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Introduction Proofs of the metatheoretic properties of dependent type theories and other
typed logics and languages, such as proofs of canonicity, normalization, gluing, parametricity
or various translations between theories, involve complicated inductions over the syntax of the
theory. We present a way to structure such proofs by working in the internal type-theoretic
languages of suitable presheaf categories.

Internal models of type theory We use categories with families (CwFs) [4, 2] equipped
with additional structure as the models of our type theories. They consist of a category C,
equipped with presheaves of types and terms, objects representing the empty context and
context extensions, along with natural transformations for each type-theoretic operation and
equations between them. Most of the additional structure on C can concisely be described in
the type-theoretic internal language of the presheaf category Ĉ. This observation is used in
some of the existing general definitions of type theories [1, 9]. For example, the presheaves of

types and terms, and the N and Π type formers can be specified in the internal language of Ĉ
as follows:

Ty : Set
Tm : Ty→ Set
N : Ty
Π : (A : Ty)→ (B : Tm A→ Ty)→ Ty

The type (Tm A→ Ty) of the argument B of Π is a presheaf function type: using the internal
language of presheaf categories is a way to interpret higher-order abstract syntax (HOAS). Π-
types are usually given externally by a map ΠΓ : (A : TyΓ)→ TyΓ�A → TyΓ, natural in Γ, but
the properties of the context extension operation (−�−) imply that the internal and external
definitions are equivalent.

Only the empty context and the context extension operations can not directly be described
internally, unless we use the interpretation of crisp type theory [8, 6] in Ĉ and its comonadic
modality [.

Internal dependent models The generalized algebraic presentation of CwFs automatically
provides an initial model S satisfying an induction principle: there is a dependent section from S
to any dependent model over S. The definition of dependent model can be derived mechanically
from the QIIT-signature presenting the type theory [5]. By applying a similar transformation
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to the internal definition of models, we define a notion of dependent model internal to Ŝ:

Ty• : Ty→ Set
Tm• : {A}(A• : Ty• A)(a : Tm A)→ Set
N• : Ty• N
Π• : {A}(A• : Ty• A){B}(B• : {a}(a• : Tm• A• a)→ Ty• (B a))→ Ty• (Π A B)

Internal and external dependent models do not exactly correspond to each other, but we
can still reconstruct an external dependent model from any internal one, and then obtain,
externally, a dependent section of the reconstructed external model.

A proof of canonicity based on logical predicates can be given as an internal dependent
model in the internal language of Ŝ:

Ty• A :≡ Tm A→ Set
Tm• A• :≡ λ(a : Tm A) 7→ A• a
N• :≡ λ(n : Tm N) 7→ (m : N)× (n = sucm zero)
Π• A• B• :≡ λ(f : Tm (Π A B)) 7→ (a : Tm A)(a• : A• a)→ B• (app f a)

Internal induction principles The presheaf category Ŝ is not a nice setting for more com-
plicated proofs, such as normalization proofs: it forces all of our constructions to be stable under
all substitutions, but normal forms are only stable under renamings. To fix this, we change the
base category. For normalization, we work in the presheaf category Ĝ over the comma category
G = (S ↓ F ), where F : R → S is the CwF morphism from the CwF of renamings R to S.

The presheaf category Ĝ has many good properties: the CwF structures of R and S can
faithfully be transported over G, and the CwF morphism F : R → S can also faithfully be
encoded. Furthermore, we can distinguish in Ĝ the presheaves that come from R̂ or Ŝ; and
call them R-discrete or S-discrete presheaves. Type-theoretically, they are accessible reflective
subuniverses of the universe of all presheaves. Moreover, the R-/S-discrete presheaves can be

identified with the discrete types arising from interpretations of spatial type theory [8] in Ĝ.
In particular, we have an adjoint pair of modalities (2 a ♦), where the comonadic modality
2 classifies the R-discrete presheaves. This means that we can reuse the theory of modalities
developed in [7, 8] in this setting.

We can then use the 2 modality to define F -relative internal dependent models, which encode
inductions over the syntax whose results are only stable under renamings. We can define and
prove an induction principle for F -relative dependent models.

A recent normalization proof by Coquand [3] can be translated to this framework by defining
a suitable F -relative dependent model. We can prove normalization and the decidability of
equality for types and terms fully internally, without ever working explicitly with contexts,
substitutions or renamings in the proof.

Agda formalization1 We have formalized in Agda internal proofs of canonicity and nor-
malization for a reasonably large dependent type theory (including Π-types with the η rule,
booleans, natural numbers, identity types and a universe closed under the other type formers).
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