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Abstract. We consider single-machine scheduling problems with a non-
renewable resource. In this setting, there are n jobs, each characterized
by a processing time, a weight, and a resource requirement. At given
points in time, certain amounts of the resource are made available to be
consumed by the jobs. The goal is to assign the jobs non-preemptively
to time slots on the machine, so that each job has the required resource
amount available at the start of its processing. We consider the objective
of minimizing the weighted sum of completion times.

The main contribution of the paper is a PTAS for the case of
0 processing times (1|rm = 1, pj = 0| ∑ wjCj). In addition, we show
strong NP-hardness of the case of unit resource requirements and weights
(1|rm = 1, aj = 1| ∑ Cj), thus answering an open question of Györgyi
and Kis. We also prove that the schedule corresponding to the Shortest
Processing Time First ordering provides a 3/2-approximation for the
latter problem.

Keywords: Scheduling · Non-renewable resources · PTAS ·
Approximation algorithm

1 Introduction

Scheduling problems with non-renewable resource constraints arise naturally in
various areas where resources like raw materials, energy, or funding arrive at
predetermined dates. In the general setting, we are given a set of jobs and a set
of machines. Each job is equipped with a requirement vector that encodes the
needs of the given job for the different types of resources. There is an initial
stock for each resource, and some additional resource arrival times in the future
are known together with the arriving quantities. The aim is to find a schedule
of the jobs on the machines such that the resource requirements are met.
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We will use the standard α|β|γ notation of Graham et al. [5]. Grigoriev
et al. [6] extended this notation by adding the restriction rm = r to the β
field, meaning that there are r resources (raw materials). In the present paper,
we concentrate on problem 1|rm = 1|∑ wjCj , that is, when we have a single
machine, a single resource, and the goal is to minimize the weighted sum of
completion times.

Previous Work. Scheduling problems with resource restrictions (sometimes
called financial constraints) were introduced by Carlier [2] and Slowinski [16].
Carlier settled the computational complexity of several variants for the single
machine case [2]. In particular, it was shown that 1|rm = 1|∑ wjCj is NP-hard
in the strong sense. This was also proved independently by Gafarov, Lazarev
and Wener in [3]. Kis [15] showed that the problem remains weakly NP-hard
even when the number of resource arrival times is 2 and gave an FPTAS for
1|rm = 1, q = 2|∑ wjCj . A further variant of the problem was considered
in [3]. Recently, Györgyi and Kis [13,14] gave polynomial time algorithms for
several special cases, and also showed that the problem remains weakly NP-hard
even under the very strong assumption that the processing time, the resource
requirement and the weight are the same for each job. They also provided a
2-approximation algorithm for this variant. For a constant number of resource
arrival times, they gave a PTAS when the processing time equals the weight for
each job, and an FPTAS when the resource requirements and weights are 1.1

In comparison, much more is known about the maximum makespan and
maximum lateness objectives. Slowinski [16] studied the preemptive schedul-
ing of independent jobs on parallel unrelated machines with the use of addi-
tional renewable and non-renewable resources under financial constraints. Toker
et al. [17] examined a single-machine scheduling problem under non-renewable
resource constraint using the makespan as a performance criterion. Xie [18]
generalized this result to the problem with multiple financial resource con-
straints. Grigoriev et al. [6] presented polynomial time algorithms, approxima-
tions and complexity results for single-machine scheduling problems with unit or
all-equal processing times. In a series of papers [7–11], Györgyi and Kis presented
approximation schemes and inapproximability results both for single and paral-
lel machine problems with the makespan and the maximum lateness objectives.
In [12], they proposed a branch-and-cut algorithm for minimizing the maximum
lateness.

Our Results. The first problem that we consider is 1|rm = 1, aj = 1|∑ Cj .
The complexity of this problem was posed as an open question in [12]. We show
that the problem is NP-hard in the strong sense.

Theorem 1. 1|rm = 1, aj = 1|∑ Cj is strongly NP-hard.

Given any scheduling problem on a single machine, the Shortest Processing
Time First (SPT) schedule orders the jobs by processing times, i.e. pspt−1(i) ≤
1 Just before the submission of the present paper, Györgyi and Kis published an
updated version of [14] with some new results. None of our results are implied by
their paper.
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pspt−1(i+1) for all i. We prove that spt provides a 3/2-approximation. We remark
that it remains open whether the problem is APX-hard.

Theorem 2. The SPT schedule gives a 3
2 -approximation for 1|rm = 1, aj =

1|∑ Cj, and the approximation guarantee is tight.

The second problem considered is the special case when the processing time
is 0 for every job. This setting is relevant to situations where processing times
are negligible compared to the gaps between resource arrival times, and the bot-
tleneck is resource availability. Examples include financial scheduling problems
where the jobs are not time consuming but the availability of funding varies in
time, or production problems where products are shipped at fixed time intervals
and production time is negligible compared to these intervals. Note that the
number of machines is irrelevant if processing times are 0.

First we present a PTAS for constant number of resource arrival times. This
procedure will be used as a subroutine in our algorithm for the general case.

Theorem 3. There exists a (1+ q
k )-approximation for 1|rm = 1, pj = 0|∑ Cjwj

with running time O(nqk+1).

The main contribution of the paper is a PTAS for the same problem with an
arbitrary number of resource arrival times.

Theorem 4. There exists a PTAS for 1|rm = 1, pj = 0|∑ Cjwj.

A peculiarity of the algorithm is that the PTAS for constant number of arrival
times is called repeatedly on overlapping time windows, and at each call we fix
only a portion of the scheduled jobs.

Due to space constraints, several proofs and details as well as further results
are deferred to the full version of this paper, which is available at http://arxiv.
org/abs/1911.12138.

2 Preliminaries

Throughout the paper, we will use the following notation. We are given a set
J of n jobs. Each job j ∈ J has a non-negative integer processing time pj , a
non-negative weight wj , and a resource requirement aj . The resources arrive at
time points t1, . . . , tq, and the amount of resource that arrives at ti is denoted
by bi. We might assume that

∑q
i=1 bi =

∑n
j=1 aj holds. We will always assume

that t1 = 0, as this does not effect the approximation ratio of our algorithms.
The jobs should be processed non-preemptively on a single machine. A sched-

ule is an ordering of the jobs, that is, a mapping σ : J → [n], where σ(j) = i
means that job j is the ith job scheduled on the machine. The completion time
of job j in schedule σ is denoted by Cσ

j . We will drop the index σ if the schedule
is clear from the context. In any reasonable schedule, there is an idle time before
a job j only if there is not enough resource left to start j after finishing the last
job before the idle period. Hence, the completion time of job j is determined
by the ordering and by the resource arrival times, as j will be scheduled at the
earliest moment when the preceding jobs are already finished and the amount
of available resource is at least aj .

http://arxiv.org/abs/1911.12138
http://arxiv.org/abs/1911.12138
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3 The Problem 1|rm = 1, aj = 1|∑Cj

3.1 Strong NP-completeness

Proof of Theorem 1. Recall that all aj and wj values are 1, and each job has an
integer processing time pj . The number of resource arrival times is part of the
input. We prove NP-completeness by reduction from the 3-Partition problem.
The input contains numbers B ∈ N, n ∈ N, and xj ∈ N (j = 1, . . . , 3n) such that
B/4 < xj < B/2 and

∑3n
j=1 xj = nB. A feasible solution is a partition J1, . . . , Jn

of [3n] such that |Ji| = 3 and
∑

j∈Ji
xj = B for every i ∈ [n]. In contrast to the

Partition problem, the 3-partition problem remains NP-complete even when
the integers xj are bounded above by a polynomial in n. That is, the problem
remains NP-complete even when the numbers in the input are represented as
unary numbers [4, pages 96–105 and 224].

Let K = 4nB. The reduction to 1|rm = 1, aj = 1|∑ Cj involves three types
of jobs. Normal jobs correspond to the numbers xj in the 3-Partition instance,
so there are 3n of them and the processing time pj of the j-th normal job is xj .
We further have nK small jobs with processing time 1, and nK large jobs with
processing time K. There are also three types of resource arrivals. The Type
1 resource arrival times are i(B + K) (i = 0, . . . , n − 1) with three resources
arriving at each. The Type 2 arrival times are i(B + K) + j (i = 0, . . . , n − 1,
j = B, . . . , B + K − 1) with one resource arriving. Finally, the Type 3 resource
arrival times are n(B + K) + iK (i = 0, . . . , nK − 1) with one resource arriving.

Suppose that the 3-Partition instance has a feasible solution J1, . . . , Jn.
We consider the following schedule S: resources of Type 1 are used by normal
jobs, such that jobs in Ji are scheduled between (i−1)(B+K) and iB+(i−1)K
(in spt order). Type 2 resources are used by small jobs that start immediately.
Type 3 resources are used by the large jobs that also start immediately at the
resource arrival times (see Fig. 1).

Instead of
∑

Cj , we consider the equivalent shifted objective function
∑

(Cj−
tj − pj), where tj is the arrival time of the resource used by job j and pj is its
processing time – we assume without loss of generality that resources are used by
jobs in order of arrival. Note that all terms of

∑
(Cj −tj −pj) are nonnegative. As

small jobs and large jobs start immediately at the arrival of the corresponding
resource in schedule S, their contribution to the shifted objective function is
0. The jobs in Ji have total processing time B, and their contribution to the
shifted objective function is two times the processing time of the shortest job
plus the processing time of the second shortest job, which is at most B. Hence
the schedule S has objective value at most nB.

We claim that if the 3-Partition instance has no feasible solution, then the
objective value of any schedule is strictly larger than nB. First, notice that if a
large job is scheduled to start before time n(B + K), then

∑
(Cj − tj − pj) has

a term strictly larger than nB as there is a resource that arrives while the large
job is processed and is not used for more than nB time units. Similarly, if the
first large job starts at n(B + K) but uses a resource that arrived earlier, then
the resource that arrives at n(B + K) is not used for more than nB time units.



Scheduling with Non-renewable Resources 171

Fig. 1. The schedule corresponding to a feasible solution of 3-Partition.

We can conclude that the first large job uses the resource arriving at n(B + K).
If the first large job does not start at n(B +K), then all large jobs have positive
contribution to the objective value, so again, the objective value is larger than
nB. We can therefore assume that the large jobs start exactly at n(B +K)+ iK
(i = 0, . . . , nK −1) and that there is no idle time before (B+K)n. In particular,
this means that all other jobs are already completed at time (B + K)n.

Consider Type 2 resources arriving at i(B + K) + j (j = B, . . . , B + K − 1)
for some fixed i. If the first or the second resource is not used immediately, then
none of the subsequent ones are, so the objective value is more than nB. Hence,
the first resource must be used immediately by a small job.

Suppose that some resource in this interval is used by a normal job. If it is
followed by a small job, then we may improve the objective value by exchanging
the two. Thus, in this case, we can assume that the last resource of the interval is
used by a normal job, and also the Type 1 resources arriving at (i+1)(B+K) are
used by normal jobs. But this is impossible, because normal jobs have processing
time at least B/4 + 1, and a small job starts at time (i + 1)(B + K) + B.

To sum up, we can assume that all resources of Type 2 are used immediately
by small jobs. This means that normal jobs have to use resources of Type 1,
and must exactly fill the gaps of length B between the arrival of resources of
Type 2. This is only possible if the 3-partition instance has a feasible solution,
concluding the proof of Theorem 1. ��

3.2 Shortest Processing Time First for Unit Resource Requirements

We now show that scheduling the jobs according to an spt ordering provides a
3/2-approximation for the problem with unit weights and unit resource require-
ments, thus proving Theorem 2.

Proof of Theorem 2. To prove the theorem consider any instance I. We denote
the completion times for the spt ordering by Cj and their sum by spt. Further-
more, let Sspt−1(i) := Cspt−1(i)−pspt−1(i) denote the starting time of the ith job in
the spt schedule. Let opt be the optimal schedule for I. We denote the completion
times for opt by C ′

j and their sum by opt. Let S′
opt−1(i) := C ′

opt−1(i) − popt−1(i)

denote the starting time of the ith job in the optimal schedule.
Our strategy is to simplify the instance by revealing its structural properties

while not decreasing spt
opt . We only state the claims needed for the proof here;

their proofs can be found in the full version of the paper [1]. First we modify
the resource arrival times.
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Claim 1. We may assume that the ith resource arrives at S′
opt−1(i) for i =

1, . . . , n, and that there is no idle time in schedule opt, that is, S′
opt−1(i) =

C ′
opt−1(i−1) for i = 2, . . . , n.

Next, we modify the instance to have 0 − 1 processing times.

Claim 2. We may assume that popt−1(1) > pspt−1(1) and that pspt−1(1) = 0.
Furthermore, we may assume that pj ∈ {0, 1} for all j ∈ J .

Finally, we modify the order of the jobs in the optimal solution. If opt and
spt process a job of length 0 at the same time, then we can remove the job from
the instance and reduce the number of resources that arrive at this time by 1.
This will reduce opt and spt by the same amount.

Let t be the time at which schedule spt first starts to process a job of length
1. On one hand, opt does not process jobs of length 0 before t by the above
argument. On the other hand, there is no idle time after t in spt, because that
would mean idle time in opt. Thus, if we move all jobs of length 0 and their
corresponding resource arrivals in opt to time t, then spt does not change but
opt decreases. We may thus assume that schedule opt processes every job of
length 0 at t.

We conclude that opt first processes k1 jobs of length 1, then k1 jobs of
length 0 and then k2 jobs of length 1, while spt starts with the jobs of length
0 having a lot of idle time in the beginning and then consecutively processes
all jobs of length 1. The weighted sums of completion times are then given by
opt = k1(k1+1)

2 +k2
1 +k2k1+ k2(k2+1)

2 and spt = k1(k1−1)
2 +k2k1+ k1(k1+1)

2 +(k1+

k2)k1 + k2(k2+1)
2 . We get 3

2opt − spt = k2
1
4 + k2

2
4 − k1k2

2 + 3k1+k2
4 ≥ (k1−k2)

2

4 ≥ 0,
showing that the approximation factor is at most 3

2 .
Setting k2 = k1 and letting k1 go to infinity gives us a sequence of instances

such that spt
opt converges to 3

2 as we have spt = 9
2k2

1+O(k1) and opt = 3k2
1+O(k1).

This concludes the proof of Theorem 2. ��

4 The Problem 1|rm = 1, pj = 0|∑Cjwj

In this section we consider problem 1|rm = 1, pj = 0|∑ Cjwj , another special
case of 1|rm = 1|∑ Cjwj . Since the processing times are 0, every job is processed
at one of the arrival times in any optimal schedule. Thus, a schedule can be
represented by a mapping π : J → [q], where π(j) denotes the index of the
resource arrival time when job j is processed. A schedule is feasible if the resource
requirements are met, that is, if

∑
j:π(j)≤k aj ≤ ∑

i≤k bi for all 1 ≤ k ≤ q. As we
assume that

∑
i bi =

∑
j aj holds, this is equivalent to

∑
j:π(j)≥k aj ≥ ∑

i≥k bi

for all 1 ≤ k ≤ q.
Define Bk =

∑
i≥k bi, and consider the set of jobs that are not processed

before a given time point ti. Then the second inequality says that if the resource
requirements of these jobs add up to at least Bi, then our schedule is feasible.
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4.1 PTAS for Constant q

The aim of this section is to give a PTAS for the case when the number of
resource arrival times is a constant. The algorithm is a generalization of a well
known PTAS for the knapsack problem, and will be used later as a subroutine in
the PTAS for an arbitrary number of resource arrival times. The idea is to choose
a number k ∈ Z+, guess the k heaviest jobs that are processed at each resource
arrival time ti, and then determine the remaining jobs that are scheduled at ti in
a greedy manner. Since we go over all possible sets containing at most k jobs for
each resource arrival time, there is an exponential dependence on the number q
of resource arrival times in the running time.

Algorithm 1. PTAS for 1|rm = 1, pj = 0|∑ Cjwj when q is a constant.
Input: Jobs J with |J | = n, resource requirements aj , weights wj , resource arrival
times t1 ≤ . . . ≤ tq and resource quantities b1, . . . bq.
Output: A feasible schedule π.

1: for all subpartitions S1 ∪ · · · ∪ Sq ⊆ J with |Si| ≤ k for i > 1 do
2: Set A = 0.
3: Set W = 0.
4: for i from 0 to q − 2 do
5: for j ∈ Sq−i do
6: π(j) = q − i
7: A ← A + aj

8: if |Sq−i| = k then
9: W ← max{W,min{wj : j ∈ Sq−i}}
10: while A < Bq−i do
11: if there exists an unassigned job j with wj ≤ W then
12: Let j be an unassigned job with wj ≤ W minimizing wj/aj .
13: π(j) = q − i
14: A ← A + aj

15: else
16: break
17: For all remaining jobs set π(j) = 1.

18: Let π be the best schedule found.
19: return π

Proof of Theorem 3. We claim that Algorithm 1 satisfies the requirements of the
theorem. Let πopt be an optimal schedule and define Jopt

i = {j ∈ J : πopt(j) = i}.
Let Sopt

i be the set of the k heaviest jobs in Jopt
i if |Jopt

i | ≥ k, otherwise let
Sopt

i = Jopt
i . Let Ji = {j ∈ J : π(j) = i} denote the set of jobs assigned to time

ti in our solution. In each iteration of the for loop of Step 4, let ji be the last
job added to Ji if such a job exists.

Assume that we are at the iteration of the algorithm when the subpartition
Sopt
1 ∪ · · · ∪ Sopt

q is considered in Step 1. Let Wq−� denote the value of W at the
end of the iteration of the for loop corresponding to i = � in Step 4. By Steps 3
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and 9, we have Wq−� ≤ 1
k

∑q
i=�

∑
j∈Jopt

i
wj . As our algorithm always picks the

most inefficient job, we also have
∑q

i=�

∑
j∈Ji\{ji} wj ≤ ∑q

i=�

∑
j∈Jopt

i
wj , where

Ji \ {ji} = Ji if ji is not defined for i.
Combining these two observations, for � = 1, . . . , q we get

q∑

i=�

∑

j∈Ji

wj =

q∑

i=�

∑

j∈Ji\{ji}
wj +

q∑

i=�

wji

≤
q∑

i=�

∑

j∈J
opt
i

wj + (q − � + 1) · W� ≤ (1 +
q

k
)

q∑

i=�

∑

j∈J
opt
i

wj ,

where the first inequality follows from the fact that wji ≤ Wi ≤ W� whenever
i ≥ �. This proves that the schedule that we get is a (1 + q

k )-approximation.
We get a factor of nqk in the running time for guessing the sets Sk. Assigning

the remaining jobs can be done in linear time by ordering the jobs and using
AVL-trees, thus we get an additional factor of n. In order to get a PTAS, we set
k = ε

q , concluding the proof of the theorem. ��

4.2 PTAS for Arbitrary q

We turn to the proof of the main result of the paper. The first idea is to shift
resource arrival times to powers of 1 + ε, for a suitably small ε.

Let I be an instance of 1|rm = 1, pj = 0|∑j Cjwj . We assume that resource
arrival times are integer, and that t1 = 0, t2 = 1. We define a new instance I ′ of
1|rm = 1, pj = 0|∑j Cjwj with shifted resource arrival times as follows. Set t′1 =
0 and t′i = (1+ε)i−2 for i = 2, . . . , 	log1+ε(tq)
+2. Moreover, let b′

1 = b1, b
′
2 = b2

and b′
i =

∑
[bi : ti ∈ ((1 + ε)i−3, (1 + ε)i−2] for i = 3, . . . , 	log1+ε(tq)
 + 2.

The proof of the following claim is the same as that of Claim 12 in [1].

Claim 3. A solution to I with weighted sum of completion times W can be
transformed into a solution of I ′ with weighted sum of completion times at most
(1 + ε)W . Furthermore, any feasible schedule for I ′ is also feasible for I. ��

Due to the claim, we may assume that the positive arrival times are powers
of 1 + ε. For convenience of notation, we will assume in this subsection that
the largest arrival time is 1, and arrival times are indexed in decreasing order,
starting with t0 = 1. That is, ti = (1 + ε)−i (i = 0, . . . , q − 2), and tq−1 = 0. We
will also assume that for a given constant r, bq−r−1 = · · · = bq−2 = 0. This can
be achieved by adding r dummy arrival times.

Proof of Theorem 4. Let us fix an even integer r and ε > 0; we will later assume
that r is very large compared to ε−1. We assume that resource arrival times are
as described above. The algorithm is given as Algorithm 2.

In the algorithm, we fix jobs at progressively decreasing arrival times, by
using the PTAS of the previous section for r + 1 arrival times on different
instances except for the first step, when we may use the PTAS for less than r+1
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Algorithm 2. PTAS for 1|rm = 1, pj = 0|∑ Cjwj

Input: Jobs J with |J | = n, resource requirements aj , weights wj ; an even integer r;
resource quantities b0, . . . bq−1 such that bq−r−1 = · · · = bq−2 = 0 and

∑
aj =

∑
bi.

We assume resource arrival times are ti = (1 + ε)−i (i = 0, . . . , q − 2), tq−1 = 0.
Output: A feasible schedule π.

1: for � from 1 to r/2 do
2: Obtain instance I′ with r/2+ �+1 arrival times by moving arrivals before

tr/2+�−1 to 0.
3: Run Algorithm 1 on I′ to get schedule σ.
4: Let A = B = 0.
5: for i from 0 to � − 1 do
6: For every j ∈ σ−1(i), fix π�(j) = i.
7: A ← A +

∑
j∈σ−1(i) aj

8: B ← B + bi

9: for j from 2 to �2(q − 1 − �)/r� do
10: Let s = (j − 2)r/2 + �.
11: Obtain instance I′ with arrival times ts, ts+1, . . . , ts+r−1, 0: remove

arrivals after ts, remove max{A−B, 0} latest remaining resources,
and move all arrivals before ts+r−1 to 0.

12: Let A = B = 0.
13: Run Algorithm 1 on I′ to get schedule σ.
14: for i from s to s + r/2 − 1 do
15: For every j ∈ σ−1(i), fix π�(j) = i.
16: A ← A +

∑
j∈σ−1(i) aj

17: B ← B + bi

18: For all unscheduled jobs j, set π�(j) = q − 1.

19: Let π be the best schedule among π1, . . . , πr/2.
20: return π

arrival times. We will run our algorithm r/2 times with slight modifications, and
pick the best result. Each run is characterized by a parameter � ∈ {1, . . . , r/2}.

In the first step, we consider arrival times t0, t1, . . . , tr/2+�−1, 0. We move
the resources arriving before tr/2+�−1 to 0, and use the PTAS for r/2 + � + 1
arrival times on this instance. We fix the jobs that are scheduled at arrival times
t0, t1, . . . , t�−1.

Consider now the jth step for some j ≥ 2. Define s = (j − 2)r/2 + � and
consider arrival times ts, ts+1, . . . , ts+r−1, 0. Move the resources arriving before
ts+r−1 to 0, and decrease bs, bs+1, . . . in this order as needed, so that the total
requirement of unfixed jobs equals the total resource. Use the PTAS for r + 1
arrival times on this instance. Fix the jobs that are scheduled at arrival times
ts, ts+1, . . . , ts+r/2−1. The algorithm runs while s+ r − 1 ≤ q − 2, i.e., jr/2+ � ≤
q − 1. Since the smallest r arrival times (except for 0) are dummy arrival times,
the algorithm considers all resource arrivals.

The schedule given by the algorithm is clearly feasible, because when jobs
at ti are fixed, the total resource requirement of jobs starting no earlier than ti
is at least the total amount of resource arriving no earlier than ti. To analyze
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the approximation ratio, we introduce the following notation: Wi is the total
weight that the algorithm schedules at ti; W ′

i is the weight that the algorithm
temporarily schedules at ti when i is in the interval [ts+r/2, ts+r−1] (or, in the
first step, in the interval [t�, t�+r/2−1]); W ∗

i is the total weight scheduled at ti in
the optimal solution.

Since we use the PTAS for r/2 + � + 1 arrival times in the first step, we have
∑�−1

i=0(1 + ε)−iWi +
∑�+r/2−1

i=� (1 + ε)−iW ′
i ≤ (1 + ε)

∑�+r/2−1
i=0 (1 + ε)−iW ∗

i , as
the right-hand side is (1 + ε) times the objective value of the feasible solution
obtained from the optimal solution by moving jobs arriving before t�+r/2−1 to 0.

For s = jr/2+�, we compare the output of the PTAS with a different feasible
solution: we schedule total weight W ′

i at ti for i = s, s + 1, . . . , s + r/2 − 1, total
weight W ∗

i at ti for i = s + r/2 + 1, . . . , s + r − 1, and at ts+r/2 we schedule all
jobs that are no earlier than ts+r/2 in the optimal schedule but are no later than
ts+r/2 in the PTAS schedule. We get the inequality

(j+1)r/2+�−1∑

i=jr/2+�

(1 + ε)−iWi +

(j+2)r/2+�−1∑

i=(j+1)r/2+�

(1 + ε)−iW ′
i ≤ (1 + ε)

⎛

⎝
(j+1)r/2+�−1∑

i=jr/2+�

(1 + ε)−iW ′
i

+

(j+2)r/2+�−1∑

i=(j+1)r/2+�

(1 + ε)−iW ∗
i + (1 + ε)−(j+1)r/2−�

(j+1)r/2+�−1∑

i=0

W ∗
i

⎞

⎠ .

The sum of these inequalities gives

q−2∑

i=0

(1 + ε)−iWi ≤ ε

q−2∑

i=�

(1 + ε)−iW ′
i + (1 + ε)

q−2∑

i=0

(1 + ε)−iW ∗
i

+(1 + ε)

q−2∑

i=0

⎛

⎝
∑

j:jr/2+�>i

(1 − ε)−(jr/2+�)

⎞

⎠ W ∗
i .

(1)

To bound the first term on the right hand side of (1), first we observe that
∑r/2+�−1

i=� (1 + ε)−iW ′
i ≤ (1 + ε)

∑r/2+�−1
i=0 (1 + ε)−iW ∗

i , because the left side is
at most the value of the PTAS in the first step, while the right side is (1 + ε)
times the value of a feasible solution. Similarly,

(j+2)r/2+�−1∑

i=(j+1)r/2+�

(1 + ε)−iW ′
i

≤ (1 + ε)

⎛

⎝
(j+2)r/2+�−1∑

i=jr/2+�

(1 + ε)−iW ∗
i + (1 + ε)−jr/2−�

jr/2+�−1∑

i=0

W ∗
i

⎞

⎠ ,

because the left side is at most the value of the PTAS in the (j +1)-th step, and
the right side is (1 + ε) times the value of the following feasible solution: take
the optimal solution, move jobs scheduled before t(j+2)r/2+�−1 to 0, and move
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jobs scheduled after tjr/2+� to tjr/2+�. Adding these inequalities, we get

ε

q−2∑

i=�

(1 + ε)−iW ′
i

≤ ε(1 + ε)

⎛

⎝2

q−2∑

i=0

(1 + ε)−iW ∗
i +

q−2∑

i=0

⎛

⎝
∑

j:jr/2+�>i

(1 + ε)−jr/2−�

⎞

⎠ W ∗
i

⎞

⎠

≤ ε

(

2(1 + ε) +
(1 + ε)r/2

(1 + ε)r/2 − 1

) q−2∑

i=0

(1 + ε)−iW ∗
i .

The last expression is at most 4ε times the optimum value if r is large enough.
The last term of the right side of (1) is too large to get a bound that proves

a PTAS. However, we can bound the average of these terms for different values
of �. The average is

(1 + ε)
2

r

r/2∑

�=1

q−2∑

i=0

⎛

⎝
∑

j:jr/2+�>i

(1 − ε)−(jr/2+�)

⎞

⎠ W ∗
i

≤ (1 + ε)
2

r

q−2∑

i=0

( ∞∑

j=1

(1 + ε)−j

)

(1 − ε)−iW ∗
i = (1 + ε)

2

rε

q−2∑

i=0

(1 − ε)−iW ∗
i ,

which is at most ε times the optimum if r is large enough. To summarize, we
obtained that for large enough r, the average objective value of our algorithm
for � = 1, 2, . . . , r/2 is upper bounded by

4ε

q−2∑

i=0

(1+ε)−iW ∗
i +(1+ε)

q−2∑

i=0

(1+ε)−iW ∗
i +ε

q−2∑

i=0

(1+ε)−iW ∗
i = (1+6ε)

q−2∑

i=0

(1+ε)−iW ∗
i ,

which is (1 + 6ε) times the objective value of the optimal solution. This proves
that the algorithm that chooses the best of the r/2 runs is a PTAS. ��
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