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QIITs. Quotient inductive-inductive types (QIITs) are a general class of inductive types that
allow multiple sorts indexed over each other (inductive-inductive [10]) and support equality
constructors (quotient). An example is given in the left column of Figure 1. This QIIT has two
sorts, Con and Ty, five point constructors •, ..., Σ, and an equality constructor eq. It comes
with two elimination principles (one for each sort, we don’t list them here) which enforce that
every function from Con preserves the equality eq. Con–Ty can be extended to the full syntax
of type theory [4]. Other examples of QIITs include the real numbers [11] and the partiality
monad [3]. Kaposi et al. [8] gave a general definition of QIITs and showed that all finitary
QIITs can be constructed from a single QIIT called the universal QIIT. However they did not
show that this universal QIIT exists.

In this talk we show that there is a model of type theory which supports the universal
QIIT, namely the setoid model [1]. The setting of [8] is extensional type theory, hence by the
conservativity result of Hofmann [7] the construction can be transferred to a model of type
theory with function extensionality and uniqueness of identity proofs (UIP). As these hold in
the setoid model, we conclude that all finitary QIITs can be defined in the setoid model.

The contents of this talk were formalised in Agda, we provide links to specific parts below.

Con : Set Cons : Ty •
Ty : Con→ Set Tys : Ty (•� Cons)

• : Con •s : Tm • Cons

– � – : (Γ : Con)→ Ty Γ→ Con �s : Tm (•� Cons � Tys) (Cons [ε])

U : Ty Γ Us : Tm (•� Cons) Tys

El : Ty (Γ � U) Els : Tm (•� Cons) (Tys [ε,�s [id,Us]])

Σ : (A : Ty Γ)→ Ty (Γ �A)→ Ty Γ Σs : Tm (•� Cons � Tys � Tys [ε,�s]) (Tys [wk2])

eq : Γ � Σ A B = Γ �A�B eqs : Tm (•� Cons � Tys � Tys [ε,�s])

(El (Id (Cons [ε]) (�s [wk2,Σs]) (�s [(ε,�s)↑])))

Figure 1: Constructors of the QIIT Con–Ty, a fragment of the well-typed syntax of type theory. Note that
Con, Ty on the left become Cons, Tys on the right and Ty, Tm on the right are those of a model of type theory.

Specification of QIITs in a model. We use categories with families (CwFs [5]) as the
notion of model of type theory. That is, a model is a category given by objects Con, morphisms
Sub, families Ty, Tm, substitution is written –[–], empty context •, context extension �.
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Specifying what it means for a model to support a QIIT is straightforward but tedious. For
the constructors of Con–Ty this is done on the right hand side of Figure 1. Here Ty and Tm
refer to types and terms of the model, not sorts of the QIIT. The elimination principle can be
specified in a similar way. The difficulty of working inside a model is that we have to write
out all arguments explicitly (e.g. Γ for U), we need weakenings (e.g. in the type of Σs) and
CwF-combinators instead of variables names. For modularity and efficiency reasons we don’t
use function space of the model to list parameters of constructors, instead we add them to the
context. E.g. �s is not a function with two arguments, but a term in a context of length two.

The universal QIIT is a syntax for a small type theory describing signatures of QIITs. It is
(roughly) an extension of our Con–Ty example. We specified the constructors and elimination
principles of the universal QIIT. These specifications import the setoid model, but they also
work with the standard (set) model or any other strict model. Importing the standard model
and normalising the types helps to make sure that the internal specification (right hand side of
Figure 1) corresponds to the external one (left hand side of the figure).

The setoid model. In the setoid model [1], an element of Con is a setoid, that is, a set with
a (Prop-valued) equivalence relation. The idea is that each type comes with its own identity
type encoded in this relation. For example, the relation for function space says that the two
functions are extensionally equal. This way the setoid model supports function extensionality,
propositional extensionality and quotients. We formalised the setoid model in Agda without
using any axioms or postulates, we also did not rely on UIP in Agda. The only special feature
that we used was the definitionally proof irrelevant universe of propositions Prop [6]. The setoid
model is strict [2], that is, all the equalities are definitional in Agda.

Implementation of QIITs in the setoid model. We defined an IIT with four sorts which
we call the implementation IIT for Con–Ty. There are the two Set-sorts for Con and Ty and two
Prop-sorts for their equality relations. The constructor eq is a constructor of the equality relation
for Con. The Set-sort for Ty includes an additional coercion constructor, the Prop-sorts include
constructors expressing that they are equivalence relations, congruence rules and that coercion
respects the relation. With the help of the implementation IIT, we defined the constructors
for Con–Ty. The elimination principle is defined simply by pattern matching (eliminating from
the implementation IIT). We defined both the recursion principle with uniqueness and the
dependent elimination principle for Con–Ty. All the computation rules hold definitionally.

The above method also works for the universal QIIT, we defined the recursor and formalised
uniqueness. We haven’t managed to typecheck uniqueness yet due to performance problems.

Further work. We would like to extend the universal QIIT with more type formers to allow
non-closed QIITs (metatheoretic Π), infinitary constructors, equalities as inputs of constructors,
sort equalities. We formalised that the setoid model supports arbitrary branching trees where
the order of subtrees do not matter. This is an infinitary QIT which seems not to be definable
from quotients without using the axiom of choice [4]. In fact, some QITs are known not to be
constructible without the axiom of choice [9, Section 9].

We showed that finitary QIITs exist in the setoid model, but can they be defined in the set
model (using only quotients)? There is a weak morphism of models from the setoid model to
the set model, we plan to investigate what this morphism maps the universal QIIT to.

As the setoid model is given in an intensional metatheory, it provides a computational
interpretation of the QIITs we defined. It remains to be checked what happens if we replay
the construction of other QIITs from the universal QIIT [8]. Would we still get definitional
computation rules?
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