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Abstract 

This research concentrates on the marked discrepancies in the crystalline structure of poly(lactic 

acid) (PLA) nano- and microfibres, achieved by different annealing strategies. PLA nonwoven 

mats were produced by high-speed electrospinning (HSES). The high-speed production technique 

allowed the manufacturing of PLA microfibres with diameters of 0.25–8.50 µm with a relatively 

high yield of 40 g h-1. The crystalline content of the inherently highly amorphous microfibres was 

increased by two methods, thermal annealing in an oven at 85°C was compared to immersion in 

absolute ethanol at 40°C. The morphology of the fibres was examined by scanning electron 

microscopy (SEM), crystalline forms and thermal properties were assessed using X-ray 

diffractometry (XRD), Raman spectrometry, differential scanning calorimetry (DSC) as well as 
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modulated differential scanning calorimetry (MDSC). As a consequence of 45 min heat 

treatment, the crystalline fraction increased up to 26%, while solution treatment resulted in 33% 

crystallinity. It was found that only disordered α’ crystals are formed during the conventional 

heat treatment, however, the ethanol-induced crystallization favours the formation of the ordered 

α polymorph. In connection with the different crystalline structures, noticeable changes in the 

macroscopic properties such as heat resistance and mechanical properties were evinced by 

localised thermomechanical analysis (LTMA) and static tensile test, respectively. 
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Introduction 

A wide variety of value-added biopolymer systems, that have been gaining ground in several 

industry segments, have to be adjusted to certain processing and application requirements. 

Annealing (recrystallization) is one of the frequently utilized modifications that usually takes 

place during or after manufacturing. By this method, the crystallinity of a polymer material can 

be enhanced through the increased macromolecular mobility above Tg. In particular, design of 

poly(lactic acid) (PLA) products require special attention to its crystalline phase mainly due to 

the inherently slow crystallization kinetics of the polymer. [1-5] Inter alia, thermal history has 

direct influence on the crystallinity of PLA, and consequently, on its properties altogether. 

Numerous studies showed that by exploiting the advantages of thermal annealing, Young’s 

modulus and heat distortion temperature (HDT) can be effectively improved, moreover, even 

increased tensile strength and impact resistance are achievable without altering the molecular 

mass [6-11]. Stereochemistry also greatly affects the crystallization capability of PLA. A PLA 

macromolecule can form stereoisomers depending on its monomers: L, D and D-L (meso) lactide. 



For commercial purposes, PLA blends with a higher amount of L-lactide and a lower D-lactide 

content are used [8]. The properties of these semi-crystalline PLA grades can be tailored by 

varying the ratio of the two isomers, thus adjusting the molecular regularity of the PLA chains. 

By this means, a grade with lower D-lactide content has higher maximum crystalline fraction. 

Crystallization of PLA can result in three possible crystalline forms, i.e. α, β and γ. When PLA 

is crystallized from melt or solution, even during cold crystallization, α polymorph is developed. 

This is the most stable form, which turned out to be a left-handed 103 helix, that packs into an 

orthorhombic unit cell [12, 13]. The β form can be obtained under more extreme conditions e.g. 

by applying high drawing along with elevated temperature, and can be described with a trigonal 

unit cell [14-18]. The orthorhombic γ form is produced through epitaxial crystallization [19]. 

During conventional PLA processing routes α form is more likely to develop, therefore from 

practical and scientific points of view, this crystal type is of great relevance. Even more research 

has been concentrating on the subject since Zhang et al. reported that PLA could crystallize into a 

less ordered polymorph called α’ [20]. Subsequent studies revealed that at temperatures lower 

than about 100°C, formation of α’ crystals is observed, the stable α form crystallizes only above 

140°C [10, 21-24]. In the temperature range of 100–140°C, both types of crystals grow [21-23]. 

Nonwoven technologies and products represent a notable portion of the packaging industry, the 

largest single market of polymers [25, 26]. In addition, these materials with disordered fibre 

arrangement represent the main component of a wide range of applications, including filtration 

[27, 28], absorbents [29, 30], drug delivery [31-33], and tissue-engineering [34, 35] With respect 

to annealing of PLA nonwovens heat resistance, tensile strength and modulus usually increases, 

while ductility reduces [36, 37]. In our previous study, melt-blown PLA nonwoven mats were 

used as precursors for self-reinforced composite preparation [38]. Without the recrystallization 

step, the inherently mainly amorphous PLA microfibres could not fulfil their reinforcing role in 



the composite, as they fused at the elevated temperature of hot compaction. Another popular 

manufacturing method to obtain micro- or nanofibrous PLA mats is electrospinning (ES) [25, 26, 

28-37, 39]. Recently, high-speed electrospinning (HSES) technique has been developed to 

increase the productivity of this process [32, 33, 40-42]. To the best of our knowledge, the HSES 

concept has not yet been utilized to produce PLA fibres. 

Several routes exist for tailoring the final properties of microfibrous PLA products via changes 

in the macromolecular structure. On the one hand, when modifying the composition, the use of 

organic or inorganic additives proved to be advantageous, and even stereo-complexation of PLA 

chains is on the table [34, 43-47]. On the other hand, postprocessing of the fibres can increase the 

crystallite size and can result in more organized crystals [38]. However, conventional annealing 

(using heat treatment without fixation) generally leads to dramatic relaxation of PLA fibres and 

the shrinkage of the product [37, 48]. When annealing at 140°C, Riberio et al. encountered severe 

deterioration of electrospun PLA fibres [49]. Accordingly, it seems to be challenging to develop a 

stable α crystalline phase in nano- and micrometer sized systems with such high sensibility to 

thermal defects. Viswanath et al. also found that conventional annealing damaged the 

manufactured nanofibrous mats, while photothermal annealing in presence of embedded gold 

nanoparticles preserved the nanostructured morphology [50]. Besides heat treatment, Bye et al. 

recommend the technique of vapour annealing by suspending the electrospun mat above a pool of 

dichloromethane [34]. Naga et al. proposed solvent induced crystallization of amorphous PLA 

[51]. Regarding nano- and microfibrous structures the large surface area to volume ratio further 

increases the efficiency of solvent induced crystallization. Gualandi et al. investigated the effect 

of ethanol disinfection on electrospun PLA scaffolds and demonstrated that the fibres’ 

crystallinity exceeded 30% due to immersion in 37°C absolute ethanol for more than 30 minutes 

[52]. Consequently, modulus and tensile strength of the electrospun mat increased by 69% and 



36%, respectively. Somord et al. also used ethanol to remove residual water from electrospun 

PLA mats, but for some reason, they did not mention the solvent induced crystallization effect 

just noted that without the ethanol rinsing step discoloration or degradation of PLA would occur 

in subsequent hot-pressing steps [53]. The crystallinity of the produced self-reinforced 

nanocomposites increased to 35–40%, accompanied with enhanced toughness. 

The aforementioned modifications of nonwoven mats certainly need some sort of 

characterization. Thermoanalytical and morphological investigation are evident and essential 

routes to determine basic properties of the product; the overall crystallinity, fibre diameters and 

alignment can be assessed by differential scanning calorimetry (DSC) and scanning electron 

microscopy (SEM), respectively [48, 49]. Nonetheless, in order to differentiate the two main 

crystal form (α and α’), the exact atomic coordinates in the crystal lattice and the intra- and 

intermolecular interactions have to be determined using more sophisticated methods. 

Temperature modulated DSC (MDSC) permits the simultaneous measurement and separation of 

thermal events that are reversible and non-reversible at the modulation period timescale [54, 55]. 

With the special concept of stochastic modulation, also known as TOPEM® technique, even the 

complex heat capacity is definable [56-58]. Structural analysis by X-ray diffraction method is a 

powerful way to obtain the atomic positions and to probe long-range order in the crystalline 

phase [7, 22, 24, 59]. On the contrary, vibrational spectroscopy detects localised structures at the 

molecular scale. Among other methods, Raman micro-spectroscopy is a versatile technique 

capable of defining conformation distribution, in both amorphous and crystalline regions [60-62]. 

Measuring the heat deflection temperature (HDT) is a key topic when determining the effects of 

annealing, since recrystallized PLA products have higher HDT compared to amorphous ones [8]. 

However, information derived from a bulk HDT measurement (i.e. ISO 75 standard) represents a 

superposition of information from all of the constituents in a specimen, therefore it is unsuitable 



for examining the heat resistance of nonwoven materials [63]. In the field of scanning probe 

microscopy, localised thermomechanical analysis (LTMA) offers the “micro“ equivalent of 

thermomechanical investigation on micrometer-scale areas within a 10–20 seconds period [64-

66]. By exploiting the high spatial resolution of this technique, the fibres themselves play the role 

of TMA specimens. 

In the present paper, the results of the annealing modifications are described in detail for both 

heat and ethanol treatment of nonwoven PLA mats. Parallel recrystallization experiments were 

implemented on duplicate samples derived from the same high-speed electrospun PLA 

nonwoven. The specimens were comprehensively characterized by means of morphological, 

spectroscopic, thermal and mechanical testing methods. In addition to the new way of high 

throughput ES manufacturing of PLA nano- and microfibres, the distinction between α and α’-

related thermal effects in the same DSC curve represents the novelty of our research, which was 

realized using modulated differential scanning calorimetry. 

 

Experimental section 

Materials 
 

Ingeo™ Biopolymer 3100HP type PLA, purchased from NatureWorks LLC (Minnetonka, MN, 

USA), was chosen considering the 0.5% D-lactide content of the material as an advantage during 

crystallization. As material properties, in the product datasheet a specific gravity of ρ = 1.24 

g cm-3, a crystalline melt temperature of 165–180°C and a melt flow index (MFI) of 24 g/10 min 

(210ºC/2.16 kg) are given by the producer. 

Ethanol (99.5%) and dichloromethane (99.0%) were purchased from Merck Ltd. (Budapest, 

Hungary). 



Production of PLA nonwoven mats 
 

PLA nonwoven fibre mats were prepared by a high-speed electrospinning (HSES) setup 

consisting of a stainless steel spinneret equipped with orifices (d = 330 µm) connected to a 

high-speed motor (Quick2000 Ltd, Tiszavasvári, Hungary) [40]. 10% w/v PLA/dichloromethane 

solution was prepared in a sealable glass bottle with a magnetic stirrer, using 100 g of the PLA 

granules and 1000 ml solvent. The optimised composition is based on experiments conducted 

previously by our research group (the presentation of which is beyond the scope of this paper). 

The solution was fed with a flow rate of 400 mL h-1 using a peristaltic pump. 45 kV voltage was 

applied on the spinneret, the rotational speed of which was fixed at 25000 rpm. The produced 

PLA fibres were collected on a round metal mesh placed on the grounded metal funnel, in order 

to prevent the fibrous material from entering the air suction system (Fig. 1). PLA nonwoven mats 

weighing ~20 g were removed from the mesh collector in 30 minute time periods and placed in 

airtight sample bags for further processing. The experiments were performed at constant ambient 

temperature (25°C) and at a relative humidity of 50 ± 10%. The productivity of the HSES 

technique reached 40 g h-1, which is 2-3 orders of magnitude higher than that of the single needle 

ES technique used for PLA nano- and microfibre production until now [25, 26, 28–37, 39]. 

 



 
Fig. 1 Schematic illustration and a photo of the HSES device: PLA solution (1), pump (2), 

spinneret (3), high voltage (4), grounded metal funnel and wire mesh (5), cyclone for collecting 

residual particles (6), air suction system (7) 

Recrystallization methods 

Thermally-induced crystallization 
 

The obtained PLA nonwoven mats were cut into 20 mm wide and 80 mm long strips and 

placed in a conventional oven for annealing at 85°C. The sample temperature was precisely 

measured using a thermocouple and a digital multimeter. Samples for analyses were taken after 5, 

10, 15, 20, 30, 45, 60 and 90 minutes and named H-5, H-10, … H-90, respectively. 

Solvent-induced crystallization 
 

20 mm wide nonwoven PLA strips were placed in a covered Petri dish containing 99.5% 

ethanol. The solvent was previously heated and held at 40°C on a magnetic stirrer. Samples were 

taken out after 3 seconds, 5, 10, 15, 20, 30 and 45 minutes (named E-5, E-10, … E-45, 

respectively) and then dried under air ventilation at ambient temperature (25°C). 



Characterization of PLA nonwoven mats 

Scanning electron microscopy 
 

Scanning electron microscopic (SEM) images were taken from the non-treated and 

recrystallized fibrous mats. A JEOL JSM-5500 LV type apparatus (JEOL Ltd., Akishima, Tokyo, 

Japan) was used for examination with accelerating voltage of 15 keV. All the samples were 

coated with gold–palladium alloy before examination in order to prevent charge build-up on the 

surface. The distribution of fibre diameters was determined via measurement of at least 130 

randomly selected single fibre using an image analysis software (ImageJ). One-way ANOVA 

was used to evaluate the statistical significance of the difference between the mean values of 

fibre diameters before and after thermally induced or solvent-induced crystallization (p<0.05). 

Differential scanning calorimetry (DSC) 
 

A Mettler Toledo (Greifensee, Switzerland) DSC3+ type instrument was used for differential 

scanning calorimetry (DSC). About 6-7 mg of each nonwoven mat was compressed into a disk-

shaped sample and sealed in a 40 µL aluminium crucible. DSC measurements were carried out 

with a heating rate of 2°C min-1 under 50 mL min-1 nitrogen gas flow, covering a temperature 

range of 25–200°C. STARe software was used to control and evaluate the measurements. 

The degree of crystallinity (χc) of the samples was calculated according to Equation (1), where 

ΔHm indicates the melting enthalpy, ΔHcc is the cold crystallization enthalpy, ΔHrec is the 

recrystallization enthalpy, ΔHm0(α or α’) is the enthalpy of melting of the 100% crystalline PLLA 

in α (143 J g-1) or α’ (107 J g-1) form, ΔHc0(α or α’) is the enthalpy of crystallization of 100% 

crystalline PLLA in α (130 J g-1) or α’ (76 J g-1) form [24]. 

𝑋𝑋 = � 𝛥𝛥𝐻𝐻𝑚𝑚
𝛥𝛥𝐻𝐻𝑚𝑚0 (α)

− 𝛥𝛥𝐻𝐻𝑐𝑐𝑐𝑐
𝛥𝛥𝐻𝐻𝑐𝑐0�α′�

− 𝛥𝛥𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟
𝛥𝛥𝐻𝐻𝑐𝑐0(α)−𝛥𝛥𝐻𝐻𝑚𝑚0 �α′�

� ∗ 100    (%)     (1) 



Modulated differential scanning calorimetry (MDSC) 
 

The reversing and non-reversing heat flow curves were distinguished using a DSC3+ type 

(Mettler Toledo AG, Greifensee, Switzerland) instrument in TOPEM® mode. The sample 

preparation method was identical to that of the normal DSC. Temperature modulated differential 

scanning calorimetry (MDSC) measurements were implemented at an underlying heating rate of 

1°C min-1, from 50 to 190°C, under 50 mL min-1 nitrogen gas flow. The modulation pulse height 

was fixed at 0.5K (±0.25K), while the TOPEM® mode varied the pulse length from 15 to 30 

seconds. STARe software was used to control and evaluate the measurements. A calculation 

window of 300 s was found to be appropriate for evaluation with 3 s shift and 90 s smoothing 

window. The sample response parameter was further optimized for each sample to obtain total 

heat flow curves similar to the normal DSC experiments.  

X-ray diffraction (XRD) 
 

X-ray reflexion diffraction patterns were recorded with a PANalytical X’pert Pro MDP 

diffractometer (Almelo, The Netherlands) using Cu-Kα radiation (1.541 Å) and Ni filter. The 

applied current was 30 mA, while the voltage was 40 kV. The 20 mm wide samples were placed 

on a Si sheet and analysed between 2θ angles of 4° and 44°. 

Raman micro-spectroscopy 
 

Raman spectra were collected from the PLA nonwoven mats using a Horiba Jobin-Yvon 

LabRAM (Longjumeau, France) system coupled with an Olympus BX41 optical microscope 

(Olympus Corporation, Tokyo, Japan) and an external 532 nm frequency-doubled Nd-YAG laser 

source. About 3-4 mg of fibrous material was compressed into a disk-shaped sample and placed 

under the objective on a microscope slide. An objective of 50× magnification was used for 



optical imaging and spectrum acquisition. The laser beam is directed through the objective, and 

backscattered radiation is collected with the same objective. The collected radiation is directed 

through a notch filter that removes the Rayleigh photons, then through a confocal hole and the 

entrance slit onto a grating monochromator (1800 groove mm-1) that disperses the light before it 

reaches the CCD detector. The spectrograph was set to provide a spectral range of 100–1900 cm-1 

and 4 cm-1 resolution. The acquisition time of a single spectrum was 70 s in each experiment and 

5 spectra were averaged at a time. All spectra were baseline corrected and area-normalized within 

the whole wavenumber range in order to eliminate the intensity deviation between the measured 

points. 

Localised thermomechanical analysis (LTMA) 
 

Localised thermomechanical analyses were performed using a TA Instruments (New Castle, 

DE, USA) µTA 2990 Micro-Thermal Analyzer equipped with a thermal probe (model 1615-00, 

ThermoMicroscopes, Sunnyvale, CA, USA). Two-point calibration was implemented at room 

temperature using the melting temperature of a reference polyethylene-terephthalate (PET) film. 

About 3-4 mg of fibrous material was compressed into a disk-shaped sample and placed on the 

sample holder using a two-sided tape. At least 10 measurements were performed to ensure 

reliable and reproducible results. The tip of the thermal probe was held in contact with the sample 

using constant force and heated from 25 to 200°C at 10°C s-1. Vertical position data of the tip was 

collected in the function of temperature.  

Tensile testing 
 

Static tensile tests were carried out on the recrystallized and non-treated microfibrous mats. 

Samples (20.0 mm × 2.5 mm) of the microfibrous mats were cut and tested on a ZWICK Z005 



universal testing machine (Zwick GmbH & Co. KG, Ulm, Germany). The measurements were 

performed using a 5 kN load cell, with an initial grip separation of 20 mm, and crosshead speed 

of 5 mm min-1. All the tests were performed at room temperature at a relative humidity of 50 ± 

10%. The cross-sectional area (A0) of the microfibrous PLA specimen was determined from the 

density of the PLA grade (ρ = 0.24 g cm-3), as well as the mass (m) and the exact length (l) of the 

sample, using the following equation: 

𝐴𝐴0 = 𝜌𝜌
𝑚𝑚∗𝑙𝑙

    (𝑚𝑚𝑚𝑚2)           (2) 

Young’s modulus (E) and tensile stress at yield (σy) were calculated from the stress-strain 

curves. 

Results and discussion 

Morphology of the PLA nonwoven mats 
 

SEM images were taken to investigate the effect of the two recrystallization methods on the 

morphology of the PLA nonwoven mats. As it can be seen in Fig. 2c, heat treatment caused 

significant shrinkage of the mat, largely curled fibres were observed already after 5 minutes of 

annealing. Increasing treatment time resulted in even stronger deformation (Fig. 2e-f). This 

phenomenon is due to the relaxation of oriented amorphous PLA chains at temperatures above Tg 

[48Hiba! A könyvjelző nem létezik.]. However, after immersing in 40°C ethanol the 

microfibres mostly preserved their straight shape (Fig. 2b,d). 

 



 
Fig. 2 SEM micrographs of the PLA nonwoven mats, NT (a), E-5 (b), H-5 (c), E-45 (d), H-45 

(e), H-90 (f) 

 
Overwhelming majority of the PLA microfibres in Fig. 2a-f are of 1–3 µm thickness (some of 

them ranging from 0.25 µm to 8.5 µm). Thus, despite of the high throughput production method, 

a reasonably narrow diameter distribution was obtained. 



The potential effect of thermally and solvent induced crystallization on the fibre diameters was 

investigated by image analysis of SEM micrographs. The distribution of fibre diameters before 

and after treatments is depicted in Fig. 3. Based on the diameter analysis data it is supposed that 

in the first period (5 minutes) of either thermal or solvent treatment the mean diameter of the 

fibres slightly increased, being a possible reason of the macroscopic constriction alongside with 

the curling of the microfibres. One possible explanation for this result is the chain relaxation of 

PLA macromolecules during treatment, practically after the beginning of the segment movement 

allows the contraction of the oriented chains along the longitudinal axis of the fibre. One-way 

ANOVA was implemented to evaluate the statistical significance of the difference between the 

mean values, and we could reject the null hypothesis (p = 0.00017) that the mean values of the 

fibre diameters are equal (H0: dNT = dE5 = dH5). It was found that the increase of fibre diameters of 

the thermally annealed mat is greater than that of the ethanol-treated samples which is in 

accordance with the greater shrinkage and more curly character of the H-5 mat as observed 

during SEM inspection (Fig. 2). After 45 minutes of treatments (E-45 and H-45), however, a 

slight decrease in the fibre diameters was revealed compared to the short-time treated fibres (E-5 

and H-5), which is attributed with the increasing crystalline contents. 



 
Fig. 3 Diameter distribution of fibres before (NT) and after (a) ethanol immersion and (b) 

thermal annealing 

Thermal characterization using DSC and MDSC 
 

As the conventional DSC analysis revealed, the crystallization during the solvent-assisted 

treatment (ethanol, 40°C) fundamentally differs from that of conventional annealing at 85°C (Fig. 

4a,b). 

 
Fig. 4 DSC curves of (a) ethanol-treated (40°C) and (b) heat-treated (85°C) PLA nonwoven 

mats 



Regarding the curve of non-treated reference PLA mat, a significant cold-crystallization 

exotherm (Tcc ~ 70–90°C) can be observed right after the thermal effect of Tg. A single melting 

endothermic peak is visible at 174.2°C alongside with a recrystallization exotherm around 159°C 

corresponding to the crystal rearrangement and perfection of the less ordered α’ to the 

thermodynamically more stable α crystals, according to the related literature [22, 67]. The main 

difference between the recrystallization methods is the presence of this recrystallization effect 

anticipating two distinct crystalline forms. On the one hand, each heat-treated sample (H-5–H-90, 

Fig. 4b) shows this relatively small exotherm before the crystalline melting peak, on the other 

hand, it utterly disappears after 5 minutes immersion in 40°C ethanol (Fig. 4a). Based on these 

results, it can be presumed that the ethanol solvent favours the formation of α crystals, however, 

conventional annealing at 85°C only results in less ordered α’ crystals. The cold-crystallization 

exotherm around 70–90°C is still noticeable in the case of H-5 and H-10 samples indicating a 

rather moderate pace of crystallization in the conventional oven compared to the ethanol-aided 

treatment. 

  
Fig. 5 Effect of ethanol-induced crystallization and thermal annealing on the crystallinity of PLA 

microfibres 



The degree of crystallinity of the PLA nonwoven mats, calculated based on the DSC curves, is 

presented in Fig. 5. As it can be seen, all along the ethanol-induced recrystallization the samples 

have significantly higher crystallinity then their heat-treated counterparts. It is assumed that due 

to the plasticizing effect of ethanol and the increased mobility of polymer chains facilitated the 

formation of the thermodynamically more stable α crystals [51, 52]. After 45 minutes, 

conventional heat treatment resulted in samples revealing as high as 26% degree of crystallinity, 

but eventually ended up underperforming the samples soaked in ethanol, the crystallinity of 

which exceeded 30% already after 5 minutes. This advantage of ethanol treatment is also 

attributed to the fast diffusion of the solvent in 0.25–8.50 µm thick fibres allowing the immediate 

solvent induced crystallization of PLA. 

The main goal of the MDSC measurements was the investigation of overlapping thermal 

effects by means of separating the heat capacity-dependent and kinetic changes within the fibres. 

The special approach of TOPEM® technique, a stochastic function is used for temperature 

modulation. During evaluation, a correlation analysis of the measured heat flow and the heating 

rate is carried out. The non-reversing heat flow is directly determined and can be associated with 

latent heat flow, while the reversing heat flow is calculated and can be linked to sensible heat 

flow. The sum of the two is the total heat flow [56]. 



 
Fig. 6 MDSC curve of the NT sample with the resulting reversible, non-reversible and total heat 

flow curves 

A temperature modulated DSC curve of the non-treated sample is displayed in Fig. 6 with the 

obtained non-reversing heat flow as well as the calculated reversing and total heat flow curves. 

The cold crystallization exotherm (70–85°C) is clearly visible in the non-reversible heat flow, 

right after the relaxation of PLA fibres (58–62°C). Fig. 7 allows us to observe these phenomena 

at higher resolution. Relaxation is only possible if the macromolecule segments have enough 

mobility to settle back to a more stable conformation, just after the temperature exceeds the Tg. 

The step of Tg takes place in the reversing curve, thus it can be separated from the relaxation 

exotherm. Based on the data of Fig. 7a it can be concluded that 5 minutes of heat treatment 

reduces the Tg and the relaxation temperature by about 5°C. This is presumably caused by 

increasing D-lactide content within the amorphous phase since the lamella thickening and 

crystalline reorganization process uses up free L-lactide units as building blocks [68]. 

In the case of the reference PLA nonwoven (NT) and the heat-treated (H-5–H90) samples, the 

recrystallization of the less ordered α’ to the thermodynamically more stable α crystals can be 



separated into two processes (Fig. 7b). In the non-reversing curve, the melting of α’ crystals can 

be observed, meanwhile in the reversing heat flow curve, the crystallization of α crystals is 

noticeable. The small exothermic peak around 160°C is their sum, as it can also be seen in 

Equation (1). The lack of the recrystallization exotherm confirms the ordered α structure of the 

ethanol-immersed samples, even after 5 minutes of treatment. 

 

 
Fig. 7 MDSC curves in the temperature ranges of (a) 50–90°C and (b) 150–185°C 

Structural characterization of the PLA microfibres 

X-ray diffraction (XRD) measurements 
 

X-ray diffraction measurement is one of the few characterization techniques that are able to 

differentiate the α and α’ crystalline phases, accordingly this technique evinced clear structural 

differences between the PLA nonwoven mat samples treated by the two recrystallization 

methods. Fig. 8a shows the formation of different crystalline structures as a function of treatment 

time. In contrast to the diffraction pattern of the NT sample, two strong reflections at 2θ = 16.8–



17.0° and 2θ = 19.0–19.2° are observed for all the recrystallized samples. The reflection 

intensities are in accordance with the trend of the crystallinity values in Fig. 5. While 

crystallization during conventional annealing at 85°C progresses quite slowly, solvent-treated 

samples reach their maximum crystalline content within 5–10 minutes. Even 3 seconds of 

immersion in 40°C ethanol actively promoted the formation of crystallites. With regard to 

ethanol-treated samples, a slight shift in these two main reflections is in evidence. In Fig. 8a the 

differences between the two approaches of recrystallization can be examined in detail. Indexing 

of the observed reflections, based on the crystal structures reported for the α and α’ polymorphs, 

are shown as well [22, 24, 69]. For comparison, the diffraction patterns of E-45 and H-45 

samples are normalized using the strongest 110/200 reflection intensity. In Fig. 8b the changes in 

the peak positions of the 110/200 and 203 reflections are more visible, indicating the two distinct 

crystalline structures of α and α’ phases. Moreover, ethanol-treated samples exhibit the 210 peak 

at 2θ = 22.8°, which is also strong evidence of the more ordered polymorph. Hence, it was 

evinced that the ethanol solvent actively induces the formation of α crystals, while conventional 

heat treatment at 85°C only results in less ordered α’ crystal structure with a rather moderate 

pace. 

 



 
Fig. 8 XRD patterns of the PLA nonwoven mats (a) effect of treatment time (0–45 min), (b) 

effect of treatment type (i.e. ethanol, heat treatment) 

Raman micro-spectroscopic characterization 
 

Raman micro-spectroscopy was used for structural analysis of the single fibres of the non-

treated, heat-treated and solvent-treated electrospun PLA mats, respectively. In Fig. 9, higher 

crystallinity of both types of treated fibres compared to the non-treated PLA fibres is revealed by 

the increased intensity of the crystallinity-sensitive peak at 923 cm-1 and by the changes of the 

relative intensity of the bands in the 360–460 cm-1 region [62]. 



 
Fig. 9 Raman spectra of non-treated PLA fibres (NT), effect of heat treatment (H-90: 85°C, 90 

min) and ethanol-assisted crystallization (E-45: 40°C, 45 min) 

Although the two crystalline forms α and α’ have similar Raman features, some differences can 

be seen in the 200 cm-1 region as shown in Fig. 10a. In the spectrum collected from the thermally 

annealed PLA fibre (H-90) the greater degree of disorder of the α’ phase results in lowering in 

the frequency of the 200 cm-1 band [60]. On the other hand, the presence of triplet in the carbonyl 

stretching region (Fig. 10b) indicates the predominance of α crystals in the ethanol-treated fibre 

(E-45). The Raman spectroscopic analysis of fibres confirmed that the two types of post-

crystallization processes result in different crystalline structures; thermal annealing at 90℃ 

results in α’ rich structure, while ethanol immersion favours the formation of more ordered α 

crystalline structure, as also found based on DSC and XRD measurements carried out on the non-

woven mats. It has to be noted that the more ordered α crystalline structure of PLA can also be 

obtained by thermal annealing when carried out at higher temperature (above 140℃), but this 

method is not feasible in the case of microfibrous mats as the high-temperature annealing would 



cause fusion of the fibres [36, 48, 49] Raman spectroscopic analysis, in contrast to XRD method, 

can be applied for in-line characterization of the crystalline structure of PLA products. 

 
Fig. 10 Differentiation between α (E-45) and α’ (H-90) crystalline structures via Raman 

spectroscopy (a) 100–550 cm-1 and (b) 1720–1820 cm-1 ranges 

Thermomechanical and mechanical properties 

Localised thermomechanical analysis (LTMA) 
 

For the comparison of thermomechanical properties of the high α crystalline-containing 

ethanol-treated mats, the heat-treated samples consisting of α’ crystals and the mostly amorphous 

non-treated fibrous material, LTMA measurements were implemented. Three of the measured 

thermomechanical curves are shown in Fig. 11 as the most characteristic results of the LTMA 

tests. A significant deflection of the probe occurs following the Tg (~55°C) of the PLA polymer, 

the effect is more pronounced and takes place earlier in the case of the NT sample. The result of 

the different crystallization methods can also be seen in the figure, the load bearing capacity of E-

45 and H-90 samples is considerably higher due to the larger degree of crystallinity. The second 

remarkable deflection appears around the crystalline melting temperature (155–165°C). The H-90 



sample containing less ordered α’ crystals begin to melt at a lower temperature, however, the 

deflection of the H-90 and E-45 samples are about the same order of magnitude. A small 

diversion on the curve of the NT sample is also noticeable, meaning the fibres inherently 

developed some degree of crystallinity during the high-speed electrospinning process. As the 

heating rate of this measurement is 10°C s-1, cold crystallization is out of question in this case. 

The evinced increased heat deflection temperatures of the recrystallized PLA microfibres is 

accompanied with better heat stability which can be of key importance in a large variety of 

potential applications were the PLA nonwovens may be exposed to elevated temperatures (such 

as scaffold sterilization, high temperature filtration, etc). From this respect the ethanol-induced 

crystallization resulting in higher crystalline fraction composed of ordered α crystals seem to be 

more advantageous. 

  
Fig. 11 Localised thermomechanical curves of PLA fibre mats (NT: non-treated, H-90: heat 

treatment at 85°C for 90 min, E-45: ethanol-assisted annealing at 40°C for 45 min) 

Static tensile tests 
 

In Fig.12, typical stress-strain curves of the non-treated microfibrous PLA mats, as well as the 

E-15 and H-15 samples were plotted together to display differences in general. The effect of both 



recrystallization methods manifests itself quite obviously, tensile strength and Young’s modulus 

increased significantly, with adverse consequences on ductility.  

  
Fig. 12 Stress-strain curves of the PLA nonwoven mats 

The outcome of conventional heat treating is more remarkable, the tensile strengths at yield (σy) 

of these nonwoven mats are about 30% higher than those of the ethanol-treated samples, as 

depicted in Fig. 13a more specifically. Eventually, both recrystallization methods resulted in 

superior mechanical properties of PLA mats: 50–120% and 120–200% increase in tensile 

strength was achieved by ethanol and heat treatment, respectively. It is assumed that a significant 

component of the tensile strength comes from the bonds between individual fibres, which are 

more characteristic for heat-treated PLA mats. This hypothesis is supported by the SEM 

micrographs of Fig. 2, where longitudinal adhesion of the microfibres can be evinced. The 

cleaning effect of solvent treatment also may have reduced the adhesion between the PLA fibres. 

In addition, the mean diameters of heat-treated fibres increased to ~135%, while that of the 

ethanol-treated fibres barely exceeded 115% compared to the NT mat, resulting in higher 

stiffness. Young’s moduli (E) of the samples also improved significantly, reaching 2-3-fold 

increase for both crystallization routes (Fig. 13b). The notable standard deviation of the measured 

values may have been caused by the differences in fibre alignment or the varying thickness of the 



mat sample. In comparison, the tensile strength and Young’s modulus of ethanol-treated 

microfibrous PLA mats prepared by Gualandi et al. increased by 69% and 36%, respectively 

[52]. The strength of their non-treated samples was around 3.4 MPa, although, this value 

increased only to 4.5 MPa upon recrystallization. Li et al. also reported that Young’s moduli of 

electrospun PLA mats increased with annealing time, reaching 0.4 GPa [37]. 

 

 
Fig. 13 Mechanical properties of nonwoven mats: (a) tensile strength, (b) Young’s modulus 

Conclusions 

 
Microfibrous PLA nonwoven mats were successfully manufactured by high-speed 

electrospinning, reaching a remarkable productivity of 40 g h-1. The effects of conventional 

thermal annealing and ethanol-induced crystallization were investigated on the thermal and 

mechanical properties, as well as on the morphology and the crystal structure of the microfibres. 

SEM images revealed a more dramatic relaxation of the samples treated at 85°C, on the other 

hand, ethanol-treated fibres mostly preserved their original shape. The fibre diameters were in the 

range of 0.25–8.5 µm and were found to increase by 0.3 and 0.6 µm as a result of solvent and 

heat treatment, respectively. Conventional DSC showed that solvent-induced crystallization 



progresses 2-3 times more rapidly, besides, the large surface area to volume ratio further 

increases the efficiency of the methods. Differentiation between the melting of α’ form and 

recrystallization to α form within a single sample was accomplished using temperature modulated 

DSC method. As this effect was absent from the MDSC curves of ethanol-treated fibres, it was 

evinced that this technique exclusively induces the formation of the more stable α polymorph. 

Raman micro-spectroscopy and XRD measurements confirmed this phenomenon, allowing in-

line observation of the shift between α and α’ crystalline structure. Based on the results of the 

LTMA measurements, superior heat resistance of both recrystallized samples was verified when 

compared to non-treated microfibres. Ethanol treatment resulted in fibres with a slightly higher 

melting temperature range due to their high α-content. Tensile tests showed that recrystallization 

increased the tensile strength of the ethanol- and heat-treated nonwoven mats by 50–120% and 

120–200%, respectively. We also found that better structural integrity plays a key role in 

improved mechanical properties of the heat-treated PLA nonwovens. Recrystallized PLA 

nonwovens, due to their increased thermal stability and mechanical properties, are expected to 

find application in even wider fields. 
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