epochs than over the un-
structured epochs; in the latter, it was virtually zero (5.9ms vs.
−0.4ms, p < .001). In addition, the triplet learning score did not
differ between the groups over the structured epochs (6.3ms vs. 5.9 ms,
p= .840), but it was significantly higher in the Structured-first group
than in the Unstructured-first group over the unstructured epochs
(4.6ms vs. −0.4ms, p < .001).

In the Structured-first group, mean RTs on the high- and low-
probability triplets decreased from the structured to the unstructured
epochs to a similar extent (high-probability triplets: 392ms to 383ms
[Diff= 9ms], p= .003; low-probability triplets: 399ms to 388ms
[Diff= 11ms], p < .001; the difference in RT decrease between high-
and low-probability triplets was not significant, p= .226), indicating
only general skill improvements from the structured to the unstructured
epochs. In contrast, in the Unstructured-first group, a larger RT de-
crease was found on the high-probability triplets (388ms to 366ms
[Diff= 22ms], p < .001) than on the low-probability ones (388ms to
372ms [Diff= 16ms], p < .001; the difference in RT decrease be-
tween high- and low-probability triplets was significant, p < .001)
from the unstructured to the structured epochs, indicating triplet
learning over the structured epochs.

3.3. Persistence of the prior knowledge effect

To test the persistence of the prior knowledge effect in the
Structured-first group, triplet learning scores were averaged over
epoch1 and epoch2 (Me1e2), epoch3 and epoch4 (Me3e4), epoch5 and
epoch6 (Me5e6), respectively. These new scores were compared against
zero and between the structured and unstructured sequences. The ob-
tained results are presented in Fig. 4A and detailed below.

The extent of triplet knowledge differed significantly from zero over
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all thirds of the structured and unstructured sequences (all ts≥ 2.11,
ps≤ .045), except for the very first one at the beginning of the task (t
(24)= 1.26, p= .221). This indicated the presence of triplet knowl-
edge from the second third of the structured sequence throughout the
task. Triplet knowledge did not differ between the unstructured and
structured sequences during the first (Me1e2: 6.0 ms vs. 3.2ms, respec-
tively, t(24)=−0.96, p= .349) and second thirds of the task (Me3e4:
5.1 ms vs. 7.9ms, respectively, t(24)= 1.35, p= .190). In contrast,

triplet knowledge over the last third of the unstructured sequence was
significantly lower than over the last third of the structured sequence
(Me5e6: 2.8ms vs. 7.7 ms, respectively, t(24)= 2.46, p= .022). The
decreasing extent of triplet knowledge is also noticeable in Fig. 2B as
RTs to high- and low-probability triplets approaching one another in
the last third of the unstructured sequence. These results altogether
suggest that participants acquired the triplet knowledge in the second
third of the structured sequence; and, after biased probabilities had
been removed from the stimulus stream, the update of the triplet
knowledge was evident in behavior only in the final third of the un-
structured sequence.

3.4. Separate analysis of the structured and unstructured epochs

The Triplet by Epoch by Group ANOVA on the RTs related to the
structured epochs revealed the significant main effects of Triplet, F(1,
48)= 56.00, p < .001, ηp2= .538, Epoch, F(5, 240)= 27.54,
ε = .700, p < .001, ηp2= .365, and Group, F(1, 48)= 9.25, p= .004,
ηp2= .162. These effects were qualified by the significant
Triplet ∗ Epoch, F(5, 240)= 4.55, p= .001, ηp2= .087, and
Epoch ∗ Group, F(5, 240)= 15.77, ε = .700, p < .001, ηp2= .247, in-
teractions, indicating that triplet learning increased with practice and
general skill improvements differed between the groups (see Fig. 2A,
D). Triplet learning and its change over the structured epochs did not
differ between the groups, as shown by the nonsignificant Tri-
plet ∗Group, F(1, 48)= 0.04, p= .840, ηp2= .001, and Tri-
plet ∗ Epoch ∗ Group interactions, F(5, 240)= 1.54, p= .177,
ηp2= .031.

The same Triplet by Epoch by Group ANOVA on the RTs related to
the unstructured epochs revealed the significant main effects of Triplet, F
(1, 48)= 10.61, p= .002, ηp2= .181, and Epoch, F(5, 240)= 13.45,

Fig. 2. Temporal dynamics of triplet learning across groups and sequence types. Group-average RTs (A–B: Structured-first group; C–D: Unstructured-first group) for
correct responses as a function of time bin (epochs 1–6) and triplet type (currently/previously/upcoming high- vs. low-probability triplets, according to their actual
probability in the given sequence and the order of the sequence in the given group) are presented in the structured (A, D) and unstructured (B, C) epochs. Error bars
denote standard error of mean.

Fig. 3. Persistence of the acquired implicit knowledge. Group-average overall
(mean) triplet learning scores (RTs to low- minus RTs to high-probability tri-
plets) are presented in the Structured-first and Unstructured-first groups for the
structured and unstructured epochs, respectively. Error bars denote standard
error of mean.
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ε = .605, p < .001, ηp2= .219, while the Triplet ∗ Epoch interaction
was not significant, F(5, 240)= 0.24, p= .945, ηp2= .005.
Importantly, the significant Triplet ∗Group interaction, F(1,
48)= 15.23, p < .001, ηp2= .241, showed that triplet learning was
larger in the Structured-first group than in the Unstructured-first group
(4.6 ms vs. -0.4ms) over the unstructured epochs, but this did not
change with time (nonsignificant Triplet ∗ Epoch ∗Group interaction, F
(5, 240)= 1.33, p= .251, ηp2= .027). The trajectory of general skill
improvements differed between the groups (significant Epoch ∗Group
interaction, F(5, 240)= 16.12, ε = .605, p < .001, ηp2= .251, see
Fig. 2B, C), and the groups did not differ in overall RT (nonsignificant
Group main effect, F(1, 48)= 0.09, p= .764, ηp2= .002) over the
unstructured epochs.

3.5. Analysis of accuracy

Since only the RTs of the correctly responded trials were analyzed, it
should be ensured that the two groups did not differ in accuracy.
Therefore, the Sequence by Triplet by Epoch by Group ANOVA was also
conducted on accuracy data (calculated as the ratio of correct responses
for each participant and epoch, separately for high- and low-probability
triplets). As indicated by the nonsignificant main effect of Group, F(1,
48)= 1.53, p= .221, ηp2= .031, the two groups were comparable in
overall accuracy (Structured-first group: 86.4%; Unstructured-first
group: 88.1%).

Although the analysis of accuracy is not the focus of this study, for
the sake of completeness, we provide the other significant main effects
and interactions revealed in this ANOVA, but these are not detailed.
The main effects of Triplet, F(1, 48)= 25.25, p < .001, ηp2= .345,
and Epoch, F(5, 240)= 7.42, ε = .639, p < .001, ηp2= .134, were
significant. Relatedly, the Sequence ∗ Triplet, F(1, 48)= 4.91, p= .032,

ηp2= .093, and the Sequence ∗ Triplet ∗ Epoch, F(5, 240)= 3.49,
p= .005, ηp2= .068, interactions were also significant. In brief, re-
sponses to high-probability triplets were more accurate than those to
low-probability ones. However, while this difference in accuracy in-
creased over the structured epochs, it gradually decreased over the
unstructured epochs.

The Sequence ∗Group, F(1, 48)= 9.75, p= .003, ηp2= .169, and
the Sequence ∗ Epoch ∗ Group, F(5, 240)= 7.44, ε = .524, p < .001,
ηp2= .134, interactions were significant, as well. The
Sequence ∗ Triplet ∗ Epoch ∗Group interaction was a trend level, F(5,
240)= 1.92, p= .091, ηp2= .039. The latter effect indicated that the
above-described Sequence ∗ Triplet ∗ Epoch interaction was mostly
driven by the responding pattern of the Structured-first group.
Particularly, in the Structured-first group, while the difference in ac-
curacy between high- and low-probability triplets increased over the
structured epochs, it tended to decrease over the unstructured epochs.
In the Unstructured-first group, accuracy between high- and low-
probability triplets differed only over the structured epochs.

The results of comparing triplet knowledge measured by accuracy
calculated for each third of each sequence in the Structured-first group
were in line with these effects (see Fig. 4B). The extent of triplet
knowledge differed significantly from zero over the middle and last
thirds of the structured sequence and over the first third of the un-
structured sequence (all ts≥ 4.24, ps < .001). Accordingly, triplet
knowledge tended to be higher over the first third of the unstructured
sequence than over the first third of the structured sequence (Me1e2:
2.7% vs. 0.6%, respectively, t(24)=−1.77, p= .090). In contrast,
triplet knowledge was significantly lower over the last two thirds of the
unstructured sequence than over the corresponding thirds of the
structured sequence (Me3e4: 0.7% vs. 2.9%, respectively, t(24)= 2.55,
p= .018; Me5e6: 0.7% vs. 2.7%, respectively, t(24)= 2.91, p= .008).
These results suggest that updating the triplet knowledge after biased
probabilities had been removed was as fast as acquiring that knowledge
in the first place.

4. Discussion

4.1. Summary of results

This study investigated whether the implicitly acquired knowledge
of a second-order transitional probability structure influenced the
processing of unpredictable transitional probabilities across phases of a
learning task. To this end, the changes in RTs to more probable and less
probable short-range transitional probabilities (triplets) embedded in a
stimulus sequence were tracked. The stimulus sequence changed over
the experimental task because biased triplet probabilities were present
in one-half of the task blocks and absent in the other half, without
explicitly denoting this change at the surface level.

In line with our assumptions, while the participant group com-
pleting the structured half of the task first showed triplet learning
across both the structured and unstructured blocks, the participant
group completing the unstructured half first showed triplet learning
only over the structured blocks and not over the unstructured blocks.
Based on the performance of the group completing the structured half
of the task first, it seems that the already acquired implicit knowledge
of the short-range transitional probabilities persisted across the learning
phases, even after the bias in the transitional probabilities had been
removed. This persistence characterized two-thirds of the unstructured
blocks. Then, the update of prior knowledge became evident in RT
triplet learning over the last third of these blocks. The results also imply
that the updating process took longer than the primary acquisition,
which required only one-third of the structured blocks. Based on the
performance of the group completing the unstructured half of the task
first, it seems that the protracted exposure to unbiased transitional
probabilities did not negatively influence the acquisition of the biased
transitional probabilities later in the task. Therefore, any potential

Fig. 4. Temporal characteristics of persistency. In the Structured-first group,
group-average triplet knowledge scores measured by RTs (A) and accuracy (B)
averaged over two consecutive epochs (i.e., “thirds”) of the structured and
unstructured sequences, respectively, are presented. Error bars denote standard
error of mean. White asterisks denote that the given score significantly differs
from zero (p < .050).
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expectation or knowledge built upon the pseudorandom stimuli was
also updated to promote the acquisition of the newly experienced
biased transitional probabilities.

4.2. Persistent implicit statistical knowledge

Participants completing the structured blocks first similarly per-
ceived the relations of stimuli in both types of blocks. That is, their
perception could have been influenced by the primarily experienced
transitional probability structure. In other words, because of the task
environment, they might have worked up a tendency towards pattern
detection, which could have resulted in forming implicit expectations
about the upcoming stimuli. Then, these expectations remained per-
sistent throughout the task.

To explain the observed persistency, one should consider the char-
acteristics of the given learning environment. In the present task, ac-
quisition happened in an incidental and implicit manner: our partici-
pants did not know that they were in a learning situation, they did not
have information on whether the sequence of stimuli was random or
followed any underlying pattern, the critical change point between the
task halves remained unnoticed, and they were not required to actively
or explicitly predict the probability of the next stimulus. In addition,
they did not receive feedback (or any reward) on the correctness of
their responses. Meanwhile, participants were instructed to maintain a
certain level of speed and accuracy, but, for them, this was the only
explicit goal of the task. They successfully achieved this goal, as shown
by the behavioral results indicating general skill improvements due to
practice. This performance improvement was mostly independent of the
change in the underlying probability structure. Therefore, it seems that
as participants had gained confidence in task solving, they followed
their already established, automatized strategy on stimulus processing
and responding (cf. Karuza et al., 2016). As the surface of the task re-
mained consistent, they had no reason to doubt their current implicit
beliefs about the probability of the upcoming stimulus (cf. Zinszer &
Weiss, 2013). This might have promoted the persistently faster pro-
cessing of the stimuli that occurred with high probability only in the
previous task half.

From a broader perspective, it could be adaptive that the acquired
representations of the structured stimuli remain persistent over time
and robust to change. This way, the representations could remain
sensitive to the primary transitional probability structure later in time,
although other structures are simultaneously acquired (cf. Gebhart
et al., 2009; Qian et al., 2012; Todd et al., 2011; Todd et al., 2020). This
might be even more pronounced if no explicit cue or performance de-
terioration signals the need for an updating process. Supporting this
notion, during the acquisition of two different statistical structures, a
tendency towards neural efficiency coupled with diminished sampling
of the input underlying the second statistical structure has been shown
(Karuza et al., 2016). Accordingly, we assume that such a “processing
efficiency” might explain our results on the transition from structured
to pseudorandom stimuli.

4.3. Temporal characteristics of persistency

It has already been demonstrated that the primarily acquired im-
plicit knowledge of the biased distribution of transitional probabilities
remains stable over longer time periods, such as one week (Nemeth &
Janacsek, 2011) or even one year (Romano, Howard, & Howard, 2010).
Moreover, this knowledge is resistant to short periods of interfering
sequences (that partially overlap with the primarily practiced sequence)
not only after 24 h but also after one year (Kóbor et al., 2017). The
present study could extend these results on persistency as follows. If
there is an essential change in the stimulus probabilities characterizing
the given environment, the duration required for updating the existing
probabilistic representations seems to be longer than the duration re-
quired for acquiring these representations, at least at the behavioral

level.
In detail, for participants completing the structured blocks first,

acquiring the biased probability structure required one-third of the
structured sequence; then, this knowledge remained persistent until the
end of the task. However, participants were also sensitive to the lack of
bias or the altered probability of the unique triplets over the un-
structured sequence. Particularly, while triplet knowledge measured by
RTs was comparable over the first two-thirds of the structured vs. un-
structured sequences, triplet knowledge was decreased in the last third
of the unstructured sequence as compared with the structured se-
quence. Thus, participants needed to complete two-thirds of the un-
structured sequence to update their existing knowledge of the prob-
ability structure, which was acquired after the completion of only one-
third of the structured sequence. When triplet knowledge was defined
by differences in accuracy, updating was more pronounced and became
evident earlier: Triplet knowledge was lower over the middle and last
thirds of unstructured sequence than that of the structured sequence.
Indeed, after one-third of the task blocks, triplet knowledge abruptly
increased when the bias was present and dropped when the bias was
eliminated. Overall, the results of participants completing the struc-
tured blocks first might indicate an “implicit need” for updating the
prior representations of the probability structure. At the same time,
these results also highlight the constraining effect of the primarily ac-
quired, possibly overlearned statistical structure in the adaptation to a
new environment (cf. Bulgarelli & Weiss, 2016; Gebhart et al., 2009).

It has been suggested that successful adaptation to a range of similar
tasks requires the forgetting or weakening of some specific features of
the already acquired representations (Robertson, 2018). As described
above, in the present case, this would have been the forgetting of the
initial triplet probability information when starting the other task half.
It is plausible to assume that after having had performed even more
unstructured blocks, participants would have learned that the pre-
viously high-probability triplets no longer occurred with higher prob-
ability than the previously low-probability ones, and, therefore, the
initial triplet probability information would have been forgotten or
“unlearned”. However, in accordance with the findings of Szegedi-
Hallgató et al. (2017) indicating the coexistence of the previously and
the recently acquired implicit knowledge of the changed statistical
structure in the ASRT task, it is more likely that, at the level of triplet
representations, no “extinction” or “unlearning” happened. Evidence
from human and animal studies suggests that adaptation to different
contexts does not involve the complete removal of representations of
the previous context (Bulgarelli & Weiss, 2016; Gordon, Bilolikar,
Hodhod, & Thomas, 2020; Qian et al., 2012). Instead, the formation of
new representations, the reconsolidation or inhibition of the previously
created ones, and the switching between multiple representations seem
more likely (Chandler & Gass, 2013). Either of the latter processes
supports the interpretation that in the present experiment, stimulus
processing was determined by prior representations of the transitional
probability structure that changed slowly with accumulating experi-
ences about the ongoing stimulus context (cf. Daw et al., 2011; Griffiths
et al., 2008; Shohamy & Daw, 2015). The exact mechanisms by which
this slow change might have occurred has yet to be determined, and
formal models should be developed to investigate the temporal dy-
namics of these mechanisms (cf. R. Frost et al., 2019; Karuza et al.,
2016; Qian et al., 2012; Zhao et al., 2019).

4.4. Exposure to pseudorandom stimuli

Over the structured blocks, participants completing the un-
structured blocks first showed a triplet learning trajectory comparable
to that of the other group (nonsignificant Triplet ∗ Group and
Triplet ∗ Epoch ∗ Group interactions, see also Fig. 2A, D). With an un-
signaled change in the probability structure, the pervasive experience
with pseudorandom stimuli could have also caused an entrenchment
effect. In this case, these participants could have started the acquisition
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of the biased probability structure with some disadvantage or could
have showed the complete lack of triplet learning when exposed to the
structured blocks. Instead, according to the results, it seems that prior
experience with equal transitional probabilities did not negatively in-
fluence the further acquisition of the biased probability structure.

As an explanation for the triplet learning performance of these
participants, it is conceivable that they might have primarily estab-
lished a wider hypothesis space about the properties of the stimuli,
since they could not extract complex transitional probabilities over the
unstructured blocks. Such representations could be useful if the stimuli
considered as random in the given environment with limited observa-
tions in fact followed some structure. With a wider hypothesis space,
stimulus processing and acquisition might have proceeded flexibly,
enabling the acquisition of the statistical structure when it was indeed
present. In support of this idea, similar results were found in a binary
choice task testing probability-matching behavior (i.e., matching choice
probabilities to outcome probabilities instead of the optimal max-
imizing strategy). In that task, the transition between the no pattern (no
serial dependence in the sequence) and pattern half (repeating de-
terministic sequence) was clearly indicated. Results showed that par-
ticipants who were more prone to search for patterns in the no pattern
half of the task showed higher accuracy in the pattern half as compared
with those participants who were less prone to follow any complex
search strategy (Gaissmaier & Schooler, 2008).

4.5. Perception and acquisition of changing statistical structures

Earlier studies using different paradigms showed mixed results on
how individuals updated their already acquired knowledge of the un-
derlying probabilities when these probabilities changed. It was found
previously that individuals accurately estimated the hidden probability
parameter of a nonstationary stochastic environment as well as quickly
updated their estimates (Gallistel, Krishan, Liu, Miller, & Latham,
2014). In this task, participants assessed the proportion of one stimulus
category and had the opportunity to update their estimates on a trial-
by-trial basis. Importantly, at the beginning of the task, they were told
that probabilities could unexpectedly change. Similarly, in another
experiment where subsequent numerical values had to be predicted,
participants updated each prediction as a function of their explicitly
denoted prediction errors. By tracking the prediction errors, after an
unsignaled change in the distribution of the values during the task,
participants could adjust their predictions (Nassar, Wilson, Heasly, &
Gold, 2010). The quick adaptation to changing probabilities was also
observed when choosing between two options associated with different
probabilities and reward magnitudes, i.e., with clear feedback signals
(Behrens, Woolrich, Walton, & Rushworth, 2007).

These studies altogether suggest that effective decision making ne-
cessitates the continuous tracking of the environmental probabilities
and the evaluation of each signal that possibly implies a change in these
probabilities. However, these observations have been derived from si-
tuations in which active agents were required to make explicit decisions
that pertained directly to the probabilistic features of the ongoing task
modeling volatile environments. The latter characteristics possibly ex-
plain why the present results contrast with earlier findings. The ASRT
task used in this study should not be considered as a(n) (explicit) de-
cision-making or probabilistic reinforcement-learning paradigm in
which quick updating of beliefs could happen (Bulgarelli & Weiss,
2016). Instead, the type of learning that this task measures more likely
fits into the category of unsupervised statistical learning (Fiser & Aslin,
2001). It intends to model a stable stimulus environment with low
volatility where hidden probabilistic regularities occur interspersed
with noise in the form of nonadjacent transitional probabilities. These
features could contribute to the persistence of the acquired regularities
rather than to the abrupt change of the related representations.

A paradigm more similar to the ASRT task is the classical serial
reaction time (SRT) task (e.g., Nissen & Bullemer, 1987), where a

repeating deterministic sequence guides stimulus presentation in the
structured blocks. In the SRT, performance usually deteriorates on the
unstructured blocks with random or pseudorandom stimuli, meaning
that RTs suddenly increase compared to the level reached by the end of
the last structured block. Meanwhile, in the present study, participants
completing the structured blocks first showed persistent triplet learning
performance over several blocks of pseudorandom stimuli in terms of
RTs. It is possible that in the case of probabilistic sequences (used in the
ASRT task) as opposed to deterministic ones, the acquisition processes
are more sensitive to smooth transitions between stimuli or chunks of
stimuli. This specific sensitivity evolved in participants practicing the
structured blocks first might have led the extraction of triplets even
over the unstructured blocks of the task (see also the Transfer of prior
knowledge section). In addition, as opposed to deterministic and
pseudorandom sequences, the probabilistic sequence might have pro-
vided learnable but sufficiently novel information on a trial-by-trial
basis (Maheu, Meyniel, & Dehaene, 2020), promoting the relatively fast
acquisition of the statistical structure as well as its persistence.

Other studies using linguistic stimuli with transitional probabilities
have started to investigate how to attenuate the persistent effect of the
already acquired statistical representations (Weiss, Schwob, &
Lebkuecher, 2019). By presenting two artificial speech streams in
smaller alternating blocks, individuals were able to learn both statis-
tical structures underlying the input streams, without using explicit
contextual cues (e.g., change in speaker) denoting the transitions across
streams (Zinszer & Weiss, 2013). However, if statistically incongruent,
interfering statistical structures determined the stimuli, the formation
of multiple representations was limited (Weiss et al., 2009). Im-
portantly, if individuals were exposed to the second statistical structure
immediately after learning had occurred on the first structure presented
for a restricted time, both structures were learned. In addition, the
different contextual cues did not further enhance performance
(Bulgarelli & Weiss, 2016). Altogether, it seems that overlearning the
first statistical structure and low variability in how the statistical
structures are presented could decrease the attention paid to the input
stream, thereby deteriorating the acquisition of the new structure
(Bulgarelli & Weiss, 2016). This explanation might be feasible in the
case of our findings; however, it should be noted that these studies
tested the transition(s) between different statistical structures in the
linguistic domain, while our study investigated the unsignaled transi-
tion from the presence to the absence of a structure in the visuomotor
domain. Furthermore, the second-order nonadjacent transitional prob-
abilities applied in the present task differed in structure and complexity
from those transitional probabilities applied earlier. Nevertheless, we
can contribute to this research field by confirming the presence of the
primacy effect in a unique multi-context unsupervised learning en-
vironment and, this way, by extending the validity of this effect to
unlearnable pseudorandom stimuli.

4.6. Transfer of prior knowledge

Considering the underlying processes, the present findings raise the
question of whether learning transfer has occurred across the task
halves. Studies testing the transfer (generalization) of perceptual and
motor knowledge usually compare performance observed during a
training task with performance observed during a similar testing con-
dition, such as in a familiar task with new parameters or in a related but
novel task. Successful transfer occurs if the experience gathered on the
training task appears as a performance gain on the novel task (e.g.,
Dorfberger, Adi-Japha, & Karni, 2012; Karni, 1996; Karni & Bertini,
1997; Korman, Raz, Flash, & Karni, 2003).

In the statistical-sequence learning literature, the implicit transfer of
both the perceptual and the motor sequence was shown in a version of
the ASRT task that, in the testing phase, included a novel, previously
unpracticed alternating motor or perceptual sequence with the same
type of stimuli (Hallgató et al., 2013; Nemeth et al., 2009). In a
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deterministic SRT task, the second-order transitional probability
structure was implicitly transferred from the training to the testing
phase, where the perceptual features of the stimuli differed (i.e., first-
order structure: locations arranged horizontally or according to a
square, Huang et al., 2017). Likewise, experiments using the artificial
grammar learning task found the implicit transfer of sequential de-
pendencies to novel vocabularies (Tunney & Altmann, 2001). Relatedly,
unconscious within- and between-modalities transfer of artificial
grammars was shown between training and test strings that changed at
the surface level (letters in different vocabularies, notes, symbols) but
remained structurally the same (Scott & Dienes, 2010). Another line of
research found learning transfer in both directions between different
types of memory tasks (motor skill task and word list task) via the ex-
traction of high-level relations between the elements (Mosha &
Robertson, 2016).

In contrast to these studies, the present experiment followed a dif-
ferent design: The surface of the stimuli remained the same across the
two task phases, but their overall underlying structure changed. In this
sense, the observed effect might not be considered as a classical per-
ceptual-motor transfer effect. Indeed, it more likely captures a cognitive
transfer effect: After a short experience with the unstructured sequence,
participants completing the structured blocks first might have implicitly
identified the features common (i.e., triplets) across the two task halves,
which might have supported the generalization of the acquired transi-
tional probability structure (cf., Qian et al., 2012; Robertson, 2018;
Winkler & Cowan, 2005). Thus, the triplets as the critical building
blocks of the structure might have been implicitly recalled in a later
phase of task solving, even if their frequencies had changed. On the
contrary, participants completing the unstructured blocks first only
perceived the relations of stimuli primarily as triplets when they com-
pleted the ASRT sequence with biased probabilities. This would be in
line with our recent findings that sensitivity to multiple regularities in
the ASRT task seems to be grounded in the implicit extraction of the
triplet-level probability structure (e.g., Kóbor et al., 2019; Szegedi-
Hallgató, Janacsek, & Nemeth, 2019). Together with the previously
described various transfer effects, the implicitly acquired prior knowl-
edge seems to be robust to changes in both the surface and the un-
derlying structure of the stimuli.

Related to the present task, an alternative experimental design with
biased triplet probabilities would unequivocally test the transfer of the
acquired implicit knowledge. For instance, one might use the ASRT
sequence as the “structured sequence” and create another “less struc-
tured” sequence by keeping the biased distribution of high- (62.5%)
and low-probability (37.5%) triplets but omitting the alternating reg-
ularity. In a similar between-subjects design, by presenting either the
structured or the less structured sequence in the first half of the task and
the other sequence in the second half, a future study might compare
triplet learning between these two sequences. To follow previous ex-
periments testing the transfer effect, the stimuli in the second half of the
task might be different at the surface level (e.g., arrows or colors in-
stead of horizontally arranged positions), but this is not necessary (cf.
Gebhart et al., 2009). In another version of this experiment, the less
structured sequence could be presented in both task halves for one of
the groups, while the structured sequence followed by the less struc-
tured sequence could be presented for the other group. In this version,
stimuli should differ at the surface level in the second half of the task.

If triplet learning occurs in both sequences, but only after partici-
pants completed the structured sequence first followed by the less
structured one, it will indicate that knowledge of the transitional
probability structure has been transferred across the task halves.
However, for participants completing the less structured sequence first
or completing only less structured sequences in both halves, we assume
that a modest degree of triplet learning would also occur on these less
structured sequences because of the initial sensitivity to the triplet-level
probability structure (see above). This needs to be tested in additional
experiments.

4.7. Methodological considerations

From a methodological point of view, it is not obvious how one
investigates what has been learned about the statistical structure un-
derlying a given sequence. The study of Reed and Johnson (1994)
suggests that to appropriately test whether the complex statistical
structure per se has been learned, instead of a random testing sequence,
one should use training and testing sequences that differ only in second-
order transitional probabilities but are identical in terms of first-order
transitional probabilities and other simpler statistics (e.g., location
frequency, transition frequency, reversal frequency, coverage, and
transition usage). By controlling for the latter characteristics of both
sequences, it can be ensured that the RT disruption across the sequences
is due to acquiring the second-order transitional probability structure
that changed from the first to the second sequence. It has also been
shown that participants would less likely search for underlying struc-
tures if a sequence, compared with another, was subjectively perceived
as more random, but, according to objective measures, was more
structured (Wolford, Newman, Miller, & Wig, 2004). Considering these
issues, in the present experiment, we deliberately avoided the use of
fully random sequences; and, instead, we applied “equal probability”
unstructured sequences, which were more controlled than the former
ones. In addition, low-probability triplets being the major constituents
of the unstructured sequences might have contributed to regarding
these sequences as more random (Teigen & Keren, 2020).

4.8. Conclusions

The present experiment provides evidence that under implicit and
incidental learning conditions, perceptual and cognitive processing
continues to be influenced by a previously acquired predictable tran-
sitional probability structure even after that structure is removed. This
implies that, due to the persistency of the acquired representations,
unpredictable transitional probabilities are automatically processed
according to these prior representations. However, after significant
exposure to the unpredictable structure, the updating of prior re-
presentations becomes evident: Importantly, this process seems to re-
quire a longer stretch of time than that of the acquisition. Although the
acquired representations are relatively persistent if the predictable
structure is experienced first, protracted exposure to the unpredictable
structure preceding the predictable one does not constrain the sub-
sequent acquisition. Finally, the study also highlights the importance of
carefully constructing the underlying structure of training and testing
sequences in the investigation of statistical-sequence learning.
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