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H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Improving the Integrality Gap for
Multiway Cut
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Abstract

In the multiway cut problem, we are given an undirected graph with non-
negative edge weights and a collection of k terminal nodes, and the goal is to
partition the node set of the graph into k non-empty parts each containing
exactly one terminal so that the total weight of the edges crossing the partition
is minimized. The multiway cut problem for k ≥ 3 is APX-hard. For arbitrary
k, the best-known approximation factor is 1.2965 due to Sharma and Vondrák
[11] while the best known inapproximability factor is 1.2 due to Angelidakis,
Makarychev and Manurangsi [1]. In this work, we improve on the lower bound
to 1.20016 by constructing an integrality gap instance for the CKR relaxation.

A technical challenge in improving the gap has been the lack of geometric
tools to understand higher-dimensional simplices. Our instance is a non-trivial
3-dimensional instance that overcomes this technical challenge. We analyze the
gap of the instance by viewing it as a convex combination of 2-dimensional
instances and a uniform 3-dimensional instance. We believe that this technique
could be exploited further to construct instances with larger integrality gap.
One of the ingredients of our proof technique is a generalization of a result on
Sperner admissible labelings due to Mirzakhani and Vondrák [10] that might be
of independent combinatorial interest.
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1 Introduction

In the multiway cut problem, we are given an undirected graph with non-negative
edge weights and a collection of k terminal nodes and the goal is to find a minimum
weight subset of edges to delete so that the k input terminals cannot reach each other.
For convenience, we will use k-way cut to denote this problem when we would like
to highlight the dependence on k and multiway cut to denote this problem when k
grows with the size of the input graph. The 2-way cut problem is the classic mini-
mum {s, t}-cut problem which is solvable in polynomial time. For k ≥ 3, Dahlhaus,
Johnson, Papadimitriou, Seymour and Yannakakis [6] showed that the k-way cut
problem is APX-hard and gave a (2− 2/k)-approximation. Owing to its applications
in partitioning and clustering, k-way cut has been an intensely investigated problem
in the algorithms literature. Several novel rounding techniques in the approximation
literature were discovered to address the approximability of this problem.

The known approximability as well as inapproximability results are based on a
linear programming relaxation, popularly known as the CKR relaxation in honor
of the authors—Călinescu, Karloff and Rabani—who introduced it [4]. The CKR
relaxation takes a geometric perspective of the problem. For a graph G = (V,E) with
edge weights w : E → R+ and terminals t1, . . . , tk, the CKR relaxation is given by

min
1

2

∑
e={u,v}∈E

w(e)‖xu − xv‖1

xu ∈ ∆k ∀ u ∈ V,
xti = ei ∀ i ∈ [k],

where ∆k := {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi = 1} is the (k − 1)-dimensional simplex
and ei ∈ {0, 1}k is the extreme point of the simplex along the i-th coordinate axis,
i.e., eij = 1 if and only if j = i.

Călinescu, Karloff and Rabani designed a rounding scheme for the relaxation which
led to a (3/2 − 1/k)-approximation thus improving on the (2 − 2/k)-approximation
by Dahlhaus et al. For 3-way cut, Cheung, Cunningham and Tang [5] as well as
Karger, Klein, Stein, Thorup and Young [8] designed alternative rounding schemes
that led to a 12/11-approximation factor and also exhibited matching integrality gap
instances. We recall that the integrality gap of an instance to the LP is the ratio
between the integral optimum value and the LP optimum value. Determining the
exact integrality gap of the CKR relaxation for k ≥ 4 has been an intriguing open
question. After the results by Karger et al. and Cunningham et al., a rich variety
of rounding techniques were developed to improve the approximation factor of k-way
cut for k ≥ 4 [2, 3, 11]. The known approximation factor for multiway cut is 1.2965
due to Sharma and Vondrák [11].

On the hardness of approximation side, Manokaran, Naor, Raghavendra and
Schwartz [9] showed that the hardness of approximation for k-way cut is at least
the integrality gap of the CKR relaxation assuming the Unique Games Conjecture
(UGC). More precisely, if the integrality gap of the CKR relaxation for k-way cut
is τk, then it is UGC-hard to approximate k-way cut within a factor of τk − ε for
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every constant ε > 0. As an immediate consequence of this result, we know that
the 12/11-approximation factor for 3-way cut is tight. For k-way cut, Freund and
Karloff [7] constructed an instance showing an integrality gap of 8/(7 + (1/(k − 1))).
This was the best known integrality gap until last year when Angelidakis, Makarychev
and Manurangsi [1] gave a remarkably simple construction showing an integrality gap
of 6/(5 + (1/(k− 1))) for k-way cut. In particular, this gives an integrality gap of 1.2
for multiway cut.

We note that the known upper and lower bounds on the approximation factor for
multiway cut match only up to the first decimal digit and thus the approximability of
this problem is far from resolved. Indeed Angelidakis, Makarychev and Manurangsi
raise the question of whether the lower bound can be improved. In this work, we
improve on the lower bound by constructing an instance with integrality gap 1.20016.

Theorem 1.1. For every constant ε > 0, there exists an instance of multiway cut such
that the integrality gap of the CKR relaxation for that instance is at least 1.20016− ε.

The above result in conjunction with the result of Manokaran et al. immediately
implies that multiway cut is UGC-hard to approximate within a factor of 1.20016− ε
for every constant ε > 0.

One of the ingredients of our technique underlying the proof of Theorem 1.1 is
a generalization of a result on Sperner admissible labelings due to Mirzakhani and
Vondrák [10] that might be of independent combinatorial interest (see Theorem 5.2).

2 Background and Result

Before outlining our techniques, we briefly summarize the background literature that
we build upon to construct our instance. We rely on two significant results from the
literature. In the context of the k-way cut problem, a cut is a function P : ∆k → [k+1]
such that P (ei) = i for all i ∈ [k], where we use the notation [k] := {1, 2, . . . , k}. The
use of k + 1 labels as opposed to k labels to describe a cut is a bit non-standard, but
is useful for reasons that will become clear later on. The approximation ratio τk(P)
of a distribution P over cuts is given by its maximum density :

τk(P) := sup
x,y∈∆k,x 6=y

PrP∼P(P (x) 6= P (y))

(1/2)‖x− y‖1

.

Karger et al. [8] define
τ ∗k := inf

P
τk(P),

and moreover showed that there exists P that achieves the infimum. Hence, τ ∗k =
minP τk(P). With this definition of τ ∗k , Karger et al. [8] showed that for every ε > 0,
there is an instance of multiway cut with k terminals for which the integrality gap of
the CKR relaxation is at least τ ∗k −ε. Thus, Karger et al.’s result reduced the problem
of constructing an integrality gap instance for multiway cut to proving a lower bound
on τ ∗k .
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Next, Angelidakis, Makarychev and Manurangsi [1] reduced the problem of lower
bounding τ ∗k further by showing that it is sufficient to restrict our attention to non-
opposite cuts as opposed to all cuts. A cut P is a non-opposite cut if P (x) ∈
Support(x) ∪ {k + 1} for every x ∈ ∆k. Let ∆k,n := ∆k ∩ ((1/n)Z)k. For a dis-
tribution P over cuts, let

τk,n(P) := max
x,y∈∆k,n,x 6=y

PrP∼P(P (x) 6= P (y))

(1/2)‖x− y‖1

, and

τ̃ ∗k,n := min{τk,n(P) : P is a distribution over non-opposite cuts}.

Angelidakis, Makarychev and Manurangsi showed that τ̃ ∗k,n−τ ∗K = O(kn/(K−k)) for
all K > k. Thus, in order to lower bound τ ∗K , it suffices to lower bound τ̃ ∗k,n. That is,
it suffices to construct an instance that has large integrality gap against non-opposite
cuts.

As a central contribution, Angelidakis, Makarychev and Manurangsi constructed
an instance showing that τ̃ ∗3,n ≥ 1.2 − O(1/n). Now, by setting n = Θ(

√
K), we see

that τ ∗K is at least 1.2 − O(1/
√
K). Furthermore, they also showed that their lower

bound on τ̃ ∗3,n is almost tight, i.e., τ̃ ∗3,n ≤ 1.2. The salient feature of this framework is
that in order to improve the lower bound on τ ∗K , it suffices to improve τ̃ ∗k,n for some
4 ≤ k < K.

The main technical challenge towards improving τ̃ ∗4,n is that one has to deal with
the 3-dimensional simplex ∆4. Indeed, all known gap instances including that of
Angelidakis, Makarychev and Manurangsi are constructed using the 2-dimensional
simplex. In the 2-dimensional simplex, the properties of non-opposite cuts are easy
to visualize and their cut-values are convenient to characterize using simple geometric
observations. However, the values of non-opposite cuts in the 3-dimensional simplex
become difficult to characterize. Our main contribution is a simple argument based on
properties of lower-dimensional simplices that overcomes this technical challenge. We
construct a 3-dimensional instance that has gap larger than 1.2 against non-opposite
cuts.

Theorem 2.1. τ̃ ∗4,n ≥ 1.20016−O(1/n).

Theorem 1.1 follows from Theorem 2.1 using the above arguments.

3 Outline of Ideas

Let G = (V,E) be the graph with node set ∆4,n and edge set E4,n := {xy : x, y ∈
∆4,n, ‖x − y‖1 = 2/n}, where the terminals are the four unit vectors. In order to
lower bound τ̃ ∗4,n, we will come up with weights on the edges of G such that every
non-opposite cut has cost at least α = 1.20016 and moreover the cumulative weight
of all edges is n+O(1). This suffices to lower bound τ̃ ∗4,n by the following proposition.

Proposition 3.1. Suppose that there exist weights w : E4,n → R≥0 on the edges of G
such that every non-opposite cut has cost at least α and the cumulative weight of all
edges is n+O(1). Then, τ̃ ∗4,n ≥ α−O(1/n).
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Proof. For an arbitrary distribution P over non-opposite cuts, we have

τk,n(P) = max
x,y∈∆k,n,x 6=y

PrP∼P(P (x) 6= P (y))

(1/2)‖x− y‖1

≥ max
xy∈E4,n

PrP∼P(P (x) 6= P (y))

(1/2)‖x− y‖1

= max
xy∈E4,n

PrP∼P(P (x) 6= P (y))

1/n

≥
∑

xy∈E4,n

w(xy)PrP∼P(P (x) 6= P (y))

(1/n)(
∑

e∈E4,n
w(e))

≥ α

1 +O(1/n)
= α−O(1/n),

where the last inequality follows from the hypothesis that every non-opposite cut has
cost at least α and the cumulative weight of all edges is n+O(1).

We obtain our weighted instance from four instances that have large gap against
different types of cuts, and then compute the convex combination of these instances
that gives the best gap against all non-opposite cuts.

All of our four instances are defined as edge-weights on the graph G = (V,E). We
identify ∆3,n with the facet of ∆4,n defined by x4 = 0. Our first three instances are
2-dimensional instances, i.e. only edges induced by ∆3,n have positive weight. The
fourth instance has uniform weight on E4,n.

We first explain the motivation behind Instances 1,2, and 4, since these are easy to
explain. Let

Lij := {xy ∈ E4,n : Support(x), Support(y) ⊆ {i, j}}.

• Instance 1 is simply the instance of Angelidakis, Makarychev and Manurangsi [1]
on ∆3,n. It has gap 1.2 − 1

n
against all non-opposite cuts, since non-opposite

cuts in ∆4,n induce non-opposite cuts on ∆3,n. Additionally, we show in Lemma
4.5 that the gap is strictly larger than 1.2 by a constant if the following two
conditions hold:

– there exist i, j ∈ [3] such that Lij contains only one edge whose end-nodes
have different labels (a cut with this property is called a non-fragmenting
cut), and

– ∆3,n has a lot of nodes with label 5.

• Instance 2 has uniform weight on L12, L13 and L23, and 0 on all other edges.
Here, a cut in which each Lij contains at least two edges whose end-nodes have
different labels (a fragmenting cut) has large weight. Consequently, this instance
has gap at least 2 against such cuts.

• Instance 4 has uniform weight on all edges in E4,n. A beautiful result due to
Mirzakhani and Vondrák [10] implies that non-opposite cuts with no node of
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Section 4. A 3-dimensional gap instance against non-opposite cuts 6

label 5 have large weight. Consequently, this instance has gap at least 3/2
against such cuts. We extend their result in Lemma 4.4 to show that the weight
remains large if ∆3,n has few nodes with label 5.

At first glance, the arguments above seem to imply that a convex combination of
these three instances already gives a gap strictly larger than 1.2 for all non-opposite
cuts. However, there exist two non-opposite cuts such that at least one of them has
cost at most 1.2 in every convex combination of these three instances (see Section
7.1). One of these two cuts is a fragmenting cut that has almost zero cost in Instance
4 and the best possible cost, namely 1.2, in Instance 1. Instance 3 is constructed
specifically to boost the cost against this non-opposite cut. It has positive uniform
weight on 3 equilateral triangles, incident to e1, e2 and e3 on the face ∆3,n. We call the
edges of these triangles red edges. The side length of these triangles is a parameter,
denoted by c, that is optimized at the end of the proof. Essentially, we show that if
a non-opposite cut has small cost both on Instance 1 and Instance 4 (i.e., weight 1.2
on Instance 1 and O(1/n2) weight on Instance 4), then it must contain red edges.

Our lower bound of 1.20016 is obtained by optimizing the coefficients of the convex
combination and the parameter c. By Proposition 3.1 and the results of Angelidakis,
Makarychev and Manurangsi, we obtain that τ ∗K ≥ 1.20016 − O(1/

√
K), i.e., the

integrality gap of the CKR relaxation for k-way cut is at least 1.20016 − O(1/
√
k).

We complement our lower bound of 1.20016 by also showing that the best possible
gap that can be achieved using convex combinations of our four instances is 1.20067
(see Section 7.2).

4 A 3-dimensional gap instance against non-oppo-

site cuts

We will focus on the graph G = (V,E) with the node set V := ∆4,n being the
discretized 3-dimensional simplex and the edge set E4,n := {xy : x, y ∈ ∆4,n, ‖x−y‖1 =
2/n}. The four terminals s1, . . . , s4 will be the four extreme points of the simplex,
namely si = ei for i ∈ [4]. In this context, a cut is a function P : V → [5] such that
P (si) = i for all i ∈ [4]. The cut-set corresponding to P is defined as

δ(P ) := {xy ∈ E4,n : P (x) 6= P (y)}.

For a set S of nodes, we will also use δ(S) to denote the set of edges with exactly
one end node in S. Given a weight function w : E4,n → R+, the cost of a cut P is∑

e∈δ(P )w(e). Our goal is to come up with weights on the edges so that the resulting
4-way cut instance has gap at least 1.20016 against non-opposite cuts.

We recall that Lij denotes the boundary edges between terminals si and sj, i.e.,

Lij = {xy ∈ E4,n : Support(x), Support(y) ⊆ {i, j}}.

We will denote the boundary nodes between terminals si and sj as Vij, i.e.,

Vij := {x ∈ ∆4,n : Support(x) ⊆ {i, j}} .
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s1

s2 s3

L31L12

L23

(a) One face of the simplex with edge-sets
L12, L23 and L31.

s1

s2 s3

cn

Closure(R1)

U1

(b) Definition of red nodes and edges near
terminal s1. Dashed part corresponds to
(R1,Γ1).

Figure 1: Notation on Face(s1, s2, s3).

Let c ∈ (0, 1/2) be a constant to be fixed later, such that cn is integral. For each
k ∈ [3], we define node sets Uk, Rk and Closure(Rk) and edge set Γk as follows:

Uk := {x ∈ ∆4,n : x4 = 0, xk = 1− c},
Rk := Uk ∪ {x ∈ Vik ∪ Vjk : xk ≥ 1− c},

Closure(Rk) := {x ∈ ∆4,n : x4 = 0, xk ≥ 1− c}, and

Γk := {xy ∈ E4,n : x, y ∈ Rk} .

We will refer to the nodes in Rk as red1 nodes near terminal sk and the edges in
Γk as the red edges near terminal sk (see Figure 1b). Let Face(s1, s2, s3) denote the
subgraph of G induced by the nodes whose support is contained in {1, 2, 3}. We
emphasize that red edges and red nodes are present only in Face(s1, s2, s3) and that
the total number of red edges is exactly 9cn.

4.1 Gap instance as a convex combination

Our gap instance is a convex combination of the following four instances.

1. Instance I1. Our first instance constitutes the 3-way cut instance constructed
by Angelidakis, Makarychev and Manurangsi [1] that has gap 1.2 against non-
opposite cuts. To ensure that the total weight of all the edges in their instance
is exactly n, we will scale their instance by 6/5. Let us denote the resulting
instance as J . In I1, we simply use the instance J on Face(s1, s2, s3) and set the
weights of the rest of the edges in E4,n to be zero.

2. Instance I2. In this instance, we set the weights of the edges in L12, L23, L13

to be 1/3 and the weights of the rest of the edges in E4,n to be zero.

1We use the term “red” as a convenient way for the reader to remember these nodes and edges.
The exact color is irrelevant.
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4.2 Gap of the Convex Combination 8

3. Instance I3. In this instance, we set the weights of the red edges to be 1/9c
and the weights of the rest of the edges in E4,n to be zero.

4. Instance I4. In this instance, we set the weight of every edge in E4,n to be
1/n2.

We note that the total weight of all edges in each of the above instances is n+O(1).
For multipliers λ1, . . . , λ4 ≥ 0 to be chosen later that will satisfy

∑4
i=1 λi = 1, let the

instance I be the convex combination of the above four instances, i.e., I = λ1I1 +
λ2I2 +λ3I3 +λ4I4. By the properties of the four instances, it immediately follows that
the total weight of all edges in the instance I is also n+O(1).

4.2 Gap of the Convex Combination

The following theorem is the main result of this section.

Theorem 4.1. For every n ≥ 10 and c ∈ (0, 1/2) such that cn is integer, every
non-opposite cut on I has cost at least the minimum of the following two terms:

(i) λ2 + (1.2− 1
n
)λ1 + minα∈[0, 12 ]

{
0.4αλ1 + 3

(
1
2
− α

)
λ4

}
(ii) 2λ2 + (1.2− 5

2n
)λ1 + 3 min

{
2λ3
9c
,min

α∈
[
0, c

2

2

] {0.4αλ1 + 3
(
c2

2
− α

)
λ4

}}
Before proving Theorem 4.1, we see its consequence.

Corollary 4.2. There exist constants c ∈ (0, 1/2) and λ1, λ2, λ3, λ4 ≥ 0 with
∑4

i=1 λi =
1 such that the cost of every non-opposite cut in the resulting convex combination I
is at least 1.20016−O(1/n).

Proof. The corollary follows from Theorem 4.1 by setting λ1 = 0.751652, λ2 =
0.147852, λ3 = 0.000275, λ4 = 0.100221 and c = 0.074125 (this is the optimal setting
to achieve the largest lower bound based on Theorem 4.1).

Corollary 4.2 in conjunction with Proposition 3.1 immediately implies Theorem 2.1.
The following theorem (shown in Section 7.2) complements Corollary 4.2 by giv-

ing an upper bound on the best possible gap that is achievable using the convex
combination of our four instances.

Theorem 4.3. For every constant c ∈ (0, 1/2) and every λ1, λ2, λ3, λ4 ≥ 0 with∑4
i=1 λi = 1, there exists a non-opposite cut whose cost in the resulting convex com-

bination I is at most 1.20067 +O(1/n).

In light of Corollary 4.2 and Theorem 4.3, if we believe that the integrality gap
of the CKR relaxation is more than 1.20067, then considering convex combination of
alternative instances is a reasonable approach towards proving this.

The rest of the section is devoted to proving Theorem 4.1. We rely on two main
ingredients in the proof. The first ingredient is a statement about non-opposite cuts
in the 3-dimensional discretized simplex. We prove this in Section 5, where we also
give a generalization to higher dimensional simplices, which might be of independent
interest.
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Lemma 4.4. Let P be a non-opposite cut on ∆4,n with α(n + 1)(n + 2) nodes from
Face(s1, s2, s3) labeled as 1, 2, or 3 for some α ∈ [0, 1/2]. Then, |δ(P )| ≥ 3αn(n+ 1).

The constant 3 that appears in the conclusion of Lemma 4.4 is the best possible
for any fixed α (if n→∞). To see this, consider the non-opposite cut P obtained by
labeling si to be i for every i ∈ [4], all nodes at distance at most αn from s1 to be 1,
and all remaining nodes to be 5. The number of nodes from Face(s1, s2, s3) labeled as
1, 2, or 3 is αn2 +O(n). The number of edges in the cut is 3αn2 +O(n).

The second ingredient involves properties of the 3-way cut instance constructed
by Angelidakis, Makarychev and Manurangsi [1]. We need two properties that are
summarized in Lemma 4.5 and Corollary 4.2. We prove these properties in Section 6.
We define a cut Q : ∆3,n → [4] to be a fragmenting cut if |δ(Q) ∩ Lij| ≥ 2 for every
distinct i, j ∈ [3]; otherwise it is a non-fragmenting cut. We recall that J denotes
the instance obtained from the 3-way cut instance of Angelidakis, Makarychev and
Manurangsi by scaling it up by 6/5.

The first property is that non-opposite non-fragmenting cuts in ∆3,n that label a
large number of nodes with label 4 have cost much larger than 1.2.

Lemma 4.5. Let Q : ∆3,n → [4] be a non-opposite cut with αn2 nodes labeled as
4. If Q is a non-fragmenting cut and n ≥ 10, then the cost of Q on J is at least
1.2 + 0.4α− 1

n
.

We show Lemma 4.5 by modifying Q to obtain a non-opposite cut Q′ while reducing
its cost by 0.4α. By the main result of [1], the cost of every non-opposite cut Q′ on J
is at least 1.2− 1

n
. Therefore, it follows that the cost of Q on J is at least 1.2− 1

n
+0.4α.

We emphasize that while it might be possible to improve the constant 0.4 that appears
in the conclusion of Lemma 4.5, it does not lead to much improvement on the overall
integrality gap as illustrated by the results in Section 7.2.

The second property is that non-opposite cuts which do not remove any of the red
edges, but label a large number of nodes in the red region with label 4 have cost much
larger than 1.2. Let Q : ∆3,n → [4] be a non-opposite cut and n ≥ 10. For each
i ∈ [3], let

Ai :=

{
{v ∈ Closure(Ri) : Q(v) = 4} if δ(Q) ∩ Γi = ∅,
∅ otherwise.

Then, the cost of Q on J is at least 1.2 + 0.4
∑3

i=1 |Ai|/n2 − 5
2n

.
In order to show Corollary 4.2, we first derive that the cost of the edges δ(∪3

i=1Ai)
in the instance J is at least 0.4

∑3
i=1 |Ai|/n2− 3

2n
using Lemma 4.5. Next, we modify

Q to obtain a non-opposite cut Q′ such that δ(Q′) = δ(Q) \ δ(∪3
i=1Ai). By the main

result of [1], the cost of every non-opposite cut Q′ on J is at least 1.2− 1
n
. Therefore,

it follows that the cost of Q on J is at least 1.2 + 0.4
∑3

i=1 |Ai|/n2.
We now have the ingredients to prove Theorem 4.1.

Proof of Theorem 4.1. Let P : ∆4,n → [5] be a non-opposite cut. Let Q be the cut P
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4.2 Gap of the Convex Combination 10

restricted to Face(s1, s2, s3), i.e., for every v ∈ ∆4,n with Support(v) ⊆ [3], let

Q(v) :=

{
P (v) if P (v) ∈ {1, 2, 3},
4 if P (v) = 5.

We consider two cases.

Case 1: Q is a non-fragmenting cut. Let the number of nodes in Face(s1, s2, s3)
that are labeled by Q as 4 (equivalently, labeled by P as 5) be α(n+1)(n+2) for some
α ∈

[
0, 1

2

]
. Since |{x ∈ Face(s1, s2, s3) : Q(x) = 4}| ≥ αn2, Lemma 4.5 implies that

the cost of Q on J , and hence the cost of P on I1, is at least 1.2+0.4α− 1
n
. Moreover,

the cost of P on I2 is at least 1 since at least one edge in Lij should be in δ(P ) for
every pair of distinct i, j ∈ [3]. To estimate the cost on I4, we observe that the number
of nodes on Face(s1, s2, s3) labeled by P as 1, 2, or 3 is (1/2 − α)(n + 1)(n + 2). By
Lemma 4.4, we have that |δ(P )| ≥ 3(1/2− α)n(n + 1) and thus, the cost of P on I4

is at least 3(1/2− α). Therefore, the cost of P on the convex combination instance I
is at least

λ2 +

(
1.2− 1

n

)
λ1 + min

α∈[0, 12 ]

{
0.4αλ1 + 3

(
1

2
− α

)
λ4

}
.

Case 2: Q is a fragmenting cut. Then, the cost of P on I2 is at least 2 as a
fragmenting cut contains at least 2 edges from each Lij for distinct i, j ∈ [3].

We will now compute the cost of P on the other instances. Let r := |{i ∈ [3] :
δ(P ) ∩ Γi 6= ∅}|, i.e., r is the number of red triangles that are intersected by the cut
P . We will derive lower bounds on the cost of the cut in each of the three instances
I1, I3 and I4 based on the value of r ∈ {0, 1, 2, 3}. For each i ∈ [3], let

Ai :=

{
{v ∈ Closure(Ri) : P (v) = 5} if δ(P ) ∩ Γi = ∅,
∅ otherwise,

and let α := |A1 ∪ A2 ∪ A3|/((n + 1/c)(n + 2/c)). Since c < 1/2, the sets Ai and
Aj are disjoint for distinct i, j ∈ [3]. We note that α ∈ [0, (3 − r)c2/2] since |Ai| ≤
(cn+ 1)(cn+ 2)/2 and Ai ∩ Aj = ∅.

In order to lower bound the cost of P on I1, we will use Corollary 4.2. We recall
that Q is the cut P restricted to Face(s1, s2, s3), so the cost of P on I1 is the same
as the cost of Q on J . Moreover, by Corollary 4.2, the cost of Q on J is at least
1.2 + 0.4α − 5

2n
, because α ≤

∑3
i=1 |Ai|/n2. Hence, the cost of P on I1 is at least

1.2 + 0.4α− 5
2n

.
The cost of P on I3 is at least 2r/9c by the following claim.

Claim 4.6. Let i ∈ [3]. If δ(P ) ∩ Γi 6= ∅, then |δ(P ) ∩ Γi| ≥ 2.

Proof. The subgraph (Ri,Γi) is a cycle. If P (x) 6= P (y) for some xy ∈ Γi, then the
path Γi − xy must also contain two consecutive nodes labeled differently by P .
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4.2 Gap of the Convex Combination 11

Next we compute the cost of P on I4. If r = 3, then the cost of P on I4 is at least
0. Suppose r ∈ {0, 1, 2}. For a red triangle i ∈ [3] with δ(P ) ∩ Γi = ∅, we have at
least (cn + 1)(cn + 2)/2− |Ai| nodes from Closure(Ri) that are labeled as 1, 2, or 3.
Moreover, the nodes in Closure(Ri) and Closure(Rj) are disjoint for distinct i, j ∈ [3].
Hence, the number of nodes in Face(s1, s2, s3) that are labeled as 1, 2, or 3 is at least
(3− r)(cn+ 1)(cn+ 2)/2−α(n+ 1/c)(n+ 2/c) = ((3− r)c2/2−α)(n+ 1/c)(n+ 2/c),
which is at least ((3 − r)c2/2 − α)(n + 1)(n + 2), since c ≤ 1. Therefore, by Lemma
4.4, we have |δ(P )| ≥ 3((3 − r)c2/2 − α)n2 and thus, the cost of P on I4 is at least
3((3− r)c2/2− α).

Thus, the cost of P on the convex combination instance I is at least 2λ2 + (1.2 −
5

2n
)λ1 + γ(r, α) for some α ∈ [0, (3− r)c2/2], where

γ(r, α) :=

{
6λ3
9c
, if r = 3,

0.4αλ1 + 2r
9c
λ3 + 3

(
(3−r)c2

2
− α

)
λ4, if r ∈ {0, 1, 2}.

In particular, the cost of P on the convex combination instance I is at least 2λ2 +
(1.2− 5/(2n))λ1 + γ∗, where

γ∗ := min
r∈{0,1,2,3}

min
α∈

[
0,

(3−r)c2

2

] γ(r, α).

Now, Claim 4.7 completes the proof of the theorem.

Claim 4.7.

γ∗ ≥ 3 min

2λ3

9c
, min
α∈

[
0, c

2

2

]
{

0.4αλ1 + 3

(
c2

2
− α

)
λ4

} .

Proof. Let γ(r) := minα∈[0,(3−r)c2/2] γ(r, α). If r = 3, then the claim is clear. We
consider the three remaining cases.

(I) Say r = 0. Then,

γ(0) = min
α∈

[
0, 3c

2

2

]
{

0.4αλ1 + 3

(
3c2

2
− α

)
λ4

}

= 3 min
α∈

[
0, c

2

2

]
{

0.4αλ1 + 3

(
c2

2
− α

)
λ4

}
.
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Section 5. Size of non-opposite cuts in ∆k,n 12

(II) Say r = 1. Then,

γ(1) = min
α∈[0,c2]

{
0.4αλ1 +

2

9c
λ3 + 3

(
c2 − α

)
λ4

}
=

2

9c
λ3 + min

α∈
[
0, c

2

2

]{2 · 0.4αλ1 + 3
(
c2 − 2α

)
λ4

}
=

2

9c
λ3 + 2 min

α∈
[
0, c

2

2

]
{

0.4αλ1 + 3

(
c2

2
− α

)
λ4

}

≥ 3 min

2λ3

9c
, min
α∈

[
0, c

2

2

]
{

0.4αλ1 + 3

(
c2

2
− α

)
λ4

} ,

where the last inequality is from the identity x+2y ≥ 3 min{x, y} for all x, y ∈ R.

(III) Say r = 2. Then,

γ(2) = min
α∈

[
0, c

2

2

]
{

0.4αλ1 +
4

9c
λ3 + 3

(
c2

2
− α

)
λ4

}

=
4

9c
λ3 + min

α∈
[
0, c

2

2

]
{

0.4αλ1 + 3

(
c2

2
− α

)
λ4

}

≥ 3 min

2λ3

9c
, min
α∈

[
0, c

2

2

]
{

0.4αλ1 + 3

(
c2

2
− α

)
λ4

} ,

where the last inequality is from the identity 2x+y ≥ 3 min{x, y} for all x, y ∈ R.

5 Size of non-opposite cuts in ∆k,n

In this section, we prove Lemma 4.4. In fact, we prove a general result for ∆k,n,
that may be useful for obtaining improved bounds by considering higher dimensional
simplices. Our result is an extension of a theorem of Mirzakhani and Vondrák [10] on
Sperner-admissible labelings.

A labeling ` : ∆k,n → [k] is Sperner-admissible if `(x) ∈ Support(x) for every
x ∈ ∆k,n. We say that x ∈ ∆k,n has an inadmissible label if `(x) /∈ Support(x). Let
Hk,n denote the hypergraph whose node set is ∆k,n and whose hyperedge set is

E :=

{{
n− 1

n
x+

1

n
e1,

n− 1

n
x+

1

n
e2, . . . ,

n− 1

n
x+

1

n
ek

}
: x ∈ ∆k,n−1

}
.

Each hyperedge e ∈ E has k nodes, and if x, y ∈ e, then there exist distinct i, j ∈ [n]
such that x − y = 1

n
ei − 1

n
ej. We remark that Hk,n has

(
n+k−1
k−1

)
nodes and

(
n+k−2
k−1

)
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Section 5. Size of non-opposite cuts in ∆k,n 13

hyperedges. Geometrically, the hyperedges correspond to simplices that are translates
of each other and share at most one node. Given a labeling `, a hyperedge of Hk,n

is monochromatic if all of its nodes have the same label. Mirzakhani and Vondrák
showed the following result that a Sperner-admissible labeling of Hk,n does not have
too many monochromatic hyperedges, which also implies that the number of non-
monochromatic hyperedges is large.

Theorem 5.1 (Proposition 2.1 in [10]). Let ` be a Sperner-admissible labeling of
∆k,n. Then, the number of monochromatic hyperedges in Hk,n is at most

(
n+k−3
k−1

)
, and

therefore the number of non-monochromatic hyperedges is at least
(
n+k−3
k−2

)
.

Our main result of this section is an extension of the above result to the case when
there are some inadmissible labels on a single face of ∆k,n. We show that a labeling
in which all inadmissible labels are on a single face still has a large number of non-
monochromatic hyperedges. We will denote the nodes x ∈ ∆k,n with Support(x) ⊆
[k − 1] as Face(s1, . . . , sk−1).

Theorem 5.2. Let ` be a labeling of ∆k,n such that all inadmissible labels are on

Face(s1, . . . , sk−1) and the number of nodes with inadmissible labels is β (n+k−2)!
n!

for
some β. Then, the number of non-monochromatic hyperedges of Hk,n is at least(

1

(k − 2)!
− β

)
(n+ k − 3)!

(n− 1)!
.

Proof. Let Z := {x ∈ Face(s1, . . . , sk−1) : `(x) = k}, i.e. Z is the set of nodes
in Face(s1, . . . , sk−1) having an inadmissible label. Let us call a hyperedge of Hk,n

inadmissible if the label of one of its nodes is inadmissible.

Claim 5.3. There are at most β (n+k−3)!
(n−1)!

inadmissible monochromatic hyperedges.

Proof. Let E ′ be the set of inadmissible monochromatic hyperedges. Each hyperedge
e ∈ E ′ has exactly k − 1 nodes from Face(s1, . . . , sk−1) and they all have the same
label as e is monochromatic. Thus, each e ∈ E ′ contains k − 1 nodes from Z. We
define an injective map ϕ : E ′ → Z by letting ϕ(e) to be the node x ∈ e ∩ Z with
the largest 1st coordinate. Notice that if x = ϕ(e), then the other nodes of e are
x− (1/n)e1 + (1/n)ei (i = 2, . . . , k), and all but the last one are in Z. In particular,
x1 is positive.

Let Z ′ ⊆ Z be the image of ϕ. For x ∈ Z and i ∈ {2, . . . , k − 1}, let

Zi
x := {y ∈ Z : yj = xj ∀j ∈ [k − 1] \ {1, i}}.

Since yk = 0 and ‖y‖1 = 1 for every y ∈ Z, the nodes of Zi
x are on a line containing

x. It also follows that Zi
x ∩ Zj

x = {x} if i 6= j. Let

Z ′′ := {x ∈ Z : ∃i ∈ {2, . . . , k − 1} such that xi ≥ yi ∀y ∈ Zi
x}.

We observe that if x ∈ Z ′, then for each i ∈ {2, . . . , k−1}, the node y = x−(1/n)e1 +
(1/n)ei is in Z and hence, y ∈ Zi

x with yi > xi. In particular, this implies that
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Section 5. Size of non-opposite cuts in ∆k,n 14

Z ′ ∩ Z ′′ = ∅. We now compute an upper bound on the size of Z \ Z ′′, which gives
an upper bound on the size of Z ′ and hence also on the size of E ′, as |Z ′| = |E ′|. For
each node x ∈ Z \ Z ′′ and for every i ∈ {2, . . . , k − 1}, let zix be the node in Z ′′ ∩ Zi

x

with the largest ith coordinate. Clearly zix 6= zjx if i 6= j, because Zi
x ∩ Zj

x = {x}.
For given y ∈ Z ′′ and i ∈ {2, . . . , k − 1}, we want to bound the size of S := {x ∈

Z \ Z ′′ : zix = y}. Consider a ∈ S. Then, zia = y implies that the node in Z ′′ ∩ Zi
a

with the largest i-th coordinate is y. That is, yj = aj for all j ∈ [k − 1] \ {1, i} and
moreover yi ≥ ai. If yi = ai, then y = a, so a is in Z ′′ which contradicts a ∈ S.
Thus, yi > ai for any a ∈ S, i.e. the nodes in S are on the line Zi

y and their i-th
coordinate is strictly smaller than yi. This implies that |S| ≤ nyi. Consequently, the
size of the set {x ∈ Z \ Z ′′ : y = zix for some i ∈ {2, . . . , k − 1}} is at most n, since∑k−2

i=2 yi ≤ ‖y‖1 = 1.
For each x ∈ Z \ Z ′′, we defined k − 2 distinct nodes z2

x, . . . , z
k−1
x ∈ Z ′′. Moreover,

for each y ∈ Z ′′, we have at most n distinct nodes x in Z \ Z ′′ for which there exists
i ∈ {2, . . . , k − 1} such that y = zix. Hence, (k − 2)|Z \ Z ′′| ≤ n|Z ′′|, and therefore
|Z \ Z ′′| ≤ (n/(n+ k − 2))|Z|. This gives

|E ′| = |Z ′| ≤ |Z \ Z ′′| ≤ n

n+ k − 2
|Z| ≤ β

(n+ k − 2)!

n!

n

n+ k − 2
= β

(n+ k − 3)!

(n− 1)!
,

as required.

Let `′ be a Sperner-admissible labeling obtained from ` by changing the label of
each node in Z to an arbitrary admissible label. By Theorem 5.1, the number of
monochromatic hyperedges for `′ is at most

(
n+k−3
k−1

)
. By combining this with the

claim, we get that the number of monochromatic hyperedges for ` is at most
(
n+k−3
k−1

)
+

β (n+k−3)!
(n−1)!

. Since Hk,n has
(
n+k−2
k−1

)
hyperedges, the number of non-monochromatic

hyperedges is at least(
n+ k − 2

k − 1

)
−
(
n+ k − 3

k − 1

)
− β (n+ k − 3)!

(n− 1)!
=

(
n+ k − 3

k − 2

)
− β (n+ k − 3)!

(n− 1)!

=

(
1

(k − 2)!
− β

)
(n+ k − 3)!

(n− 1)!
.

We note that Theorem 5.2 is tight for the extreme cases where β = 0 and β =
1/(k − 2)!.

We now derive Lemma 4.4 from Theorem 5.2. We restate Lemma 4.4 for conve-
nience.

Lemma 5.4. Let P be a non-opposite cut on ∆4,n with α(n + 1)(n + 2) nodes from
Face(s1, s2, s3) labeled as 1, 2, or 3 for some α ∈ [0, 1/2]. Then, |δ(P )| ≥ 3αn(n+ 1).

Proof of Lemma 4.4. Let ` be the labeling of ∆4,n obtained from P by setting `(x) = 4
if P (x) = 5, and `(x) = P (x) otherwise. This is a labeling with (1

2
−α)(n+ 1)(n+ 2)

nodes having an inadmissible label, all on Face(s1, s2, s3). We apply Theorem 5.2
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Section 6. Properties of the 3-way cut instance in [1] 15

with parameters k = 4, β = 1
2
− α, and the labeling `. By the theorem, the number

of non-monochromatic hyperedges in H4,n = (∆4,n, E) under labeling ` is at least
αn(n+ 1).

We observe that for each hyperedge e = {u1, u2, u3, u4} ∈ E , the subgraph G[e]
induced by the nodes in e contains 6 edges. Also, for any two hyperedges e1 and e2,
the edges in the induced subgraphs G[e1] and G[e2] are disjoint as e1 and e2 can share
at most one node. Moreover, for each non-monochromatic hyperedge e ∈ E , at least
3 edges of G[e] are in δ(P ). Thus, the number of edges of G that are in δ(P ) is at
least 3αn(n+ 1).

6 Properties of the 3-way cut instance in [1]

In this section, we prove Lemma 4.5 and Corollary 4.2 which are properties of the gap
instance in [1].

6.1 The gap instance in [1]

In this section, we summarize the relevant background about the gap instance against
non-opposite 3-way cuts designed by Angelidakis, Makarychev and Manurangsi [1].
For our purposes, we scale the costs of their instance by a factor of 6/5 as it will be
convenient to work with them. We describe this scaled instance now.

Let G = (∆3,n, E3,n) where E3,n := {xy : x, y ∈ ∆3,n, ‖x − y‖1 = 2/n}. Their
instance is obtained by dividing ∆3,n into a middle hexagon H := {x ∈ ∆3,n : xi ≤
2/3 ∀ i ∈ [3]} and three corner triangles T1, T2, T3, where Ti := {x ∈ ∆3,n : xi > 2/3}.
To define the edge costs, we let ρ := 3/(5n). The cost of the edges in G[H] is ρ. The
cost of the non-boundary edges in G[Ti] that are not parallel to the opposite side of ei

is also ρ. The cost of the non-boundary edges in G[Ti] that are parallel to the opposite
side of ei are zero. The cost of the boundary edges in Lij are as follows: the edge
closest to ei has cost (n/3)ρ, the second closest edge to ei has cost (n/3− 1)ρ, and so
on. See Figure 2 for an example. We will denote the resulting graph with edge-costs
as J . The cost of a subset F of edges on the instance J is CostJ(F ) :=

∑
e∈F w(e).

For a subset of edges F ⊂ E3,n, let G − F denote the graph (∆3,n, E3,n \ F ). We
need the following two results about their instance. The first result shows that the
cost of non-opposite cuts on their instance is at least 1.2.

Lemma 6.1. [1] For every non-opposite cut Q : ∆3,n → [4], the cost of Q on instance
J is at least 1.2− 1

n
.

The second result shows that if we remove a set of edges to ensure that a terminal
si cannot reach any node in the opposite side Vjk, then the cost of such a subset of
edges is at least 0.4.

Lemma 6.2. For {i, j, k} = [3] and for every subset F of edges in E3,n such that si
cannot reach Vjk in G − F , the cost of F on instance J is at least 0.4− ( 1

n
)/3.
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Figure 2: The instance in [1] for n = 9.

Although Lemma 6.2 is not explicitly stated in [1], its proof appears under Case 1
in the Proof of Lemma 3 of [1]. The factor 0.4 that we have here is because we scaled
their costs by a factor of 6/5.

We next define non-oppositeness as a property of the cut-set as it will be convenient
to work with this property for cut-sets rather than for cuts.

Definition 6.3. A set F ⊆ E3,n of edges is a non-opposite cut-set if there is no path
from s1 to V23 in G − F , no path from s2 to V13 in G − F , and no path from s3 to V12

in G − F .

We summarize the connection between non-opposite cut-sets and non-opposite cuts.

Proposition 6.4.

(i) If Q : ∆3,n → [4] is a non-opposite cut, then δ(Q) is a non-opposite cut-set.

(ii) For every non-opposite cut-set F ⊆ E3,n, the cost of F on instance J is at least
1.2− 1

n
.

Proof. (i) Suppose not. Without loss of generality, suppose there exists a path from
s1 to V23 in G−δ(Q). Then, by the definition of δ(Q), all nodes of the path have
the same label, so there exists a node u ∈ V23 that is labeled as 1, contradicting
the fact that Q is a non-opposite cut.

(ii) Consider a labeling L : ∆3,n → [4] where L = i if the node v is reachable from
terminal si in G − F and L(v) = 4 if the node v is reachable from none of the
three terminals in G−F . Since F is a non-opposite cut-set, it follows that ` is a
non-opposite cut. Moreover, δ(L) ⊆ F . Therefore, the claim follows by Lemma
6.1.
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6.2 Proof of Lemma 4.5 17

6.2 Proof of Lemma 4.5

We now restate and prove Lemma 4.5, i.e., a non-fragmenting non-opposite cut in
∆3,n that has lot of nodes labeled as 4 has large cost.

Lemma 6.5. Let Q : ∆3,n → [4] be a non-opposite cut with αn2 nodes labeled as
4. If Q is a non-fragmenting cut and n ≥ 10, then the cost of Q on J is at least
1.2 + 0.4α− 1

n
.

Proof. We first show that the labeling Q may be assumed to indicate reachability in
the graph G − δ(Q).

Claim 6.6. For every non-opposite non-fragmenting cut Q : ∆3,n → [4], there exists
a labeling Q′ : ∆3,n → [4] such that

(i) a node v ∈ ∆3,n is reachable from si in G − δ(Q′) iff Q′(v) = i,

(ii) CostJ(δ(Q′)) ≤ CostJ(δ(Q)),

(iii) the number of nodes in ∆3,n that are labeled as 4 by Q is at most the number of
nodes in ∆3,n that are labeled as 4 by Q′, and

(iv) Q′ is a non-opposite non-fragmenting cut.

s1

s2 s3 s3s2

s1

1

2

4

1

3

2

3

1

4

Figure 3: An example of a cut Q and the cut Q′ obtained in the proof of Claim 6.6.

Proof. For i ∈ [3], let Si be the set of nodes that can be reached from si in G − δ(Q).
Consider a labeling Q′ defined by

Q′(v) :=

{
i if v ∈ Si, and

4 if v ∈ ∆3,n \ (S1 ∪ S2 ∪ S3).

See Figure 3 for an example of a cut Q and the cut Q′ obtained as above. We prove
the required properties for the labeling Q′ below.

(i) By definition, Q′(v) = i iff v is reachable from si in G \ δ(Q′).
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(ii) Since δ(Q′) = (δ(S1)∪ δ(S2)∪ δ(S3))∩ δ(Q), we have that δ(Q′) ⊆ δ(Q). Hence,
CostJ(δ(Q′)) ≤ CostJ(δ(Q)).

(iii) Let i ∈ [3]. Since all nodes of Si are labeled as i by Q, the nodes labeled as i
by Q′ is a subset of the set of nodes labeled as i by Q. This implies that Q′ is
also a non-opposite cut and that the number of nodes in ∆3,n that are labeled
as 4 by Q is at most the number of nodes in ∆3,n that are labeled as 4 by Q′.

(iv) Since Q is a non-fragmenting cut, there exist distinct i, j ∈ [3] such that |δ(Q)∩
Lij| = 1. Since δ(Q′) ⊆ δ(Q), we have that |δ(Q′) ∩ Lij| ≤ 1. On the other
hand, Q′ labels si by i and sj by j and hence, |δ(Q′)∩Lij| ≥ 1. Combining the
two, we have that |δ(Q′) ∩ Lij| = 1 and hence Q′ is a non-fragmenting cut.

Let G ′ := G − δ(Q). By Claim 6.6, we may henceforth assume that

For every node v ∈ V , v is reachable from si in G ′ iff Q(v) = i. (1)

In order to show a lower bound on the cost of Q, we will modify Q to obtain a non-
opposite cut while reducing its cost by at least 0.4α. [1] showed that the cost of every
non-opposite cut on J is at least 1.2 − 1

n
. Therefore, the cost of Q on J must be at

least 1.2− 1
n

+ 0.4α.
Since Q is a non-fragmenting cut, there exist distinct i, j ∈ [3] such that |δ(Q) ∩

Lij| = 1. Without loss of generality, suppose that i = 1 and j = 3. For i ∈ [3], let
Si := {v ∈ ∆3,n | Q(v) = i}, i.e. Si is the set of nodes that can be reached from si
in G ′. Let B := {v ∈ ∆3,n | Q(v) = 4} be the set of nodes labeled as 4 by Q. Then,
|B| = αn2. We note that S1, S2, and S3 are components of G ′, and the set B is the
union of the remaining components.

We recall that Vij is the set of end nodes of edges in Lij. We say that a node
v ∈ ∆3,n can reach Vij in G ′ if there exists a path from v to some node w ∈ Vij in G ′.
We observe that all nodes in V13 are reachable from either s1 or s3 in G ′. In particular,
this means that no node of B can reach V13 in G ′. We partition the node set B based
on reachability as follows (see Figure 4):

B1 := {v ∈ B | v cannot reach V12 and V23 in G ′},
B2 := {v ∈ B | v can reach V12 but not V23 in G ′},
B3 := {v ∈ B | v can reach V23 but not V12 in G ′}, and

B4 := {v ∈ B | v can reach V12 and V23 in G ′}.

For r ∈ [4], let βr := |Br|/n2. We next summarize the properties of the sets defined
above.

Proposition 6.7. The sets B1, B2, B3, B4 defined above satisfy the following proper-
ties:

(i) For every distinct r, p ∈ [4], we have Br ∩Bp = ∅.

EGRES Technical Report No. 2019-04



6.2 Proof of Lemma 4.5 19
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Figure 4: Partition of B into B1, B2, B3, B4.

(ii) For every r ∈ [4], we have δ(Br) ⊆ δ(Q), i.e. Br is the union of some components
of G ′.

(iii) For every r ∈ [4] and every edge e ∈ δ(Br), one end node of e is in Br and the
other one is in S1 ∪ S2 ∪ S3.

(iv) For every distinct r, p ∈ [4], we have δ(Br) ∩ δ(Bp) = ∅.

(v) B = ∪4
r=1Br,

∑4
r=1 βr = α, and βr ≤ 0.66 for every r ∈ [4].

Proof. (i) The disjointness property follows from the definition of the sets.

(ii) Suppose δ(Br) is not a subset of δ(Q) for some r ∈ [4]. Without loss of generality,
let r = 1 (the proof is similar for the other cases). Then, there exists an edge
uv ∈ E3,n \ δ(Q) with u ∈ B1, v ∈ B \ B1. Since v is in B \ B1, it follows that
the node v can reach either V12 or V13 in G ′. Moreover, since the edge uv is in
G ′, it follows that the node u can also reach either V12 or V13 in G ′, and hence
u 6∈ B1. This contradicts the assumption that u ∈ B1.

(iii) Let uv ∈ δ(Br) with u ∈ Br and v 6∈ Br. Since Q(u) = 4, the node u is not
reachable from any of the terminals in G ′. Suppose that the node v is also not
reachable from any of the terminals in G ′. Then, by the reachability assumption,
it follows that Q(v) = 4. Hence, the edge uv has both end-nodes labeled as 4
by Q and therefore uv 6∈ δ(Q). Thus, we have an edge uv ∈ δ(Bi) \ δ(Q)
contradicting part (ii).

(iv) Follows from parts (i) and (iii).

(v) By definition, we have that B = ∪4
r=1Br. Since the sets B1, B2, B3, B4 are

pair-wise disjoint, they induce a partition of B and hence |B| =
∑4

r=1 |Br|.
Consequently,

∑4
r=1 βrn

2 = αn2 and thus,
∑4

r=1 βr = α. Next, we note that
|∆3,n| = (n + 1)(n + 2)/2. Since Br ⊆ B ⊆ ∆3,n, we have that βr = |Br|/n2 ≤
|∆3,n|/n2 ≤ (1 + 1/n)(1 + 2/n)/2 ≤ 0.66 since n ≥ 10.
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By Proposition 6.4 (i), the cut-set δ(Q) is a non-opposite cut-set. The following
claim shows a way to modify δ(Q) to obtain a non-opposite cut-set with strictly
smaller cost if βr > 0.

Claim 6.8. For every r ∈ [4], there exists Er ⊆ δ(Br), E
′
r ⊆ G[Br] such that

1. Er ⊆ δ(Si) for some i ∈ [3],

2. (δ(Q) \ Er) ∪ E ′r is a non-opposite cut-set and

3. CostJ(Er)− CostJ(E ′r) ≥ 0.4βr.

Proof. We consider the cases r = 1, 2, 4 individually as the proofs are different for
each of them. The case of r = 3 is similar to the case of r = 2. We begin with
a few notations that will be used in the proof. For distinct i, j ∈ [3], and for t ∈
{0, 1, . . . , 2n/3}, let V t

ij := {u ∈ ∆3,n : uk = 1− t/n for {k} = [3] \ {i, j}}. Thus, V t
ij

denotes the set of nodes that are on the line parallel to Vij and at distance t/n from
it. We will call the sets V t

ij as lines for convenience. Let Ltij denote the edges of E3,n

whose end-nodes are in V t
ij. Thus, the edges in Ltij are parallel to Lij (see Figure 5).

s3s2

s1

Lt
23

t

Figure 5: The set of edges Lt23.

1. Suppose r = 1. We partition the set δ(B1) of edges into three sets Xi := δ(B1)∩
δ(Si) for i ∈ [3] (see Figure 6).

By Proposition 6.7 (iii), we have that (X1, X2, X3) is a partition of B1. Let

E1 := arg max{CostJ(F ) : F ∈ {X1, X2, X3}} and

E ′1 := ∅.

We now show the required properties for this choice of E1 and E ′1.

(a) Since E ′1 = ∅, we need to show that δ(Q) \ E1 is a non-opposite cut-set. Let
G ′′ := G − (δ(Q) \E1). For each edge e ∈ E1, the end node of e in ∆3,n \B1 is
reachable from a terminal si in G ′ iff it is reachable from si in G ′′. Therefore,
for each node v ∈ ∆3,n \ B1 and a terminal si for i ∈ [3], we have that v is
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Figure 6: Partition of δ(B1) into Xi’s.

reachable from si in G ′ iff v is reachable from si in G ′′. Since δ(Q) is a non-
opposite cut-set, it follows that si cannot reach Vjk in G ′ for {i, j, k} = [3].
Since B1 ∩ (V12 ∪ V23 ∪ V13) = ∅, the terminal si cannot reach Vjk in G ′′ for
{i, j, k} = [3]. Hence, δ(Q) \ E1 is a non-opposite cut-set.

(b) We note that none of the nodes in B1 can reach V12, V23 and V13 in G ′.
Therefore, if there exists a node from B1 in V t

ij for some t ∈ {1, . . . , n}, then
at least two edges in Ltij should be in δ(B1) (see Figure 7). Therefore, if
V t
ij ∩B1 6= ∅, then |δ(B1) ∩ Ltij| ≥ 2.

s3s2

s1

Lt
23

t

b b b b

B1

Figure 7: B1 ∩ V t
23 6= ∅ implies that |δ(B1) ∩ Lt23| ≥ 2.

Every node v ∈ B1 is in at least two lines among V t
ij for distinct i, j ∈ [3] and

t ∈ {1, . . . , 2n/3}. Each line V t
ij for t ∈ {1, . . . , 2n/3} has at most n nodes.

Hence, the number of lines with non-empty intersection with B1 is at least
2|B1|/n. For each line that has a non-empty intersection with B1, we have at
least two edges in δ(B1). Hence,

∣∣δ(B1) ∩
(
∪i,j∈[3],t∈{1,...,2n/3}L

t
ij

)∣∣ ≥ 4 · |B1|
n
.
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The cost of each edge in ∪i,j∈[3],t∈{1,...,2n/3}L
t
ij is 3/(5n). So,

CostJ(δ(B1)) ≥ CostJ
(
δ(B1) ∩

(
∪i,j∈[3],t∈{1,...,2n/3}L

t
ij

))
≥ 12

5

|B1|
n2

=
12

5
β1.

Since we set E1 to be the Xi with maximum cost, we get that

CostJ(E1) ≥ (4/5)β1.

Moreover, CostJ(E ′1) = 0 as E ′1 = ∅. Hence,

CostJ(E1)− CostJ(E ′1) ≥ (4/5)β1 ≥ 0.4β1.

2. Suppose r = 2. We assume that B2 6= ∅ as otherwise, the claim is trivial. Similar
to the previous case, we partition the set δ(B2) into three sets Xi := δ(B2)∩ δ(Si)
for i ∈ [3] (see Figure 8).

s1

s2 s3

X3

X1

X2

B2 b b

b
b

b
b

b

b

b

b

b
b

b
b

Figure 8: Partition of δ(B2) into Xi’s.

We also define
Z := X3 ∩ δ(B2 ∩ V12)

and let

E2 := X1 and E ′2 := ∅ if CostJ(X1) ≥ 0.4β2,

E2 := X2 and E ′2 := ∅ if CostJ(X2) ≥ 0.4β2,

E2 := X3 \ Z and E ′2 := δG(B2 \ V12, B2 ∩ V12) if CostJ(X1), CostJ(X2) < 0.4β2.

We emphasize that the last case is the only situation where we use a non-empty
set for E ′2. We now show the required properties for this choice of E2 and E ′2.

(a) Let G ′′ := G − ((δ(Q) \ E2) ∪ E ′2). For each edge e ∈ E2, the end node of e
in ∆3,n \ B2 is reachable from a terminal si in G ′ iff it is reachable from si in
G ′′. Therefore, for each node v ∈ ∆3,n \ B2 and a terminal si for i ∈ [3], we
have that v is reachable from si in G ′ iff v is reachable from si in G ′′. Since
B2 ∩ V13 = ∅ and s2 cannot reach V13 in G ′, we have that s2 cannot reach V13

in G ′′. Similarly, s1 cannot reach V23 in G ′′. It remains to argue that s3 cannot
reach V12 in G ′′. We have two cases.
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Figure 9: Partition of δ(B2) into Yi’s. The shaded region is B2.

i. Suppose E2 = X1 or E2 = X2. We note that X1 and X2 are the set of
edges in δ(B2) whose end nodes outside B2 are reachable from s1 (and s2

respectively) in G ′. So, if E2 = X1 or if E2 = X2, then the set of nodes
reachable by s3 in G ′ and G ′′ remains the same. Since s3 cannot reach V12

in G ′, we have that s3 cannot reach V12 in G ′′.
ii. Suppose E2 = X3. We will show that δ(B2 ∩ V12) ⊆ (δ(Q) \ E2) ∪ E ′2.

Consequently, the nodes of B2∩V12 are not reachable from s3 in G ′′. Since
nodes of V12 \B2 are not reachable from s3 in G ′, we have that s3 cannot
reach V12.
We now show that δ(B2∩V12) ⊆ (δ(Q)\E2)∪E ′2. Let uv ∈ δ(B2∩V12) with
u ∈ B2 ∩ V12 and v 6∈ B2 ∩ V12. If v ∈ S1 ∪ S2, then uv ∈ δ(B2) ⊆ δ(Q)
and uv 6∈ X3 ⊇ E2. Hence, uv ∈ (δ(Q) \ E2) ∪ E ′2. If v ∈ S3, then
uv ∈ Z and hence uv 6∈ E2. Moreover, uv ∈ δ(B2) ⊆ δ(Q), hence
uv ∈ (δ(Q) \E2)∪E ′2. If v ∈ B, then v ∈ B2 by Proposition 6.7 (iv) and
hence e ∈ E ′2 ⊆ (δ(Q) \ E2) ∪ E ′2.

(b) If CostJ(X1) or CostJ(X2) is at least 0.4β2, then we are done. So, let us
assume that CostJ(X1), CostJ(X2) ≤ 0.4β2. Let Y1, Y2 and Y3 be the set of
edges in δ(B2) that are parallel to L12, L13 and L23 respectively (see Figure
9). Formally,

Y1 := δ(B2) ∩
(
∪t∈{0,1,...,n}Lt12

)
Y2 := δ(B2) ∩

(
∪t∈{0,1,...,n}Lt13

)
Y3 := δ(B2) ∩

(
∪t∈{0,1,...,n}Lt23

)
Claims 6.9 and 6.10 will help us derive the required inequality on the cost.

Claim 6.9.

CostJ(E ′2) ≤ CostJ(Y2) + CostJ(Y3)− CostJ(Z).

Proof. We proceed in two steps: (1) we will show a one-to-one mapping f
from edges in E ′2 to edges in (Y2 ∪ Y3) \ Z such that the cost of every edge
e ∈ E ′2 is the same as the cost of the mapped edge f(e) in the instance
J , i.e., w(e) = w(f(e)) for every e ∈ E ′2 and (2) we will show that that
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Z ⊆ Y2 ∪ Y3. Now, by observing that the sets Y2 and Y3 are disjoint, we get
that CostJ(E ′2) ≤ CostJ(Y2) + CostJ(Y3)− CostJ(Z).

We now define the one-to-one mapping f : E ′2 → (Y2∪Y3)\Z. Let e = uv ∈ E ′2
such that u ∈ B2 ∩ V12, v ∈ B2 \ V12. Since E ′2 only contains edges between
B2 ∩ V12 and B2 \ V12, it does not contain an edge parallel to L12. Therefore,
e ∈ Lt13 or e ∈ Lt23 for some t ∈ {1, . . . , n}. Suppose e ∈ Lt13 for some
t ∈ {1, . . . , n}. Since the nodes of B2 cannot reach V23 in G ′, there exists
an edge in δ(B2) ∩ Lt13. We map e to an arbitrary edge in δ(B2) ∩ Lt13 ⊆ Y2

(see Figure 10). We note that the set Z contains the set of edges incident
to B2 ∩ V12 whose other end node is in S3. Since both u and v are in B2, it
follows that Lt13 ∩ Z = ∅. So our mapping of e is indeed to an edge in Y2 \ Z.
Similarly, if e ∈ Lt23 for some t ∈ {1, . . . , n}, then we map e to an arbitrary
edge in δ(B2) ∩ Lt23 ⊆ Y3 \ Z. This mapping is a one-to-one mapping as E ′2
contains at most one edge from Lt13 for each t ∈ {1, 2, . . . , n} and at most one
edge from Lt23 for each t ∈ {1, 2, . . . , n}. Moreover, for each t ∈ {1, 2, . . . , n},
the cost of all edges in Lt13 are identical and the cost of all edges in Lt23 are
identical.

s1

s2 s3

b

b

b

b

e

f(e)

t

Lt
13

Figure 10: Mapping from E ′2 to (Y2 ∪ Y3) \ Z. The shaded region is B2.

We now show that Z ⊆ Y2 ∪ Y3. The set Z contains all edges whose one end
node is in B2∩V12 and another end node is in S3. Since V12∩S3 = ∅, the set Z
does not contain any edge between B2 ∩ V12 and V12 \B2. Hence, Y1 ∩Z = ∅.
Since Z is a subset of X3 which is a subset of Y1 ∪ Y2 ∪ Y3, it follows that
Z ⊆ Y2 ∪ Y3.

Claim 6.10.

CostJ(Y1) ≥ 6

5
β2.

Proof. We first show a lower bound on the size of the set

W := {t ∈ {0, 1, . . . , 2n/3} : V t
12 ∩B2 6= ∅}.

If B2 ∩ V t
12 6= ∅ for some t ∈ {2n/3 + 1, . . . , n}, then B2 ∩ V t

12 6= ∅ for all
t ∈ {0, 1, . . . , 2n/3} and hence, |W | ≥ 2n/3. Otherwise, B2 ∩ V t

12 = ∅ for all
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t ∈ {2n/3 + 1, . . . , n}. In this case, B2 ⊆ ∪2n/3
t=0 V

t
12. For t ≥ 1, each line V t

12

has at most n nodes. For t = 0, the set B2 can contain at most n − 1 nodes
from V 0

12 which are not s1 or s2. Hence, |W | ≥ |B2|/n = β2n. Thus, we have
that |W | ≥ min{2n/3, β2n} = β2n as β2 ≤ 0.66.

Since the nodes of B2 cannot reach V23 and V13 in G ′, we have that |δ(B2) ∩
Lt12| ≥ 2 if B2 ∩ V t

12 6= ∅. Hence,∣∣∣δ(B2) ∩
(
∪2n/3
t=0 L

t
12

)∣∣∣ ≥ 2|W | ≥ 2β2n.

Each edge in ∪2n/3
t=0 L

t
12 has cost at least 3/5n. Hence,

CostJ

(
δ(B2) ∩

(
∪2n/3
t=0 L

t
12

))
≥ 6

5
β2.

Since Y1 = δ(B2)∩ (∪nt=0L
t
12) ⊇ δ(B2)∩

(
∪2n/3
t=0 L

t
12

)
, we get that CostJ(Y1) ≥

(6/5)β2.

We now derive the required inequality on the cost as follows:

CostJ(E2)− CostJ(E ′2) = CostJ(X3 \ Z)− Cost(E ′2)

≥ CostJ(X3)− CostJ(Z)− CostJ(Y2)− CostJ(Y3) + CostJ(Z)

(By Claim 6.9)

≥ CostJ(X3 ∩ Y1) + CostJ(X3 ∩ Y2) + CostJ(X3 ∩ Y3)

− CostJ(Y2)− CostJ(Y3)

= CostJ(X3 ∩ Y1)− CostJ((X1 ∪X2) ∩ Y2)− CostJ((X1 ∪X2) ∩ Y3)

= CostJ(Y1)− CostJ((X1 ∪X2) ∩ Y1)

− CostJ((X1 ∪X2) ∩ Y2)− CostJ((X1 ∪X2) ∩ Y3)

= CostJ(Y1)− CostJ(X1 ∪X2)

≥ 6

5
β2 − 0.4β2 − 0.4β2

(By Claim 6.10 and CostJ(X1), CostJ(X2) ≤ 0.4β2)

= 0.4β2.

3. Suppose r = 4. We assume that B4 6= ∅, as otherwise the claim is trivial. We
partition δ(B4) into X1 := δ(B4)∩ δ(S2) and X2 := δ(B4)\X1 (see Figure 11), and
let E4 := X1 and E ′4 := ∅.
We now show the required properties for this choice of E4 and E ′4. Let us fix a node
v ∈ B4 and a path v, u1, . . . , ut from v to L12 in G[B4], and a path v, w1, . . . , wt′
from v to L23 in G[B4] (see Figure 11). Let S := {v, u1, . . . , ut, w1, . . . , wt′}. We
note that S ⊆ B4.

(a) Since E ′4 = ∅, we need to show that δ(Q) \ E4 is a non-opposite cut-set. Let
G ′′ := G − (δ(Q) \ E4). We first observe that there are no paths between S
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Figure 11: Partition of δ(B4) into X1 and X2. The shaded region is B4.

and V13 in G −X2. Hence, there is no path from s1 or s3 to an end node of
E4 = X1 in G ′. Moreover, there is no path from s1 to V23 or from s3 to V12

in G ′. So, there is no path from s1 to V23 or from s3 to V12 in G ′′. Also, since
X2 ⊆ δ(Q) \ X1 and there is no path from s2 to V13 in G − X2, it follows
that there is no path from s2 to V13 in G ′′. Hence, δ(Q) \E4 is a non-opposite
cut-set.

(b) We note that there are no paths between s2 and S in G − E4. Moreover,
all paths in G between s2 and V13 go through S. Hence, there are no paths
between s2 and V13 in G−E4. The cost of any such subset of nodes can be lower
bounded by the Lemma 6.2. Thus, CostJ(E4) − CostJ(E ′4) ≥ 0.4 − ( 1

n
)/3 ≥

0.4β4. The last inequality is because β4 ≤ 0.66 by Proposition 6.7 and n ≥ 10.

For r ∈ [4], let Er and E ′r be the sets given by Claim 6.8. We will show that

F :=
(
δ(Q) \

(
∪4
r=1Er

))
∪
(
∪4
r=1E

′
r

)
is a non-opposite cut-set and that CostJ(δ(Q)) ≥ CostJ(F ) + 0.4α. Then, we use
Proposition 6.4 (ii) to conclude that CostJ(δ(Q)) ≥ 1.2− 1

n
+ 0.4α.

Claim 6.11. F is a non-opposite cut-set.

Proof. Let G ′′ = G − F , and for i ∈ [3], let S ′i be the set of nodes reachable from si
in G ′′. Since E ′r ⊆ G[B] for every r, S ′i is a superset of Si, and G ′′[Si] = G ′[Si], which
is connected. By the first property of Claim 6.8, for every r ∈ [4] there exists i ∈ [3]
such that Er ⊆ δ(Br) ∩ δ(Si). This implies, together with Proposition 6.7 (ii), that
the sets S ′i are disjoint. It also implies the following property:

(?) For every r ∈ [4], there exists i ∈ [3] such that δG′′(Br) ⊆ δ(Si).

Suppose for contradiction that for some distinct i, j, k ∈ [3], there exists a path P
in G ′′ from si to some v ∈ Vjk. Since δ(Q) is a non-opposite cut, the node v is not in
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Si. Also, since v ∈ S ′i and we have seen above that S ′i is disjoint from S ′j and S ′k, it
follows that v 6∈ S ′j ∪ S ′k ⊇ Sj ∪ Sk. Hence, v 6∈ S1 ∪ S2 ∪ S3, and therefore v ∈ Br for
some r ∈ [4].

Let u be the last node of Si on the path P . By property (?), the end segment of
P starting at the node after u is entirely in G[Br] \ E ′r. Since G ′′[Si] is connected, we
can replace the si − u part of P by a path in G ′′[Si], and obtain an si − v path in G ′′
that uses only edges in G ′[Si] ∪ (G ′[Br] \E ′r) and a single edge in Er ⊆ δ(Si) ∩ δ(Br).
Hence, this is also a path in E \ ((δ(Q)\Er)∪E ′r). But we have already seen in Claim
6.8 that (δ(Q) \ Er) ∪ E ′r is a non-opposite cut-set, so v /∈ Vjk, a contradiction.

To show that CostJ(δ(Q)) ≥ CostJ(F ) + 0.4α, we first observe that Ei ⊂ δ(Bi) ⊂
δ(Q) for i ∈ [4] and Ei’s are mutually disjoint since δ(Bi)’s are mutually disjoint by
Proposition 6.7 (iv). Therefore,

CostJ(F ) ≤ CostJ(δ(Q) \ (∪4
i=1Ei)) + CostJ(∪4

i=1E
′
i)

= CostJ(δ(Q))−
4∑
i=1

(CostJ(Ei)− CostJ(E ′i))

≤ CostJ(δ(Q))−
4∑
i=1

0.4βi (By Claim 6.8)

≤ CostJ(δ(Q))− 0.4α (By Proposition 6.7 (v)).

6.3 Proof of Corollary 4.2

We restate and prove Corollary 4.2 now. Let Q : ∆3,n → [4] be a non-opposite cut
and n ≥ 10. For each i ∈ [3], let

Ai :=

{
{v ∈ Closure(Ri) : Q(v) = 4} if δ(Q) ∩ Γi = ∅,
∅ otherwise.

Then, the cost of Q on J is at least 1.2 + 0.4
∑3

i=1 |Ai|/n2 − 5
2n

.

Proof of Corollary 4.2. Let A := A1 ∪ A2 ∪ A3. We will show that CostJ(δ(A)) is at
least 0.4

∑3
i=1 |Ai|/n2 − 3/(2n) and that there exists a non-opposite cut Q′ satisfying

δ(Q′) = δ(Q) \ δ(A). By Lemma 6.1, CostJ(δ(Q′)) ≥ 1.2 − 1/n and the corollary
follows.

We first show a lower bound on the total cost of the edges in δ(A).

Claim 6.12. CostJ(δ(A)) ≥ 0.4
∑3

i=1 |Ai|/n2 − 3
2n

.

Proof. We will consider a specific non-opposite non-fragmenting cut to give a lower
bound on the cost of δ(A) on J . Let Q0 be defined as follows (see Figure 12):

Q0(x) :=


1 if x1 ≥ 1/2,

2 if x1 < 1/2, x2 ≥ 1/2,

3 otherwise.
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Figure 12: The labeling Q0.

Then, each edge in δ(Q0) has a cost of 1.2/(2n) and the number of edges in δ(Q0)
is 2n + 1. Hence, CostJ(δ(Q0)) ≤ 1.2 + 1/(2n). Moreover, Q0 is a non-opposite
non-fragmenting cut. We now combine δ(A) and δ(Q0) into a single cut by defining

Q′0(x) :=

{
Q0(x) if x 6∈ A,

4 otherwise.

We observe that Q′0 is a non-opposite cut as it is obtained from a non-opposite
cut by relabeling a subset of nodes that lie in the strict interior of Closure(Ri) as
4. As Ai 6= ∅ implies δ(Ai) ∩ Γi = ∅, we have that δ(Q′0) intersects each side of the
triangle the same number of times as δ(Q0). That is, Q′0 is also a non-fragmenting
cut. Therefore, we can apply Lemma 4.5 for Q′0. The number of nodes labeled by Q′0
as 4 is exactly |A|. Hence,

CostJ(δ(Q′0)) ≥ 1.2− 1

n
+ 0.4

|A|
n2
.

By Q0(v) = i for each v ∈ Closure(Ri) and by δ(Ai) ∩ Γi = ∅ for i ∈ [3], we have
δ(Q′0) = δ(A) ∪ δ(Q0), implying

CostJ(δ(A))+CostJ(δ(Q0)) ≥ CostJ(δ(A)∪δ(Q0)) = CostJ(δ(Q′0)) ≥ 1.2− 1

n
+0.4

|A|
n2
.

We recall that CostJ(δ(Q0)) ≤ 1.2 + 1/(2n). Hence, CostJ(δ(A)) ≥ 0.4|A|/n2 −
3/(2n).

Let K ⊆ [3] denote the set of indices i for which δ(Q) ∩ Γi = ∅ and let Q′ be a
labeling obtained from Q by setting

Q′(v) :=

{
i if v ∈ Closure(Ri) for some i ∈ K,
Q(v) otherwise.

Claim 6.13. Q′ is a non-opposite cut with CostJ(δ(Q′)) ≤ CostJ(δ(Q))−CostJ(δ(A)).
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Proof. The cut Q is non-opposite and Q′(v) ∈ Support(v) for each relabeled node
v, hence Q′ is also a non-opposite cut. For any index i ∈ K, δ(Q) ∩ Γi = ∅ implies
Q(v) = i for v ∈ Ri. Thus, we have δ(Q′) ⊆ δ(Q) \ δ(A) and the claim follows.

As Q′ is a non-opposite cut, Lemma 6.1 implies CostJ(δ(Q′)) ≥ 1.2 − 1/n. By
Claim 6.12, CostJ(δ(A)) ≥ 0.4

∑3
i=1 |Ai|/n2−3/(2n). These together with Claim 6.13

imply that CostJ(δ(Q)) ≥ 1.2− 5/(2n) + 0.4
∑3

i=1 |Ai|/n2, finishing the proof of the
corollary.

7 Limitations of our instances

In this section, we will show two results. In Section 7.1, we will show that instances
I1, I2 and I4 are insufficient to obtain a gap better than 1.2. This result also motivates
our choice of instance I3. In Section 7.2, we will show that instances I1, I2, I3 and
I4 are insufficient to obtain a gap better than 1.20067, thus exhibiting a limitation of
our choice of instance I3.

7.1 Insufficiency of instances I1, I2 and I4 to beat 1.2

In this section, we will show that convex combinations of instances I1, I2 and I4 are
insufficient to obtain an instance which has gap larger than 1.2 against non-opposite
cuts. For this, we will exhibit two non-opposite cuts P and P ′ such that at least one
of them will have cost at most 1.2 in every convex combination of instances I1, I2 and
I4.

1. Consider the cut Q0 in ∆3,n defined in the proof of Claim 6.12. Extend it to a
cut P in ∆4,n as follows:

P (x) :=

{
Q0(x) if x4 = 0,

4 if x4 > 0.

Then, P is a non-opposite cut with the cost of P on I1, I2 and I4 being 1.2 +
O(1/n), 1 and 1.5 + O(1/n2) respectively. Hence, the cost of P on the convex
combination λ1I1 + λ2I2 + λ4I4 is at most 1.2λ1 + λ2 + 1.5λ4 +O(1/n).

2. Consider the cut P ′ in ∆4,n defined as follows:

P ′(x) :=

{
i if x = ei,

5 otherwise.

Then, P ′ is a non-opposite cut with the costs of P ′ on I1, I2 and I4 being 1.2,
2 and O(1/n2) respectively. Hence, the cost of P ′ on the convex combination
λ1I1 + λ2I2 + λ4I4 is at most 1.2λ1 + 2λ2 +O(1/n2).
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Consequently, for every convex combination defined by λ1, λ2, λ4, there exists a non-
opposite cut whose cost on the convex combination instance λ1I1 + λ2I2 + λ4I4 is at
most

min {1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2}+O(1/n).

The following claim shows that the above expression is at most 1.2 + O(1/n2) for
every convex combination.

Claim 7.1. For every λ1, λ2, λ4 ≥ 0 with λ1 + λ2 + λ4 = 1, we have

min {1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2} ≤ 1.2.

Proof. Say not. Then, both expressions are greater than 1.2.

1. We have 1.2λ1 + λ2 + 1.5λ4 > 1.2 which implies that λ2 + 1.5λ4 > 1.2(1− λ1) =
1.2λ2 + 1.2λ4. Hence, 3λ4 > 2λ2.

2. We have 1.2λ1 +2λ2 > 1.2, which implies that 2λ2 > 1.2(1−λ1) = 1.2λ2 +1.2λ4.
Hence, 2λ2 > 3λ4, a contradiction.

We emphasize that instance I3 is constructed specifically to boost the cost against
the non-opposite cut P ′.

7.2 Limitation of instances I1, I2, I3, and I4

In this section, we will show that convex combinations of instances I1, I2, I3, and
I4 are insufficient to obtain an instance which has gap larger than 1.20067 against
non-opposite cuts.

Proof of Theorem 4.3. To show this, we exhibit three non-opposite cuts P1, P2 and
P3 such that at least one of them will have cost at most 1.20067 + O(1/n) in every
convex combination of instances I1, I2, I3, and I4.

1. P1 is same as the non-opposite cut P defined in Section 7.1. The cost of P1 on
instances I1, I2, I3, and I4 are 1.2 +O(1/n), 1, 0, and 1.5 +O(1/n2) respectively.
Consequently, the cost of P1 on the convex combination λ1I1 +λ2I2 +λ3I3 +λ4I4

is at most 1.2λ1 + λ2 + 1.5λ4 +O(1/n).

2. P2 is same as the non-opposite cut P ′ defined in Section 7.1. The cost of P2

on I1, I2, I3, and I4 are 1.2, 2, 6/9c, and O(1/n2) respectively. Consequently,
the cost of P2 on the convex combination λ1I1 + λ2I2 + λ3I3 + λ4I4 is at most
1.2λ1 + 2λ2 + 6

9c
λ3 +O(1/n2).

3. Let P3 be defined as follows:

P3(x) :=


4 if x = e4,

i if x4 = 0, xi ≥ 1− c, i ∈ {1, 2, 3},
5 otherwise.
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Then, P3 is a non-opposite cut with the cost of P3 on I2, I3, and I4 being 2, 0,
and 9c2/2 + O(1/n) respectively. Moreover, if c < 1/9, then cost of P3 on
I1 is 1.2. Hence, if c < 1/9, then the cost of P3 on the convex combination
λ1I1 + λ2I2 + λ3I3 + λ4I4 is at most 1.2λ1 + 2λ2 + (9c2/2)λ4 +O(1/n).

Consequently, there exists a non-opposite cut on instance λ1I1 + λ2I2 + λ3I3 + λ4I4

whose cost is

at most min

{
1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 +

6

9c
λ3

}
+O(1/n) if c ≥ 1/9 and

at most min

{
1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 +

6

9c
λ3, 1.2λ1 + 2λ2 +

9c2

2
λ4

}
+O(1/n) if c < 1/9.

The following claim shows that the above terms are at most 1.20067 + O(1/n) for
every convex combination, thus completing the proof of the theorem.

Claim 7.2. For every λ1, λ2, λ3, λ4 ≥ 0 with λ1 + λ2 + λ3 + λ4 = 1, we have

1. min
{

1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 + 6
9c
λ3

}
≤ 1.2 if c ≥ 1/9, and

2. min
{

1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 + 6
9c
λ3, 1.2λ1 + 2λ2 + 9c2

2
λ4

}
≤ 1.20067 if

c < 1/9.

Proof. Minimum of a set of values is at most the convex combination of the values.

1. Suppose c ≥ 1/9. Then,

min

{
1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 +

6

9c
λ3

}
≤ 0.8(1.2λ1 + λ2 + 1.5λ4) + 0.2

(
1.2λ1 + 2λ2 +

6

9c
λ3

)
= 1.2λ1 + 1.2λ2 + 1.2λ4 +

1.2

9c
λ3

≤ 1.2λ1 + 1.2λ2 + 1.2λ4 + 1.2λ3 (since c ≥ 1/9)

= 1.2.

The last equality above is because λ1 + λ2 + λ3 + λ4 = 1.

2. Suppose c < 1/9. Let

β := max

{
3− 9c2/2

2.5− 9c2/2 + 27c3/4
: 0 ≤ c <

1

9

}
.

Then, it is straightforward to verify that 1.2 ≤ β ≤ 1.20067. For c < 1/9, it
follows that β(1−3c/2) ≥ 1. Hence, the multipliers (2−β), 3cβ/2, β−3cβ/2−1
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are non-negative and sum to one. Therefore,

min

{
1.2λ1 + λ2 + 1.5λ4, 1.2λ1 + 2λ2 +

6

9c
λ3, 1.2λ1 + 2λ2 +

9c2

2
λ4

}
≤ (2− β)(1.2λ1 + λ2 + 1.5λ4) +

(
3cβ

2

)(
1.2λ1 + 2λ2 +

6

9c
λ3

)
+

(
β − 3cβ

2
− 1

)(
1.2λ1 + 2λ2 +

9c2

2
λ4

)
= 1.2λ1 + βλ2 + βλ3 +

(
3− 9c2

2
− β

(
1.5− 9c2

2
+

27c3

4

))
λ4

≤ 1.2λ1 + βλ2 + βλ3 + βλ4 (2)

≤ β (3)

≤ 1.20067.

Inequality (2) follows from the definition of β and inequality (3) follows from
the fact that 1.2 ≤ β and λ1 + λ2 + λ3 + λ4 = 1.
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