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Abstract. Teaching of programming language theory has a long track record at ELTE Faculty of 
Informatics. Traditionally, formal semantics and type systems of programming languages, similarly to 
other theory-oriented subjects, were taught with the pen and paper method. However, modern proof 
assistants call for replacing this old-fashioned way of teaching with novel and interactive methods that 
bring deeper understanding, provide better learning experience and build technical skills in applying 
formal methods. The authors have launched practice classes for two programming language theory 
subjects and carefully developed course material based on executable and verifiable definitions 
formalised in the Coq proof assistant. In this paper, we share our experiences regarding the design and 
implementation of the new material, we outline the pros and cons of using a proof assistant in the 
courses, and we describe how the presented method may be adapted to other courses. 
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1. Introduction 

Teaching mathematically precise formalisation techniques is a key part of university level Computer 
Science education. The courses titled Formal Semantics and Type Systems for Programming Languages are 
compulsory in the Software Technology specialisation of the Computer Science master program at 
Eötvös Loránd University (ELTE). The aim of these courses is that students acquire the skills 
necessary to apply mathematical methods when describing programming languages. During these 
courses the students have to digest and obtain intuition for a large number of abstract concepts 
and formal notations. This is especially hard for students with less mathematical affinity. By sort 
of “wrapping” the raw mathematical contents into detailed, practical examples, we can help the 
students grasp the constructions and obtain understanding. What helps even more is giving the 
students tools to freely experiment with which gives immediate feedback. To achieve this, we 
started employing computer proof assistant systems in our practical sessions. The current article 
describes the experiences gained from teaching with this new methodology. 

2. Proof assistants in education 

Proof assistants (interactive theorem provers) are software which give the user the ability to: 

• Define detailed abstract models 

• Construct statements over previously defined models 

• Interactively prove statements using mathematical methods, the correctness of which can 
be checked automatically by computers 

Several such systems were considered during the planning phase of our courses, comparing them 
based on previous experience in the literature regarding teaching and their compatibility with the 
previously outlined goals. 

The Haskell programming language [6] is strictly speaking not an interactive theorem prover, but 
its purely functional nature and simple syntax makes it suitable for modelling programming 
languages. The abstract syntax can be represented with algebraic data types and the semantics can 
be described using executable functions in a denotational style. Haskell was previously used to 
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teach programming language semantics [11], but as it lacks dedicated theorem proving 
functionality, we decided against it. 

Agda [1] is another functional programming language with a type system stronger than Haskell’s. 
It supports dependent types [14], that is, types that depend on values. This strength allows 
representing mathematical statements as types, and constructive proofs as executable functions 
that implement the given type. This is usually called the propositions as types principle or Curry-
Howard isomorphism [15]. Agda was also used before as a tool to teach programming language 
theory [10]. It uses the same notation for proofs and programs which makes it simple but confusing 
at the same time because paper-based proofs look very different from Agda proofs. 

The Isabelle/HOL theorem prover [7] meets these requirements and its educational potential has 
also been demonstrated [2], but its type system does not support dependent types. This makes it 
more verbose, by requiring the user to manually handle information in certain cases that could 
otherwise be encoded into the types themselves. 

We chose to use the Coq proof assistant [5], as it has a dependently typed specification language 
(Gallina) that is similar to Agda in expressive power, but it also comes with a separate tactic system 
that can be used to construct imperative style proofs which are similar to pen and paper proofs. Its 
widespread use in education [3], detailed auxiliary materials [9] and active support [4] have further 
strengthened its leading position. 

3. The Formal Semantics course 

In contrast to natural languages, programming languages are artificially created by humans for the 
purpose of efficiently controlling computers. Because of this, the meaning of their statements needs 
to be clear without any chance of ambiguity, so they can be interpreted by a computer. Formal 
Semantics deals with the task of describing the behaviour of programming languages and through 
this process defining the meaning of programs written in them. 

The course has always played an important role in the curriculum of the Computer Science master 
programs at ELTE. It provides insight into the mathematical methods involved in formalisation 
of the meaning of programming languages. Different ways of describing the syntax are described, 
as well as static and dynamic semantics, including operational, denotational and axiomatically given 
semantics. Well known real world (mostly imperative) programming languages serve as examples 
in the formalisation process. This makes it easier to connect this new information with previous 
studies and helps deepening the understanding of the already acquired knowledge. 

3.1 Aim of the course 

The course has multiple goals, the most important of which is to popularise the formal definition 
of programming languages by clarifying the role of this process in the understanding, comparison 
and analysis of programs, as these are the key steps in proving correctness of a program. Students 
create their own mathematically precise descriptions of several programming language constructs 
they are already familiar with, e.g. branches, loops or exception handling. When doing this they 
need to carefully examine the behaviour of these constructs and thus gain a better understanding 
of their interactions, limits, the similarities and differences between their different implementations 
in various programming languages. 
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Throughout the classes several concepts from previous courses (such as syntax definitions from 
the Compilers course) are used which helps in refreshing, reinforcing and expanding their already 
established knowledge. We introduce methods for defining operational semantics (small-step and 
big-step) through the notions of configurations and inductively defined transition relations between 
them. Denotational semantics is explained using executable semantic functions and the principle 
of compositionality. 

Furthermore, many of the mathematical concepts that the students encounter for the purpose of 
applying them in formal semantics are from set theory or algebra, thus applicable in their future 
studies. Examples are inductive definitions, pattern matching, induction, or parts of fixed-point 
theory. 

3.2 Previous renditions of the course 

The initial version of the course in the more mathematically focused program was made up of 
lectures and practical lessons (both 90 minutes each week for one semester), during which students 
could practice the use of the mathematics discussed in the lectures, but no interactive techniques 
were employed, the classes were based on the pen and paper method. From 2008 onwards the 
practical sessions were removed, only the lectures remained part of the course (with the same 
amount of time). This affected the effectiveness and popularity of the course negatively, as students 
had a hard time fully understanding the abstract concepts without adequate practice. 

3.3 The new practical lab classes 

In 2018 the course was renewed by including 90 minutes of practical session per week in addition 
to the 90-minute lectures. The syllabus had to be constructed in a way which was suitable for all 
students in their second semester of their master’s studies. The instructors have agreed that giving 
the students a way in which they can experiment themselves is highly beneficial and being able to 
do so interactively through a computer is even better. As the goal was to not only formalise the 
definitions, but also prove theorems about them, a system with such capabilities was needed. 

3.4 Main principles 

The primary task of the practical sessions is to help the students understand the lecture material. 
This means formalising definitions, expressions, programs, theorems and examples. Unfortunately, 
most of the students are not familiar with proof assistants, therefore they need to learn how to use 
Coq without losing focus: this course should be on formal semantics and not the technical details 
of Coq’s implementation. Our experience was that the following educational principles were 
helpful in this task. 

1. Understanding at the lectures, coding at the practical sessions. The lecture material 
is presented sometimes through very complex examples in order to model real 
programming language constructions closely. These examples are discussed in detail in the 
lecture, but their machine-checked formalisation is too difficult for a beginner proof 
assistant user to implement. We could simply share the source code of such formalisations 
with the students (as it was the case with source code for executable semantics in previous 
renditions of the course), but one goal of the new practical sessions is to involve the 
students even more. In the practical sessions most of the time is spent on formalising 
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informal or half-formal definitions from scratch or using the material of the previous 
lessons. The students implement the definitions and prove theorems independently, rather 
than reading or modifying other existing formalisations. This way the time is not spent on 
understanding and discussing complex problems, but on practicing formalisation using 
smaller examples. Therefore, the sessions are focused on programming language semantics 
while at the same time the students gain experience in using Coq. 

2. First understand, then code. The previous principle should not imply that students 
should blindly do coding before understanding the definitions, theorems and proofs. In 
fact, the practical session has the additional task to separate the understanding of the 
theoretical materials from the formalisation in Coq. During these sessions, the students try 
to solve small problems in complete detail, but only after they have understood the theory 
in detail. For this reason, whiteboard and paper is used when it is necessary, but these 
“analog” exercises get less emphasis than during the exercise sessions for other 
mathematical courses. 

3. Graduality in familiarising with the proof assistant. Coq allows its users to create 
formalisations conveniently with a large number of language features. However, if we 
aimed to teach the students how to write idiomatic Coq code, we would end up not teaching 
formal semantics, but rather Coq through formal semantics examples. To keep the focus 
on the topic of the course, the language elements and functions of the theorem prover are 
introduced step-by-step; three-four elements (commands, tactics, etc.) per practical session. 
This style is similar to that of the book Programming Language Foundations [9]. The result 
is that students gain knowledge of the concepts and language of Coq progressively without 
getting lost in its details. 

4. Graduality in the complexity of the theorems. The students usually neither have 
sufficient knowledge of theorem provers, nor of the process of theorem proving. Because 
of this reason, some proof theory has to be taught at the Formal Semantics course, while 
discussing the method of formalising proofs. In order to keep the focus and enthusiasm of 
the students, the complexity of proofs should be increased with caution. According to 
previous experience, the master’s students have no problems with formalising simple 
functions with case distinction, however, that is not true for the transformation of 
derivation rules to inductive definitions. With adequate preparation we can maintain a 
continuous sense of achievement during the semester, which makes the usage of proof 
assistants a positive experience. This can be an important milestone in the students’ 
professional development. 

5. Continuous work and short tests. The requirements of the course were planned so that 
the students have to study every week. There is an optional homework assignment every 
week and each practical session starts with a short assignment similar to the homework. 
The results of these short tests determine the final grade for the practical sessions (students 
obtain a grade separately for the lecture). Every assigned task has to be solved in Coq to 
accelerate the acquisition of the proof assistant. The assignments are submitted in an online 
e-learning platform and the students get immediate feedback on the correctness of their 
submissions. This setup helps the students stay motivated throughout the semester. 

3.5 Syllabus 

The syllabus of the practical sessions is primarily based on the lecture materials and the 
aforementioned book [9]. Fortunately, the book gives an excellent basis for the swift introduction 
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to Coq, while the formal semantics examples discussed in it are often very similar to the ones 
presented during the lectures, because both sources deal with the concepts of imperative 
programming. The syllabus of the practice was assembled to follow and formalise the materials of 
the book during the first half of the semester and the materials of the lectures during the second 
half. 

Below we describe the contents of the practical sessions for each week. To illustrate the increasing 
complexity of the material, we include four example Coq source codes snippets. We also list the 
usual informal proofs for comparison (although not always exactly these theorems are discussed 
during the lectures). 

1. Introduction of the proof assistant by formalising bool type, then defining functions (e.g. 
and, or, not) followed by lemmas and theorems and their proofs (e.g. commutativity of 
and) by case distinction. 

2. Inductive definition of natural numbers. Introduction of structural recursion (and pattern 
matching) by defining recursive functions (e.g. addition) and structural induction to prove 
properties about these functions in the form of lemmas, theorems. 

Inductive Nat : Type := 
| O 
| S : Nat -> Nat. 
 
Fixpoint plusn (n m : Nat) : Nat := 
match n with 
| O => m 
| S n' => S (plusn n' m) 
end. 
 
Notation "n + m" := (plusn n m)  
 (left associativity, at level 50). 
 
Theorem plusn_rid : forall n : Nat, 
n + O = n. 
Proof. 
  intros. 
  induction n. 
  * simpl. reflexivity. 
  * simpl. rewrite IHn. reflexivity. 
Qed. 

Assume that natural numbers are defined based on 
the Peano-axioms with the 0 constant and the S 
successor function. 

We define the addition in the following way, and 
denote with “+”: 

𝑎𝑑𝑑(𝑛, 𝑚) = {
𝑚    𝑛 = 0

 𝑎𝑑𝑑(𝑛′, 𝑚)   ∃𝑛′: 𝑛 = 𝑆(𝑛′)
 

Theorem: 𝑛 + 0 = 𝑛. 

This statement can be proven by induction on n. 

• Base case = 0 : 0 + 0 = 0 is true according to 
the definition of add. 

• Induction hypothesis: 𝑛 + 0 = 𝑛. 

The statement to prove: 𝑆(𝑛) + 0 = 𝑆(𝑛). 

By the definition of add: 𝑆(𝑛) + 0 = 𝑆(𝑛 + 0). 

By the induction hypothesis: 𝑆(𝑛 + 0) = 𝑆(𝑛). 

3. Formalisation of binary trees followed by the expression language syntax with inductive 
definitions (deep embedding). Static semantics: mappings, functions with the domain of 
trees or expressions (e.g. the number of leaves in a tree, the number of literals, operations 
in one expression). Formalisation of the denotational semantics for the given expression 
language. Simple inductive proofs about the trees and expressions. 

4. Transformation of expressions to equivalent expressions (optimisation mappings). Proofs 
about the meaning preservation of these transformations in the denotational semantics. 

5. Introduction of states (variable environment) and the extension of the expression syntax 
and semantics with variables followed by lemmas and proofs about the behaviour of states. 

Inductive aexp : Type := 
| ALit (n : nat) 
| AVar (x : ident) 
| APlus (a1 a2 : aexp). 
 
Definition state : Type := 

We define the syntax of expressions with BNF 
(“n” denotes a natural number, “x” a string): 

𝑎 ∈ 𝐴𝑒𝑥𝑝 ∷= 𝑛 | 𝑥| 𝑎1 + 𝑎2 
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ident -> nat. 
 
Fixpoint aeval (a: aexp) (s : state) : 
nat := 
match a with 
| ALit n => n 
| AVar x => s x 
| APlus a1 a2 => 
aeval a1 s + aeval a2 s 
end. 
 
Definition update (s:state) (x:ident) 
(n:nat) : state := 
fun y => if eqb x y 
then n 
else s y. 
 
Lemma update_onlyx: 
forall s:state, forall x x':ident, 
forall n:nat, 
~(x = x') -> (update s x n) x' = s x'. 
Proof. 
  intros. unfold update.  
  rewrite <- eqb_neq in H. 
  rewrite H. reflexivity. 
Qed. 

A state is a function from variable identifiers to 
natural numbers: 

𝑠 ∈ 𝑆𝑡𝑎𝑡𝑒 = 𝑖𝑑𝑒𝑛𝑡 → 𝑁 

The denotational semantics is a recursive 
function on expressions: 

𝐴: 𝐴𝑒𝑥𝑝 → (𝑆𝑡𝑎𝑡𝑒 → 𝑁) 

𝐴⟦𝑛⟧𝑠 = 𝑛 

𝐴⟦𝑥⟧𝑠 = 𝑠(𝑥) 

𝐴⟦𝑎1 + 𝑎2⟧𝑠 = 𝐴⟦𝑎1⟧𝑠 + 𝐴⟦𝑎2⟧𝑠 

We will use 𝑠[𝑦 → 𝑛] to denote that 𝑠′ state 

which is the same as 𝑠 except 𝑠′(𝑦) = 𝑛. 

Theorem: for any 𝑠 state, if 𝑥 ≠ 𝑥′ then 

𝑠[𝑥 → 𝑛](𝑥′) = 𝑠(𝑥′). 

The proof is simple. The 𝑠[𝑦 → 𝑛] and 𝑠 are 
different only in what values that are mapped 

to 𝑥. So, for any 𝑥′ that is different from 𝑥, 
these values will be the same. 

6. Static analysis: free and bound variables, function and inductive definition (relation) about 
an expression being closed followed by lemmas and proofs about closed expressions. 

7. Formalisation of small-step semantics for expressions. Practicing the formalisation of the 
inference rules to inductive definitions. Evaluation of example expressions in the presented 
semantics. 

8. Formalisation of big-step semantics for expressions. Proof of equivalence with other 
(denotational or small-step) semantics. 

Reserved Notation "c -=> c'" (at 
level 50). 
 
Inductive eval_bigstep : aexp * state 
-> nat -> Prop :=  
| eval_lit n s: 
  (ALit n, s) -=> n 
| eval_var x s: 
  (AVar x, s) -=> s x 
| eval_plus a1 a2 n m s: 
  (a1, s) -=> n -> 
  (a2, s) -=> m 
 -> 
  (APlus a1 a2, s) -=> (n + m) 
 
where "c -=> c'" :=  
  (eval_bigstep c c'). 
 
Theorem denot_iff_bigstep : 
  forall a:aexp,  
  forall s:state,  

The big-step semantics can be described with 
inference rules between configurations of an 
expression and a state and a natural number: 

⟨𝑛, 𝑠⟩ ⇒ 𝑛 

⟨𝑥, 𝑠⟩ ⇒ 𝑠(𝑥) 

⟨𝑎1, 𝑠⟩ ⇒ 𝑛      ⟨𝑎1, 𝑠⟩ ⇒ 𝑚 

    ⟨𝑎1 + 𝑎2, 𝑠⟩ ⇒ 𝑛 + 𝑚 

Theorem: The equivalence of the big-step and 
denotational semantics, i.e. for every expression 

𝑎 and state 𝑠 and natural number 𝑛, 𝐴⟦𝑎⟧𝑠 =
𝑛 ↔⟨𝑎, 𝑠⟩ ⇒ 𝑛. 

We provide proof for the forward direction in 

this paper. This way, the hypothesis is𝐴⟦𝑎⟧𝑠 =
𝑛.We use induction by 𝑎. 

• We must prove that ⟨𝑛′, 𝑠⟩ ⇒ 𝑛, i.e. 𝑛 = 𝑛′. 
But according to the hypothesis, 𝐴⟦𝑛′⟧𝑠 = 𝑛, 

that is only possible when 𝑛 = 𝑛′. 
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  forall n:nat, 
  aeval a s = n <-> (a,s) -=> n. 
Proof. 
  split. 
  * generalize dependent n.  
    induction a. 
 - intros. subst. apply eval_lit. 
    - intros. subst. apply eval_var. 
    - simpl. intros. subst. apply 
eval_plus. 
      + apply IHa1. reflexivity. 
      + apply IHa2. reflexivity. 
  * intros. generalize dependent n.  
    induction a. 
    - simpl. intros. inversion H. 
      reflexivity. 
    - simpl. intros. inversion H.  
      reflexivity. 
    - intros. simpl. inversion H.  
      rewrite (IHa1 n0 H4).  
      rewrite (IHa2 m H5).  
      reflexivity. 
Qed. 

• We must prove that ⟨𝑥, 𝑠⟩ ⇒ 𝑛, i.e. 𝑠(𝑥) =
𝑛. According to the hypothesis 𝐴⟦𝑥⟧𝑠 = 𝑛, we 

know that 𝑠(𝑥) = 𝑛, because of the definition of 
the denotational semantics. 

• Induction hypotheses:  

o ∀𝑛: 𝐴⟦𝑎1⟧𝑠 = 𝑛 ↔⟨𝑎1, 𝑠⟩ ⇒ 𝑛 

o ∀𝑛: 𝐴⟦𝑎2⟧𝑠 = 𝑛 ↔⟨𝑎2, 𝑠⟩ ⇒ 𝑛 

According to the hypothesis 𝐴⟦𝑎1 + 𝑎2⟧𝑠 = 𝑛, 

that means 𝐴⟦𝑎1⟧𝑠 + 𝐴⟦𝑎2⟧𝑠 = 𝑛. To ⟨𝑎1 +
𝑎2, 𝑠⟩ ⇒ 𝑛 it is sufficient to prove that ⟨𝑎1, 𝑠⟩ ⇒
𝐴⟦𝑎1⟧𝑠 and ⟨𝑎2, 𝑠⟩ ⇒ 𝐴⟦𝑎2⟧𝑠 which are exactly 

the induction hypotheses with choosing 𝑛 =
𝐴⟦𝑎1⟧𝑠 in the first case, and 𝑛 = 𝐴⟦𝑎2⟧𝑠 in the 
second. 

9. Introduction of imperative programming statements. Formalisation of their syntax and 
denotational semantics. Fixpoint theory, the question of termination. 

10. Extension of the previous big-step semantics with statements followed by example 
program evaluation proofs. 

11. Formalisation of additional examples, the extension of the semantics with other statements 
(e.g. counting loop as an inductive rule or as syntactic sugar). Proofs about the equivalence 
between big-step and denotational semantics. 

12. The equivalence of program patterns (e.g. while loop can be unfolded to a conditional 
statement containing a similar loop).  

Lemma while_unfold (b:bexp) (s:stmt) 
(st st':state): 
  (SWhile b s, st) -=> st' <->  
  (SIf b (SSeq s (SWhile b s))  
          SSkip, st) -=> st'. 
Proof. 
  split. 
  * intros. inversion H. 
    - subst. 
      apply eval_if_true. 
      apply (eval_seq st'0 _ _ _ _ 
H3 H5).  
      exact H6. 
    - apply eval_if_false.  
      + apply eval_skip.  
      + exact H4. 
  * intros. inversion H. 
    - subst. inversion H5. subst.  
      apply (eval_while_true st'0). 
      + exact H4. 
      + exact H7. 
      + exact H6. 

Theorem:  

⟨𝑤ℎ𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆, 𝑠⟩ ⇒ 𝑠′ ↔
⟨𝑖𝑓 𝑏 𝑡ℎ𝑒𝑛 𝑆; 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆 𝑒𝑙𝑠𝑒 𝑠𝑘𝑖𝑝, 𝑠⟩ ⇒ 𝑠′. 

The hypothesis ⟨𝑤ℎ𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆, 𝑠⟩ ⇒ 𝑠′ could only 

be gotten by two different ways: either 𝑏 evaluates to 
true or false. 

If 𝑏 evaluates to false, then according to the 

semantics of the loop, the original state 𝑠 will be the 
result. So, to prove the original statement, it is 
sufficient to prove (because of the condition of the if 

statement evaluated to false) that ⟨𝑠𝑘𝑖𝑝, 𝑠⟩ ⇒ 𝑠 
which is exactly the semantics of skip. 

If 𝑏 evaluates to true, then according to the semantics 

of the loop, we get two new hypotheses: ⟨𝑆, 𝑠⟩ ⇒ 𝑠1 

and ⟨𝑤ℎ𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆, 𝑠1⟩ ⇒ 𝑠′. In this case it is 
sufficient to prove (because the condition of the if 
statement evaluated to true) that 

⟨𝑆; 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆, 𝑠⟩ ⇒ 𝑠′. In order to prove this 
statement, the inference rule of the sequence can be 

used. We need to provide an intermediate 𝑠2 state, 
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    - subst. inversion H5.  
      apply eval_while_false.  
      rewrite <- H0. exact H6. 
Qed. 

that conforms the next two statements: ⟨𝑆, 𝑠⟩ ⇒ 𝑠2 

and ⟨𝑤ℎ𝑖𝑙𝑒 𝑏 𝑑𝑜 𝑆, 𝑠2⟩ ⇒ 𝑠′. Fortunately, 𝑠1 is such 
a state. 

13. Extraction of correct Coq code to Haskell. Formal semantics in the practice, industry. 

Because of the structure of this step-by-step material, the code is usually reused from previous 
session (as is the case for the denotational semantics or the syntax of expressions in the example 
codes above). In order not to spend time on redefining these always from scratch, the necessary 
source code is shared with the students before the session. In addition, it is also useful to make the 
code discussed in the lesson accessible which can be used by students later when they solve the 
homework or practice for the next test. 

3.6 Deep understanding of complex concepts 

As mentioned before, there are concepts and methods that are challenging to understand, even for 
master’s students. The practical sessions have a very important role in this perspective, which is to 
introduce these complex, abstract concepts through small, simple examples. Therefore, during the 
semester these are practiced on gradually larger and harder examples. According to our previous 
experience, the teaching of the following concepts became easier due to the practical sessions: 

• Derivation rules (inference rules) and derivations: It is not always clear for the students why do we 
formalise the operational semantics in a concrete way; what can be written over and under 
the line (which separates the premises and conclusion) of the inference rule. The students 
are forced by the system to follow the rules of the formalism given by inductive types in 
Coq. As a consequence, the students grasp faster and easier why, how and where derivation 
rules can be applied. Probably this is also due to the pattern matching mechanism in Coq, 
which is familiar to students who previously studied functional programming (which is a 
compulsory course in our bachelor’s programme). 

• Structural induction: The students learned about mathematical induction (for natural 
numbers), but they are not familiar with the concept of structural induction for arbitrary 
inductively defined sets. So, the scheme used for inductive proofs is not always 
understandable for them in the case of structurally complex types; which hypotheses should 
be used, which statements are not correct implying an incorrect assumption, what should 
the induction be based on, etc. Usually, paper-based proofs are more readable, however, 
they can be faulty or only partial. On the other hand, the proving process in Coq is 
interactive (using its integrated development environment, CoqIde), so that the students are 
led by the proof assistant through the process step-by-step. In every step, Coq reports the 
current hypotheses and the statements to be proven, and it does not allow to take faulty 
steps. Last but not least, each proof goal has to be proven, including trivialities. 

• Compositionality: The principle of compositionality is usually just learned word by word by 
the student, but they do not understand its essence and its potential in practical 
applications. However, when proving a statement by structural induction on expressions 
the proof assistant shows clearly, that the induction hypotheses are the same as the 
statements to be proven about complex structures thanks to the compositionality. Similarly, 
Coq’s termination checker accepts compositional recursive definitions but rejects those 
where recursive calls are not on structurally smaller arguments. 
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3.7 Results 

The effectiveness of the new practical course can be measured objectively by looking at the grades 
received at the end of the semester. Here we only evaluate the exams based on the syllabus of the 
lectures as these had the same requirements as in the previous years. This was the first year of the 
practical sessions, so there is not enough data to draw far-reaching conclusions. 

The oral exam aims to measure the lexical knowledge as well as the understanding of the material. 
Because of the large number of students there is also a written exam which helps in filtering out 
those who are not sufficiently prepared and also gives a chance to those who are not really 
interested in the subject to get a passing grade. If someone successfully completes that, they can 
choose to continue with the oral exam to obtain a better grade. 

3.7.1 Exam results 

The reintroduction of the practical course has clearly improved the results of the exams. This is 
most likely due to the students not only memorizing the theoretical subject matter, but actually 
learning and understanding it more. In the following we compare the results of the 2018 Spring 
(57 students) and 2019 Spring (61 students) semesters. 

• Improvement of the average mark. In Hungary, the grades range from 1 (failed) to 5 
(excellent). When looking at all the participants of the exam, the average of all received 
marks raised from 2.6 to 3.14 without significant changes to the written pre-exam and 
having the same people conduct the exams (see Figure 1). 

 

Figure 1: Exam results in the two investigated courses comparing the semesters without (red) and with (blue) 
practical sessions. 

• Increased participation in the oral exam. Although students have the option to leave 
with a passing grade (2) after a successful written pre-exam, this year the ratio of those who 
chose to take the opportunity to continue increased from 33% to 48%. This shows that 
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they were more confident in their knowledge and almost half of them aimed for a higher 
mark instead of just around a third of them as the year before. 

• Improvement of the average mark at the oral exam. The oral exam requires students 
to demonstrate their detailed knowledge and understanding of a specific part of the subject. 
This year they performed much better when asked to explain their assigned topic, which 
further confirms that they have internalized it more. The average mark of those who took 
the option of the oral examination raised from 3.9 to 4.2. 

3.7.2 Subjective results 

From the perspective of the teachers, the improvement was apparent when looking at the fluency 
of the exams and the confidence of the students. They seemed to understand the concepts, the 
steps and the general structure of proofs better as well. The improvement seen numerically in the 
results was perceivable subjectively too. 

Positive feedback has also arrived from the students. Thanks to the interactive methods in the 
practical sessions they approached the subject with more enthusiasm. In the long term, this 
approach seems to be capable of delivering usable knowledge to average students who would 
otherwise not be interested enough to invest time in understanding hard mathematical concepts 
on their own. 

4. The Type Systems for Programming Languages course 

4.1 Aim and main principles of the course 

In the 2019 Autumn semester the Coq proof assistant was also utilised for teaching practical 
sessions in another course titled Type Systems for Programming Languages. This is a third semester 
master’s course which similarly to Formal Semantics, did not have practical sessions before. The 
structure and grading of these classes were very similar to the format of Formal Semantics outlined 
above. There was a small assignment every week that helped practice the new language constructs, 
notions and concepts introduced during the preceding session. These were followed by a short test 
at the beginning of every session that was similar to that week’s homework, so that those who 
spent time on it at home had a significant advantage and thus were motivated to do so. In later 
phases of the course the students were encouraged to prepare their own reusable tactics at home 
and bring their code to the classes. This opportunity was taken only by a few of them, but those 
who chose to do so clearly showed that trying to look at the problem from a general perspective 
instead of only concentrating on solving one specific proof helped them gain a deeper 
understanding of the recurring patterns often used in proofs. The results of these small tests 
determined the final grade for the practical course. At the end of the semester every student also 
got a bigger homework in the form of a formalised language with a type system and had to prove 
a theorem for it. The languages and theorems were randomly assigned in a way that ensured a 
unique task for each student. 

4.2 Syllabus 

Instead of the imperative constructs discussed in Formal Semantics (assignment, branching, loops, 
etc.), this course uses an expression language for demonstration purposes that is closer to the 
functional paradigm. There is an operational semantics defined for this language, and it is extended 
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with typing relations. The arc of the whole semester was defined by following Parts I—VII of 
Harper [12] and Hungarian lecture notes based on them [13]. The first few sessions were mostly 
rehearsing the basics of Coq through small illustrative examples with terms and types, such as a 
recursively defined type checker on simple inductively defined terms, because not all students 
encountered the language before. After this, basic inductive proofs were introduced, and the 
soundness and completeness of the previously defined type inference algorithm were proven. This 
was followed by creating an inductive typing relation and an inductive transition relation which 
opened the opportunity to discuss operational semantics and type systems separately as well as 
their interactions. Further into the course the notion of contexts and well-formedness were 
presented, and multiple important theorems were proven that connected the previous concepts, 
such as the Unicity of Typing, the Substitution Lemma, the Lemma of Decomposition, the Theorem of 
Determinism, the Theorem of Progress and the Theorem of Type Preservation. The following snippets 
illustrate a few smaller pieces of code, as the full sources would be unsuitable for incorporation 
into the article because of their lengths. 

Partial definition of the typing relation: 

Inductive TypeJudgement : Con -> Tm -> Ty -> Prop := 

[...] 

  | TJ_plus {G : Con} {t t' : Tm} : a 

      (G |- t : Nat) -> (G |- t' : Nat) -> 

      (G |- (t + t') : Nat) 

[...] 

where "G |- tm : ty" := (TypeJudgement G tm ty). 

Γ ⊢ t ∶ Nat     Γ ⊢ t′ ∶ Nat

Γ ⊢ t + t′ ∶ Nat 
 

Figure 2: Coq formalization (left) and traditional notation (right) of an inductive type judgment constructor 
definition stating that if two terms (t and t’) can both be typed as Nat in a certain context, their sum can be 

proven to be of type Nat as well in the same context. 

Partial definition of the small-step transition judgment: 

Inductive OneStepTransitionJudgement : Tm -> Tm -> Prop := 

| OSTJ_sum {n1 n2 n : nat} : 

    ((n1 + n2)%nat = n) -> 

    num n1 + num n2 |--> num n 

[...] 

| OSTJ_plus_left {t1 t1' t2 : Tm} : 

    (t1 |--> t1') -> 

    t1 + t2 |--> t1' + t2 

 

| OSTJ_plus_right {t1 t2 t2' : Tm} : 

    t1 val -> (t2 |--> t2') -> 

    t1 + t2 |--> t1 + t2' 

[...] 

where "t |--> t'" := (OneStepTransitionJudgement t t'). 

𝑛1 + 𝑛2 = 𝑛

𝑛𝑢𝑚 𝑛1 + 𝑛𝑢𝑚 𝑛2 ⟼ num 𝑛
 

 

𝑡1 ⟼ 𝑡1
′

𝑡1 + 𝑡2 ⟼ 𝑡1
′ + 𝑡2

 

 

𝑡1 𝑣𝑎𝑙     𝑡2 ⟼ 𝑡2
′

𝑡1 + 𝑡2 ⟼ 𝑡1 + 𝑡2
′  

Figure 3: Coq formalization (left) and traditional notation (right) of an inductive small-step operational semantics 
definition concerning the evaluation of the addition of two terms. 
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Partial proof for the Theorem of Progress: 

Theorem progress {t : Tm} {A : Ty} : 

  ( * |- t : A ) -> 

  t val \/ (exists (t' : Tm), t |--> t'). 

Proof. 

  intros. remember * as G. induction H. 

[...] 

  - destruct (IHTypeJudgement1 HeqG). 

    + destruct (IHTypeJudgement2 HeqG). 

      * pose (n1 := progress_helper_Nat H H1). 

        inversion n1. rewrite H3. 

 

        pose (n2 := progress_helper_Nat H0 H2). 

        inversion n2. rewrite H4. 

 

        right. eexists. 

        refine (OSTJ_sum _). reflexivity. 

 

      * inversion H2. right. eexists. 

        exact (OSTJ_plus_right H1 H3). 

 

    + inversion H1. right. eexists. 

      exact (OSTJ_plus_left H2). 

[...] 

Qed. 

Induction is initiated on H, the hypothesis 

claiming that the term t has type A in the 

empty context. 

In case the typing judgment was constructed 
using TJ_plus (see Figure 1.) the inductive 

hypotheses state that the theorem holds for the 
left and right operands separately. There are 
two branches based on the first hypothesis: 

+ If t is already a value we further split the 

proof based on the second hypothesis: 
* t’ is already a value as well, in which 

case they must both be in the form of 
num n, which means that the sum rule 

can be applied 
* t’ can be rewritten, which means that 

the rule that rewrites the right-hand 
side can be applied 

+ In case t can be further rewritten we 

simply apply the rule that rewrites the left-
hand side of the addition 

Figure 4: Coq formalization (left) and explanation (right) of a branch from the inductive proof of the Theorem of 
Progress. It states that if a term can be properly typed in a certain context, then it is either already a value, or can be 

further evaluated using the small-step operational semantics. 

4.3 Results 

This way of incorporating computers into the teaching had some advantages, like the ability to 
automatically grade assignments by just type checking them, but also had brought some 
disadvantages, such as the practical lesson being a lot slower and after a while lagging behind the 
lecture because of the strict nature of the interaction with a proof assistant that did not allow the 
students to progress further without getting all the details right. To alleviate this, the skeletons of 
files (that contained most of the definitions and theorems) were prepared for every class and the 
students only had to fill in the missing parts of the definitions and proofs themselves. Because of 
this some students were able to advance more quickly and get through the file before the end of 
the class. Creating some harder optional tasks for further exercise at the end of the files was a great 
success and resulted in the retention of the attention of the faster students as well. 

The new practical sessions were introduced in the 2019 Autumn semester. Comparing the results 
of the 2018 Autumn (35 students) and 2019 Autumn (48 students) exams (see Figure 1), we observe 
that the average went up from 2.8 to 3.7. The style and difficulty of the exams were the same in 
the compared semesters (written exam in the exam period). 
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5. Coq in other courses 

Apart from the already mentioned two courses, there are several other subjects that could 
potentially benefit from the introduction of computer-based proof verification in the topic of 
programming theory, logic and mathematics. In the last semester work on a formalisation of the 
syllabus of Distributed Systems begun by a student [8]. In the long term it seems convincing that the 
introduction of proof assistants spanning across several subjects could greatly improve the 
proficiency of the students in several fields and thus increase the quality of the Computer Science 
program. Other courses which might apply proof assistants include Logics and Computability theory. 

6. The challenges of using theorem provers 

Among the desirable traits of the proof assistants that facilitate the learning process there happen 
to be some that also pose pedagogical challenges. Some of these arise because of design choices 
made during the development of Coq, while some others are consequences of one fundamental 
difference between proofs written on paper and those that can be verified by computers. 

For example, while functional programming is now a compulsory part of the bachelor’s program, 
the syntax of Coq is still strange for most of the students, as it follows the OCaml style [16] with 
which most of them are not familiar. Showing them the same definition in multiple languages – in 
object-oriented alternatives as well – can help in overcoming this obstacle. 

The aforementioned difference from the usual blackboard reasonings they are used to is that a 
computer can only check the correctness of a proof if every little technical detail is given for all the 
branches created by different cases that need to be dealt with, lots of which are often omitted in 
lectures and textbooks because they can easily be seen intuitively. Luckily this can be simplified by 
creating reusable tactics that are generic enough to cover the repetitive sections of proofs, thus 
reducing the verbosity and increasing the similarity to their respective paper-based counterparts. 

7. Summary 

In this article we showed how interactive practical sessions using computer proof assistants were 
launched for courses on programming language theory that had only been taught using pen and 
paper methods before. The motivation behind this was to support the abstract concepts in these 
courses with tangible examples that help understanding the material and lead to building skills in 
applying formal methods. Several interactive theorem provers were considered which support 
executable and verifiable definitions, but Coq proved to be outstanding with its separated 
specification and proof languages, expressive type system as well as the abundantly available 
literature. 

We have identified guiding principles in applying interactive theorem proving in our master’s 
classes, such as “First understand, then code”, “Graduality” and “Continuous work and short 
tests”. These ensure that the programming language theory classes are adequately augmented by 
the practical sessions and the students gain a better understanding of nontrivial concepts such as 
deduction, induction or compositionality. Introducing the new system naturally came with 
technical and pedagogical challenges. Students needed to familiarise themselves with machine-
assisted theorem proving and the programming language of Coq, but this initial investment payed 
off by the end of the semester. 
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The effectiveness of the lab sessions was evaluated based on an objective comparison between the 
exam results of the old and the new system. Significant improvements were observed in both 
courses: the average grades improved by 0.54 and 0.9 grades in the two courses respectively (on a 
scale from 1 to 5). In one of the courses, the participation rate at the oral exam also increased. 
Encouraged by these achievements there are plans for introducing computer proof assistants in 
other courses. 

The high-level precise modelling of programming languages is not only an essential part of proving 
program correctness but also helps Computer Science students gain proficiency in programming 
languages in general and improve their abstraction skills. Hopefully, the experiences shared in this 
paper can provide useful advice on how to apply proof assistants in theoretical courses, making 
them more accessible to students. 
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