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Abstract

This study investigates the greenhouse gas-induced winter and summer precip-

itation change signals over the Carpathian region with special focus on topo-

graphical effects and underlying processes. Six high-resolution (~12 km grid

spacing) regional climate model projections are analyzed for the future period

2070–2099 with respect to the reference period 1976–2005 under the RCP8.5

scenarios. We find that the topographically induced fine scale modulation of

the precipitation change signal is mostly of dynamical nature in winter (due to

the precipitation shadowing effect), and thermodynamical in summer (associ-

ated with high elevation convection) over the region of interest. Additionally,

elevation, size, and orientation of mountains play key roles in such processes.

Our results draw attention to the fact that the high-resolution representation

of topography in climate models is crucial for the provision of fine scale precip-

itation projections in mountainous regions.
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1 | INTRODUCTION

The Carpathian Basin lies in Central-eastern Europe, east
of the Alpine region, and extends between 44�–50� north
and 17�–27� east. Its main morphological features include
the Hungarian Plain surrounded to its north, east, and
southern flanks by the Carpathian mountain range, with
an altitude range between 27 and 2,655 m (Figure S1).
The Carpathians play an important role for the climate of
the Basin (e.g., by blocking cold air masses from the
north), where typically the warm dry air of the Balkans
meets the temperate Central Europe and cold continental
Eastern Europe flow (UNEP, 2007). Oceanic, continental,
and Mediterranean effects, as well as orographic factors,
characterize the climate of the Carpathian basin, which
hosts a rich biosphere (Kuemmerle et al., 2010) in terms

of forests, meadows, and crop fields (Bálint et al., 2011).
Therefore, investigating climate variability and the possi-
ble effects of climate change on water resources over the
Carpathian Basin is essential (Kozak et al., 2011).

The complex morphology of the Basin, and in particular
the Carpathian Mountains, can be expected to substantially
modulate the local climate change signal. Previous studies
have shown that regional precipitation change patterns can
be substantially modulated by topography, either through
the precipitation shadowing effect (e.g., Giorgi et al., 1994;
Gao et al., 2006) or through the generation of convective
instability at high elevations (Giorgi et al., 2016). However,
these processes depend substantially on the prevailing wind
flows and on the characteristics of topography, such as ele-
vation and slope, and thus on the resolution at which these
characteristics are represented in climate models.
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The high-resolution regional climate model (RCM)
projections for the European region completed as part of
the EURO-CORDEX (Jacob et al., 2014) and Med-
CORDEX (Ruti et al., 2016) initiatives provide an optimal
dataset to explore the issue of the effects of the Car-
pathians on the regional precipitation change signal.
Therefore, in this study, we present such an analysis,
with the particular aim of identifying similarities and dif-
ferences compared to what found, for example, for the
Alpine region (Gao et al., 2006; Giorgi et al., 2016), which
has distinctly different characteristics from the Car-
pathians in terms of elevation and slope.

In this regard, we focus separately on the winter and
summer seasons because the processes underlying precip-
itation formation are different. While in the winter pre-
cipitation is mostly associated with the occurrence of
Atlantic systems traveling eastward over the region and
impinging upon the Carpathians, in the summer local
convection plays a more dominant role.

2 | EXPERIMENT DESIGN AND
ANALYSIS TECHNIQUE

The region of interest encompasses the Carpathian Basin
and is shown in Figure S1. The figure also presents the
topography of the Carpathian chain at the resolution of
the RCMs analyzed (grid spacing resolution of 0.11�, or
~12 km) and from the very high-resolution (10) GTOPO30
database. It can be seen that at 12 km resolution, the
main features of the Carpathians are captured, albeit in a
somewhat smoothed way, with topographic maxima
reaching 1,500 (up to 2,200 m in the GTOPO dataset) and
with mountain chains extending in both the north–south
and east–west directions. Note that this region is included
in the interior of both the EURO-CORDEX and Med-
CORDEX domains, thus ideal for using RCM simulations
from both initiatives (Figure S1).

We analyzed the mini ensemble of six RCM simula-
tions shown in Table 1, which is the same used by
Giorgi et al. (2016) for the Alpine region and was
obtained from the EURO-CORDEX and Med-CORDEX
datasets. Note that the ensemble includes only individ-
ual RCM simulations, even though different global cli-
mate model (GCM)-driven simulations are available for
some of the RCMs, in order not to have a specific RCM
dominate the ensemble. Table 1 also shows the GCMs
driving the RCM experiments. We analyze the
December–January–February (DJF, winter) and June–
July–August (JJA, summer) seasons for the late 21st
century 30-year time slice 2070–2099 compared to the
reference period 1976–2005 in the high end RCP8.5 sce-
nario (Moss et al., 2010). This was done in order to

maximize the signal, noting however that similar con-
clusions hold for earlier time slices (not shown for
brevity).

Figure S2 presents a comparison of ensemble aver-
aged simulated precipitation by the RCM and driving
GCM ensembles with the observations of CARPATCLIM
(Szalai et al., 2013). It shows that the RCM ensemble is

TABLE 1 Overview of global and regional climate models used

in the present study. For the regional models, the letter in

parenthesis indicates the driving GCM (from CMIP5) and whether

the run uses the EURO-CORDEX (EC) or Med-CORDEX

(MC) domain

Model Modeling group
Horizontal
resolution

(a) CNRM-CM5
(Voldoire et al.,
2012)

Centre National de
Recherches
Meteorologiques
and Centre Europeen
de Recherches et de
formation Avancee
en Calcul
Scientifique, France

1.40625� × 1.40625�

(b) EC-EARTH
(Hazeleger
et al., 2010)

Irish Centre for High-
end Computing,
Ireland

1.125� × 1.125�

(c) HadGEM2-ES
(Collins et al.,
2011)

Met Office Hadley
Centre, UK

1.875� × 1.2413�

(d) MPI-ESM-LR
(Jungclaus
et al., 2010)

Max Planck Institute
for Meteorology,
Germany

1.875� × 1.875�

ALADIN (a-MC)
(Colin et al.,
2010)

Centre National de
Recherches
Meteorologiques,
France

0.11�

CCLM (d-EC)
(Rockel et al.,
2008)

Climate limited-area
modeling
community, Germany

0.11�

RCA4 (c-EC)
(Kupiainen
et al., 2014)

Swedish Meteorological
and Hydrological
Institute, Rossby
Centre, Sweden

0.11�

RACMO (b-EC)
(Meijgaard
et al., 2012)

Royal Netherlands
Meteorological
Institute, the
Netherlands

0.11�

REMO (d-EC)
(Jacob et al.,
2001)

Max-Planck-Institut für
Meteorologie,
Germany

0.11�

RegCM4 (c-MC)
(Giorgi et al.,
2012)

International Centre for
Theoretical Physics,
Italy

0.11�

2 of 8 TORMA AND GIORGI



able to capture the topographically induced precipitation
patterns over the region and considerably improves these
patterns compared to the driving GCMs. Note that the
original CARPATCLIM dataset does not include correc-
tions for wind-induced undercatch by precipitation
gauges. Thus, following the work of Torma et al. (2015),
an additional monthly based undercatch correction
obtained from the global precipitation dataset of the Uni-
versity of Delaware (Legates and Willmott, 1990) was
applied to the CARPATCLIM data.

3 | PRECIPITATION CHANGE
PATTERNS

Figure 1 shows the ensemble average DJF and JJA precipi-
tation change patterns (2070–2099 minus 1976–2005) over
the Carpathian region for the driving GCM and nested
RCM ensembles. As found in previous generations of
models, at the large scale the region experiences a general
increase in precipitation during the winter season and a
decrease during summer (e.g., Déqué et al., 2007; Giorgi
and Coppola, 2010; Jacob et al., 2014). In the RCMs, this
pattern is evidently inherited by the driving GCMs. In both
the winter and summer, however, significant differences
can be found between the two ensembles, in particular
related to the presence of the Carpathian chain.

We first focus on the winter season. Figure 1 shows a
maximum increase in the western portion of the basin,
predominantly flat, both in the GCM and RCM

ensemble, although more marked in the latter. While
however the precipitation enhancement tends to decrease
toward the east in the GCMs, we can observe maxima in
correspondence of the mountain chains in the RCMs,
and specifically over the eastern flanks of the Outer East-
ern Carpathians and the northern flanks of the Southern
Carpathians.

To investigate the origin of these maxima, Figure 2
presents the change in DJF precipitation and 850 hPa
wind for each individual GCM/RCM pair along with the
corresponding “downscaling signal”, or DS, introduced
by Giorgi et al. (2016). The DS is defined as the local dif-
ference between RCM and GCM precipitation change
after the area mean change is removed (to remove sys-
tematic differences across the two models), that is, it is a
measure of the fine scale modulation of the signal by
the RCMs.

First, it can be seen that even though the Carpathian
Basin lies toward the center of the RCM domains, the
change in regional scale wind is mostly driven by the
GCMs, although with some modulation by the
corresponding RCMs, especially in the case of the
HadGEM/RCA4 pair. The figure shows a close corre-
spondence between the RCM-produced precipitation
change, change in mean wind direction, and orientation
of the mountain chain (which determines the sign of the
precipitation shadowing effect). This is especially evident
when analyzing the DS. In the CNRM-CM5/ALADIN
and HadGEM/RegCM pairs, the change in flow is mostly
from the northerly direction, resulting in a positive DS

FIGURE 1 Ensemble average

of GCM and RCM projected percent

change in winter and summer

precipitation over the Carpathian

region for the future time slice

2070–2099 compared to the

reference period 1976–2005. Panel
(a) GCM ensemble, 2070–2099
(DJF); (b) RCM ensemble,

2070–2099 (DJF); (c) GCM

ensemble, 2070–2099 (JJA); (d) RCM

ensemble, 2070–2099 (JJA). Dotting

indicates areas where at least 3 out

of 4 GCMs or 4 out of 6 RCMs agree

on the sign of the signal. Thin

contour lines represent topography

with intervals of 500 m
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FIGURE 2 Changes in mean winter (DJF) precipitation along with the change in 850 hPa wind field for each individual GCM/RCM

pair along with the corresponding “downscaling signal”, or DS for 2070–2099 compared to the reference period 1976–2005. Precipitation
change and DS are given in percentage, while the 850 hPa wind field changes are given in ms−1. Thin contour lines represent topography

with intervals of 500 m
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(increased change) along the northern and northeastern
(upwind) flanks of the mountain chains. Conversely, in
the HadGEM/RCA4 and MPI/CCLM, the change in flow
is mostly from the west, resulting positive DS along the
western topographic slopes. In the EC-EARTH/RACMO
pair the change in flow is mostly southeasterly, parallel
to the main orientation of the chain and thus the DS is
not large. Finally, in the MPI/REMO pair, we find posi-
tive DS both in the eastern and western mountain slopes
even though the prevailing mean wind change is from
the west. Evidently, in this case, the interannual variabil-
ity of wind change is an important element contributing
to the precipitation change.

In summary, Figure 2 shows that a key factor deter-
mining the regional spatial distribution of the winter
precipitation change signal over the Carpathian region
by the end of the 21st century is the orientation of the
mountain chains with respect to the main flow change,
which in turn determines the intensity of the precipita-
tion shadowing effect. In other words, the topographi-
cally induced signal is mostly of dynamical nature.

Moving now to the summer season, here the effect
has a more thermodynamic origin. Figure 3 shows the
ensemble average of summer precipitation change in the
GCM and RCM ensembles, along with the change in con-
vective and resolvable scale precipitation and the DS of
the ensemble average change. At the large scale, there is
a maximum in precipitation decrease over the southern
portion of the basin in both ensembles, whose center is
however slightly shifted across the two datasets. The DS
shows a positive anomaly over the Hungarian plains
(i.e., a lower reduction of precipitation in the RCMs)
mostly tied to the resolvable scale component of rainfall,
which actually shows an increase there. Comparison with
the change in convective precipitation, which is strongly
negative, would indicate some shift of precipitation mode
from convective to non-convective. Figure S3 shows the
precipitation and 850 hPa wind changes and the DS for
each individual GCM/RCM pair for the summer (JJA).

The effect of topography, however, can be mostly
seen in the convective precipitation change field, where
throughout the highest mountain peaks convection

FIGURE 3 Ensemble average percent change in summer precipitation (2070–2099 vs. 1976–2005) in the GCM (panel a) and RCM

ensembles (panel b), along with the change in convective (panel d) and resolvable scale precipitation (panel e) and the DS of the ensemble

average change (panel c). Dotting indicates areas where at least 3 out of 4 GCMs or 4 out of 6 RCMs agree on the sign of the signal. Thin

contour lines represent topography with intervals of 500 m
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shows a less marked decrease and the precipitation DS
show small but positive values. This is due to a maximum
increase in potential for convection as measured by
the potential instability index, defined as the difference
between equivalent potential temperature at 500 and
850 hPa. Higher negative values of the index imply
greater potential for convection, and the large decreases
of this index occurring over the highest peaks of the
Carpathian Mountains (Figure 4) are indications of
increases in convection potential associated with high
elevation heating. We found this signal quite robust as
most models agreed on the sign of the change all over the
region of interest. This process is similar to that found by
Giorgi et al. (2016) over the Alpine region, with the
important difference that while over the Alps it was suffi-
cient to reverse the precipitation change signal over the
mountain tops from negative to positive, here it only
attenuates the precipitation reduction. This indicates that
this process is strongly dependent on elevation and the
extent of the mountainous areas.

4 | DISCUSSION AND SUMMARY
CONSIDERATIONS

In this paper, we analyzed the topographically induced
fine scale seasonal precipitation change signal in high-
resolution RCM projections over the Carpathian region
by the end of the 21st century (2070–2099). We found
that the Carpathian Mountains significantly affect precip-
itation change patterns both in winter and summer, but
with different underlying mechanisms. In the winter, the
topographic forcing is mostly of dynamical nature. It is

tied to the topographic shadowing effect related to
changes in wind circulations, which causes as a predomi-
nant signal, an increase in precipitation on the upwind
side of the mountains with respect to the main direction
of the wind change.

In the summer, the topographic forcing is mostly of
thermodynamical nature, being related to an increase in
convective potential over the mountain peaks associated
to high elevation heating and moistening. This process is
similar to that found by Giorgi et al. (2016) for the Alps,
with the important difference that it is of lower intensity
because of the lower elevations and the smaller extent of
the Carpathians compared to the Alps. In fact, while over
the Alps, the topographic forcing actually reversed the sign
of summer precipitation change over the mountain peaks
(from negative to positive), in the Carpathians, it only
attenuates the negative summer precipitation signal.

Our results thus confirm that even relatively small
topographic features can modulate the local climatic pre-
cipitation change signal, with the characteristics of topog-
raphy, and specifically elevation and orientation, playing
a key role in this process. This implies that the represen-
tation of topography in climate models is a key element
in the provision of robust precipitation information for
application to local impact studies.
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