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Abstract

In the Many-visits Path TSP, we are given a set of n cities along with their pairwise
distances (or cost) cpuvq, and moreover each city v comes with an associated positive integer
request rpvq. The goal is to find a minimum-cost path, starting at city s and ending at city t,
that visits each city v exactly rpvq times.

We present a 3{2-approximation algorithm for the metric Many-visits Path TSP, that
runs in time polynomial in n and poly-logarithmic in the requests rpvq. Our algorithm can
be seen as a far-reaching generalization of the 3{2-approximation algorithm for Path TSP by
Zenklusen (SODA 2019), which answered a long-standing open problem by providing an efficient
algorithm which matches the approximation guarantee of Christofides’ algorithm from 1976 for
metric TSP.

One of the key components of our approach is a polynomial-time algorithm to compute a con-
nected, degree bounded multigraph of minimum cost. We tackle this problem by generalizing a
fundamental result of Király, Lau and Singh (Combinatorica, 2012) on the Minimum Bounded
Degree Matroid Basis problem, and devise such an algorithm for general polymatroids, even
allowing element multiplicities.

Our result directly yields a 3{2-approximation to the metric Many-visits TSP, as well as a
3{2-approximation for the problem of scheduling classes of jobs with sequence-dependent setup
times on a single machine so as to minimize the makespan.
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1 Introduction

The traveling salesman problem (TSP) is one of the cornerstones of combinatorial optimization.
Given a set V of n cities with non-negative costs cpuvq for each cities u and v, the objective is to
find a minimum cost closed walk visiting each city. TSP is well-known to be NP-hard even in the
case of metric costs, i.e. when the cost function c satisfies the triangle inequality. For metric costs,
the best known approximation ratio that can be obtained in polynomial time is 3{2, discovered
independently by Christofides [9] and Serdyukov [50].

In the traveling salesman path problem, or Path TSP, two distinguished vertices s and t are
given, and the goal is to find a minimum cost walk from s to t visiting each city. Approximating the
metric Path TSP has a long history, from the first 5{3-approximation by Hoogeveen [27], through
subsequent improvements [2,22,48,49,57] to the recent breakthroughs. The latest results eventually
closed the gap between the metric TSP and the metric Path TSP: Traub and Vygen [53] provided
a p3{2`εq-approximation for any ε ą 0, Zenklusen [58] provided a 3{2-approximation and finally the
three authors showed a reduction from the Path TSP to the TSP [55].

We consider a far-reaching generalization of the metric Path TSP, the metric Many-visits
Path TSP, where in addition to the costs c on the edges, a requirement rpvq is given for each
city v. The aim is to find a minimum cost walk from s to t that visits each city v exactly rpvq
times. The cycle version of this problem, where s “ t, is known as Many-visits TSP and was first
considered in 1966 by Rothkopf [45]. Psaraftis [44] proposed a dynamic programming approach that
solves the problem in time pr{nqn for r “

ř

vPV rpvq. Later, Cosmadakis and Papadimitriou [10]
gave the first algorithm for Many-visits TSP with logarithmic dependence on r, though the
space and time requirements of their algorithm were still superexponential in n. Recently, Berger
et al. [5] simultaneously improved the run time to 2Opnq ¨ log r and reduced the space complexity to
polynomial. (The algorithm by Berger et al. [5] can be slightly modified to solve the path version as
well.) Lately, Kowalik et al. [37] made further fine-grained time complexity improvements. To the
best of our knowledge, no constant-factor approximation algorithms for the metric Many-visits
TSP1 or metric Many-visits Path TSP are currently known.

Besides being of scientific interest in itself, the Many-visits Path TSP can be used for mod-
eling various problems. The aircraft sequencing problem or aircraft landing problem is one of the
most referred applications in the literature [3, 6, 40, 44], where the goal is to find a schedule of
departing and/or landing airplanes that minimizes an objective function and satisfies certain con-
straints. The aircraft are categorized into a small number of classes, and for each pair of classes a
non-negative lower bound is given denoting the minimum amount of time needed to pass between
the take off/landing of two planes from the given classes. The problem can be embedded in the
Many-visits Path TSP model by considering the classes to be cities and the separation times
to be costs between them, while the number of airplanes in a class corresponds to the number of
visits of a city.

As another illustrious example, the Many-visits Path TSP is equivalent to the high-multipli-
city job scheduling problem 1|HM, sij , pj |

ř

Cj , where each class j of jobs has a processing time pj
and there is a setup time sij between processing two jobs of different classes. There is only a
handful of constant-factor approximation algorithms for scheduling problems with setup times [1],

1At the Hausdorff Workshop on Combinatorial Optimization in 2018, Rico Zenklusen brought up the topic of
approximation algorithms for the metric version of Many-visits TSP in the context of iterative relaxation techniques;
he suggested an approach to obtain a 1.5-approximation, which is unpublished.
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see for example the results of Jansen et al. [31] or Deppert and Jansen [11] that consider sequence-
independent batch setup times, or van der Veen et al. [56] that considers sequence-dependent setup
times with a special structure. An approximation algorithm for the Many-visits Path TSP
would further extend the list of such results.

A different kind of application comes from geometric approximation. Recently, Kozma and
Mömke provided an EPTAS for the Maximum Scatter TSP [38]. Their approach involved group-
ing certain input points together and thus reducing the input size. The reduced problem is exactly
the Many-visits TSP. The same problem arises as a subproblem in the fixed-parameter algorithm
for the Hamiltonian Cycle problem on graphs with bounded neighborhood diversity [39].

Our work relies on a polymatroidal optimization problem with degree constraints. An illustrious
example of such problem is the Minimum Bounded Degree Spanning Tree problem, where
the goal is to find a minimum cost spanning tree in a graph with lower and upper bounds on the
degree of each vertex. Checking feasibility of a degree-bounded spanning tree contains the NP-hard
Hamiltonian Path problem, and several algorithms were given that were balancing between the
cost of the spanning tree and the violation of the degree bounds [7, 8, 19, 21, 35, 36]. Based on an
iterative rounding approach [30] combined with a relaxation step, Singh and Lau [51] provided a
polynomial-time algorithm that finds a spanning tree of cost at most the optimum value violating
each degree bound by at most 1. Király et al. [33] later showed that similar results can be obtained
for the more general Minimum Bounded Degree Matroid Basis Problem.

Our results

In this paper we provide the first efficient constant-factor approximation algorithm for the metric
Many-visits Path TSP. Formally, a graph G “ pV,Eq is given with a positive integer rpvq for
each v P V , and a non-negative cost cpuvq for every pair of vertices u, v; finally, a departure city s
and an arrival city t are specified. We seek a minimum cost s-t-walk that visits each city v exactly
rpvq times, where leaving city s as well as arriving to city t counts as one visit.

The cost function c : E Ñ Rě0 is assumed to be metric. Besides the triangle inequality
cpuwq ď cpuvq ` cpvwq for every triplet u, v, w this implies that the cost of a self-loop cpvvq at
vertex v is at most the cost of leaving city v to any other city u and returning, that is:

cpvvq ď 2 ¨ min
uPV´v

cpuvq for all v P V .

The assumption of metric costs is necessary, as the TSP, and therefore the Many-visits TSP,
does not admit any non-trivial approximation for unrestricted cost functions assuming that P ‰ NP
(see e.g. Theorem 6.13 in the book of Garey and Johnson [20]).

We start with a simple approximation idea, that leads to a constant factor approximation in
strongly polynomial time:

Theorem 1. There is a polynomial-time 5{2-approximation for the metric Many-visits Path
TSP, that runs in time polynomial in n and log r.

The approximation factor 5{2 in Theorem 1 still leaves a gap to the best-known factor 3{2 for
the metric Path TSP, which is due to Zenklusen [58]. His recent 3{2-approximation for the metric
Path TSP uses a Christofides-Serdyukov-like construction that combines a spanning tree and a
matching, with the key difference that it calculates a constrained spanning tree in order to bound
the costs of the tree and the matching by 3{2 times the optimal value.
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Our main algorithmic result matches this approximation ratio for the metric Many-visits
Path TSP.

Theorem 2. There is a polynomial-time 3{2-approximation for the metric Many-visits Path
TSP. The algorithm runs in time polynomial in n and log r.

As a direct consequence of Theorem 2, we obtain the following:

Corollary 3. There is a 3{2-approximation for the metric Many-visits TSP that runs in time
polynomial in n and log r.

Our approach follows the main steps of Zenklusen’s work [58]. However, the presence of requests
rpvq makes the problem significantly more difficult and several new ideas are needed to design an
algorithm which returns a tour with the correct number of visits and still runs in polynomial time.
For instance, whereas the backbone of both Christofides and Zenklusen’s algorithm is a spanning
tree (with certain properties), the possibly exponentially large number of (parallel) edges in a
many-visits TSP solution requires us to work with a structure that is more general than spanning
trees. We therefore consider the problem of finding a minimum cost connected multigraph with
lower bounds ρ on the degree of vertices, and lower and upper bounds L and U , respectively,
on the number of occurrences of the edges. We call this task the Minimum Bounded Degree
Connected Multigraph with Edge Bounds problem, and show the following:

Theorem 4. There is an algorithm for the Minimum Bounded Degree Connected Multi-
graph with Edge Bounds problem that, in time polynomial in n and log

ř

v ρpvq, returns a
connected multigraph T with ρpV q{2 edges, where each vertex v has degree at least ρpvq ´ 1 and the
cost of T is at most the cost of mintcTx | x P PCGpρ, L, Uqu, where

(1) PCGpρ, L, Uq :“
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Note that an optimal solution x˚ to the Minimum Bounded Degree Connected Multi-
graph with Edge Bounds problem is a minimum cost integral vector from the polytope PCG.
We use the result of Theorem 4 to obtain a multigraph that serves a key role in our approximation
algorithm for the metric Many-visits Path TSP; the values ρ, L and U depend on the instance
and the details are given in Section 4.

The Minimum Bounded Degree Connected Multigraph with Edge Bounds problem
shows a lot of similarities to the Minimum Bounded Degree Spanning Tree problem. However,
neither the result of Singh and Lau [51] nor the more general approach by Király et al. [33] applies
to our setting, due to the presence of parallel edges and self-loops in a multigraph.

One of our key contributions is therefore an extension of the result of Király et al. [33] to
generalized polymatroids, which might be of independent combinatorial interest. Formally, the
Bounded Degree g-polymatroid Element with Multiplicities problem takes as input a
g-polymatroid Qpp, bq defined by a paramodular pair p, b : 2S Ñ R, a cost function c : S Ñ R,
a hypergraph H “ pS, Eq with lower and upper bounds f, g : E Ñ Zě0 and multiplicity vectors
mε : S Ñ Zě0 for ε P E satisfying mεpsq “ 0 for s P S´ ε. The objective is to find a minimum-cost
integral element x of Qpp, bq such that fpεq ď

ř

sPεmεpsqxpsq ď gpεq for each ε P E . We give a
polynomial-time algorithm for finding a solution of cost at most the optimum value with bounds
on the violations of the degree prescriptions.
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Theorem 5. There is an algorithm for the Bounded Degree g-polymatroid Element with
Multiplicities problem which returns an integral element x of Qpp, bq of cost at most the optimum
value such that fpεq ´ 2∆ ` 1 ď

ř

sPεmεpsqxpsq ď gpεq ` 2∆ ´ 1 for each ε P E, where ∆ “

maxsPS t
ř

εPE:sPεmεpsqu. The run time of the algorithm is polynomial in n and log
ř

ε pfpεq ` gpεqq.

When only lower bounds (or only upper bounds) are present, we call the problem Lower
(Upper) Bounded Degree g-polymatroid Element with Multiplicities. Similarly to
Király et al. [33], we obtain an improved bound on the degree violations when only lower or upper
bounds are present: 2

Theorem 6. There is an algorithm for Lower Bounded Degree g-polymatroid Element
with Multiplicities which returns an integral element x of Qpp, bq of cost at most the optimum
value such that fpεq´∆`1 ď

ř

sPεmεpsqxpsq for each ε P E. An analogous result holds for Upper
Bounded Degree g-polymatroid Element, where

ř

sPεmεpsqxpsq ď gpεq ` ∆ ´ 1. The run
time of these algorithms is polynomial in n and log

ř

ε fpεq or log
ř

ε gpεq, respectively.

2 Preliminaries

Basic notation. Throughout the paper, we let G “ pV,Eq be a finite, undirected complete graph
on n vertices, whose edge set E also contains a self-loop at every vertex v P V . For a subset F Ď E
of edges, the set of vertices covered by F is denoted by V pF q. The number of connected components
of the graph pV pF q, F q is denoted by comppF q. For a subset X Ď V of vertices, the set of edges
spanned by X is denoted by EpXq. Given a multiset F of edges (that is, F might contain several
copies of the same edge), the multiset of edges leaving the vertex set C Ď V pF q is denoted by
δF pCq. Similarly, denote the multiset of regular edges (i.e. excluding self-loops) in F incident to a
vertex v P V is denoted by δF pvq. Denote the multiset of all edges (i.e. including self-loops) in F
incident to a vertex v P V by 9δF pvq, then the degree of v in F is denoted by degF pvq :“ | 9δF pvq|,
where every copy of the self-loop at v in F is counted twice. We will omit the subscript when F
contains all the edges of G, that is, F “ E. For a vector x P RE , we denote the sum of the x-values
on the edges incident to v by xp 9δpvqq. Note that the x-value of the self-loop at v is counted twice
in xp 9δpvqq. Let us denote the set of edges between two disjoint vertex sets A and B by δpA,Bq.
Given two graphs or multigraphs H1, H2 on the same vertex set, H1 `H2 denotes the multigraph
obtained by taking the union of the edge sets of H1 and H2.

Given a vector x P RS and a set Z Ď S, we use xpZq “
ř

sPZ xpsq. The lower integer part of x
is denoted by txu, so txupsq “ txpsqu for every s P S. This notation extends to sets, so by txupZq we
mean

ř

sPZtxupsq. The support of x is denoted by supppxq, that is, supppxq “ ts P S | xpsq ‰ 0u.
The difference of set B from set A is denoted by A ´ B “ ts P A | s R Bu. We denote a single-
element set tsu by s, and with a slight abuse of notation, we write A´ s to indicate A´ tsu. Let
us denote the symmetric difference of two sets A and B by A4B :“ pA ´ Bq Y pB ´ Aq and the
characteristic vector of a set A by χA.

For a collection T of subsets of S, we call L Ď T an independent laminar system if for any pair
X,Y P L: (i) they do not properly intersect, i.e. either X Ď Y , Y Ď X or X X Y “ H, and (ii)
the characteristic vectors χZ of the sets Z P L are independent over the real numbers. A maximal
independent laminar system L with respect to T is an independent laminar system in T such that for

2 The results in Theorem 5, Theorem 6 and Corollary 3 appeared in an unpublished work [4] by a superset of the
authors. In order to make the paper self-contained, we include all the details and proofs in this paper as well.
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any Y P T ´L the system LYtY u is not independent laminar. In other words, if we include any set Y
from T ´L, it will intersect at least one set Y from L, or χY can be given as a linear combination of
tχZ | Z P Lu. Given a laminar system L and a set X Ď S, the set of maximal members of L lying
inside X is denoted by LmaxpXq, that is, LmaxpXq “ tY P L | Y Ĺ X, EY 1 P L s.t. Y Ĺ Y 1 Ĺ Xu.

Many-visits Path TSP. Recall that in the Many-visits Path TSP, we seek for a minimum
cost s-t-walk P such that P visits each vertex v P V exactly rpvq times. Let rpV q “

ř

vPV rpvq. The
sequence of the edges of P has length rpV q´ 1, which is exponential in the size of the input, as the
values rpvq are stored using log rpV q space. For this reason, instead of explicitly listing the edges
in a walk (or tour) we always consider compact representations of the solution and the multigraphs
that arise in our algorithms. That is, rather than storing an prpV q ´ 1q-long sequence of edges, for
every edge e we store its multiplicity zpeq in the solution. As there are at most n2 different edges
in the solution each having multiplicity at most maxvPV rpvq, the space needed to store a feasible
solution is Opn2 log rpV qq. Therefore, a vector z P ZEě0 represents a feasible tour if supppzq is a
connected subgraph of G and degzpvq “ 2 ¨ rpvq holds for all v P V ´ts, tu and degzpvq “ 2 ¨ rpvq´1
for v P ts, tu. (Note that each self-loop vv contributes 2 in the value degpvq “ | 9δpvq|.)

Denote by P‹c,r,s,t an optimal solution for an instance pG, c, r, s, tq of the Many-visits Path
TSP. Let us denote by P‹c,1,s,t an optimal solution for the single-visit counterpart of the problem,
i.e. when rpvq “ 1 for each v P V . Relaxing the connectivity requirement for solutions of the
Many-visits Path TSP yields Hitchcock’s transportation problem [26], where supply and demand
vertices tavuvPV and tbvuvPV are given. The supplies for v P V ´ s are then defined by rpvq, the
supply of s by rpsq ´ 1; the demand of each vertex v P V ´ t by rpvq and the demand of t by
rptq ´ 1. Finally, by setting the transportation costs between au and bv as cpuvq, the objective
is to fulfill the supply and demand requirements by transporting goods from vertices tavuvPV to
vertices in tbvuvPV , while keeping the total cost minimal. The transportation problem is solvable
in polynomial time using a minimum cost flow algorithm [13] and we denote an optimal solution
by TP‹c,r,s,t, where s and t denote the special vertices with decreased supply and demand value,
respectively.

Lemma 7. Let TP‹c,r,s,t be an optimal solution to the Hitchcock transportation problem, where
supplypvq`demandpvq is odd for v P ts, tu and it is even otherwise. Then TP‹c,r,s,t can be decomposed
into cycles and exactly one s-t-path.

Proof. Any solution X to the transportation problem is essentially a multigraph that has an even
degree for vertices v P V ´ ts, tu, and an odd degree for v P ts, tu. Hence, because of a parity
argument, there has to be an s-t-path U in X, possibly covering other vertices W Ă V ´ ts, tu.
Vertices w P W have an even degree in U . Therefore, deleting the edges of U from X, all vertices
v P V will have an even degree in the modified multigraph X 1. Thus X 1 can be decomposed into a
union of (not necessarily distinct) cycles, and the lemma follows.

The decomposition provided by the lemma is called a path-cycle representation. Such a repre-
sentation can be stored as a path P0 and a collection C of pairs pC, µCq, where each C is a simple
closed walk (cycle) and µC is the corresponding integer denoting the number of copies of C. Below
we show that one can always calculate a path-cycle decomposition in polynomial time, and such a
decomposition takes polynomial space.
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Lemma 8. Let Pc,r,s,t be a many-visits TSP path with endpoints s, t, and TPc,r,s,t be a transportation
problem solution with special vertices s, t. There is a path-cycle representation of Pc,r,s,t and TPc,r,s,t,
both of which take space polynomial in n and log rpV q, and can be computed in time polynomial
in n and log rpV q.

Proof. We first show the proof for a many-visits TSP path Pc,r,s,t. Let us first add an edge ts to
Pc,r,s,t, and denote the resulting multigraph by T . Observe that T is a many-visits TSP tour with
the same number of visits, since it is connected and the degree of every vertex v in T is 2 ¨ rpvq. We
can now use the procedure ConvertToSequence by Grigoriev and van de Klundert [23], which
takes the edge multiplicities of T , denoted by txuvuu,vPV as input, and outputs a collection C of
pairs pC, µCq. Here, C is a simple closed walk, and µC is the corresponding integer denoting the
number of copies of the walk C in P . Lastly, choose an arbitrary cycle C, such that ts P C,
and transform one copy of C into a path as follows. Let C0 :“ C, and remove the edge ts
from C0, resulting in an s-t-path P0. Update µC :“ µC ´ 1. Now pP0, Cq is a compact path-cycle
representation of Pc,r,s,t.

In every iteration, the procedure ConvertToSequence looks for a cycle C and removes each of
its occurrences from txuvuu,vPV . The procedure stops when txuvuu,vPV represents a graph without
edges. This demonstrates that the input need not represent a connected graph in the first place,
as the edge removals possibly make it disconnected during the process. Note that the only struc-
tural difference between TPc,r,s,t and Pc,r,s,t is that the underlying multigraph of TPc,r,s,t might be
disconnected. This means that the procedure ConvertToSequence can be applied to obtain a
compact path-cycle representation of TPc,r,s,t the same way as in the case of Pc,r,s,t.

Finally, the number of cycles C in C can be bounded by Opn2q (as removing all occurrences
of a cycle C sets at least one variable xuv to zero), and the algorithm has a time complexity of
Opn4q [23]. The edge insertion and deletion, and other graph operations during the process, can
also be implemented efficiently. This concludes the proof.

From now on, we assume that the path-cycle decompositions appearing in this paper are stored
in space polynomial in n and log rpV q.

Let pP0, Cq be a compact path-cycle representation of a many-visits TSP path Pc,r,s,t. One can
obtain the explicit order of the vertices from pP0, Cq the following way: traverse the s-t-path P0, and
whenever a vertex u is reached for the first time, traverse µC copies of every cycle C containing u.
Note that while the size of C is polynomial in n, the size of the explicit order of the vertices is
exponential, hence the approaches presented in this paper consider symbolic rather than literal
traversals of many-visits TSP paths and tours.

3 A Simple 5{2-Approximation for Metric Many-visits Path TSP

In this section we give a simple 5{2-approximation algorithm for the metric Many-visits Path
TSP that runs in polynomial time. The algorithm is as follows:

Theorem 1. There is a polynomial-time 5{2-approximation for the metric Many-visits Path
TSP, that runs in time polynomial in n and log r.

Proof. The algorithm is presented as Algorithm 1. Since Pαc,1,s,t is connected, and P contains all
the edges of Pαc,1,s,t, P is also connected. Let pP0, Cq be the compact path-cycle decomposition of
TP‹c,r,s,t. The graph P thus consists of Pαc,1,s,t and the cycles of C. The edges of Pαc,1,s,t contribute a

7



Algorithm 1 A polynomial-time pα` 1q-approximation for metric Many-visits Path TSP.

Input: A complete undirected graph G “ pV,Eq, costs c : E Ñ Rě0 satisfying the triangle inequality,
requests r : V Ñ Zě1, distinct vertices s, t P V .
Output: An s-t-path that visits each v P V exactly rpvq times.

1: Calculate an α-approximate solution Pαc,1,s,t for the single-visit metric Path TSP instance pG, c, 1, s, tq.
2: Calculate an optimal solution TP‹c,r,s,t for the corresponding transportation problem, together with a

compact path-cycle decomposition pP0, Cq, where C is a collection of pairs pC, µCq.
3: Let P be the union of Pαc,1,s,t and µC copies of every cycle C P C.
4: Do shortcuts in P and obtain a solution P 1, such that P 1 visits every city v exactly rpvq times (that is,

degP 1pvq “ 2 ¨ rpvq for every vertex v P V ´ ts, tu, and degP 1pvq “ 2 ¨ rpvq ´ 1 otherwise).
5: return P 1.

degree of 1 in case of s and t, and 2 for v P V ´ts, tu; the cycles of C contribute degrees of 2 ¨rpvq´2
for v P ts, tu, and degrees of 2 ¨ rpvq or 2 ¨ rpvq ´ 2 for v P V ´ ts, tu. Let us denote the latter set
by W , matching the notation in the proof of Lemma 7. The total degree of v in P is:

2 ¨ rpvq ´ 1 for v P ts, tu,

2 ¨ rpvq for v PW, and

2 ¨ rpvq ` 2 for the remaining vertices in V ´ pW Y ts, tuq.

As a direct consequence of the degrees and connectivity, P is an open walk that starts in s, visits
every vertex v P V either rpvq or rpvq ` 1 times, and ends in t. Since the edge costs are metric, we
can use shortcuts at the vertices w P V ´ pW Y ts, tuq to reduce their degrees by 2. We describe
the procedure below.

Shortcutting. At Step 3, pPαc,1,s,t, Cq denotes the compact path-cycle representation of P . Let
us construct an auxiliary multigraph A on the vertex set V by taking the edges of Pαc,1,s,t and each
cycle C from C exactly once. Note that parallel edges appear in A if and only if an edge appears
in multiple distinct cycles, or in the path Pαc,1,s,t and at least one cycle C. Due to the construction,
s and t have odd degree, while every other vertex has an even degree in A, which means that there
exist an Eulerian trail in A. Moreover, there are Opn2q cycles [23], hence the total number of edges
in A is Opn3q. Consequently, using Hierholzer’s algorithm, we can compute an Eulerian trail η in
A in Opn3q time [15,25]. The trail η covers the edges of each cycle C once. Now an implicit order
of the vertices in the many-visits TSP path P is the following. Traverse the vertices of the Eulerian
trail η in order. Every time a vertex u appears the first time, traverse all cycles C that contain
the vertex µC times. Denote this trail by η1. It is easy to see that the sequence η1 is a sequence of
vertices that uses the edges of Pαc,1,s,t once and the edges of each cycle C exactly µC times, meaning
this is a feasible sequence of the vertices in the path P . Moreover, the order itself takes polynomial
space, as it is enough to store indices of Opn3q vertices and Opn2q cycles.

Denote the surplus of visits of a vertex w PW by γpwq :“ degP pwq{2´rpwq. In Step 4, we remove
the last γpwq occurrences of every vertex w PW from P by doing shortcuts: if an occurrence of w is
preceded by u and superseded by v in P , replace the edges uw and wv by uv in the sequence. This
can be done by traversing the compact representation of η1 backwards, and removing the vertex

w from the last γpwq cycles C
pwq
rpwq´γpwq`1, . . . , C

pwq
rpwq. As

ř

w γpwq can be bounded by Opnq, this

operation makes Opnq new cycles, keeping the space required by the new sequence of vertices and
cycles polynomial. Moreover, since the edge costs are metric, making shortcuts the way described
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above cannot increase the total cost of the edges in P . Finally, using a similar argument as in
the algorithm of Christofides, the shortcutting does not make the trail disconnected. The resulting
graph is therefore an s-t-walk P 1 that visits every vertex v exactly rpvq times, that is, a feasible
solution for the instance pG, c, r, s, tq.

Note that by construction, P is such that the surplus of visits γpwq equals to either 0 or 1.
However, the same shortcutting procedure is used in Algorithm 2 later in the paper, where γpwq
can take higher values as well.

Costs and complexity. The cost of the path P constructed by Algorithm 1 equals to cpP 1q ď
cpPαc,1,s,tq ` cpTP

‹
c,r,s,tq. Since cpTP‹c,r,s,tq is an optimal solution to a relaxation of the Many-visits

Path TSP, its cost is a lower bound to the cost of the corresponding optimal solution, P‹c,r,s,t.
Since the cost of Pαc,1,s,t is at most α times the cost of an optimal single-visit TSP path P‹c,1,s,t,
and cpP‹c,1,s,tq ď cpP‹c,r,s,tq holds for any r, Algorithm 1 provides an pα ` 1q-approximation for the
Many-visits Path TSP. Using Zenklusen’s recent polynomial-time 3{2-approximation algorithm
on the single-visit metric Path TSP [58] in Step 1 yields the approximation guarantee of 5{2 stated
in the theorem.

The transportation problem in Step 2 can be solved in Opn3 log nq operations using the approach
of Orlin [43] or its extension due to Kleinschmidt and Schannath [34]. Step 3 can also be performed
in polynomial time [23], and the number of closed walks can be bounded by Opn2q. Moreover, the
total surplus of degrees in P is at most n´ 2, therefore the number of operations performed during
shortcutting in Step 4 is also bounded by Opnq. This proves that the algorithm has a polynomial
time complexity. 3

Remark 1. The TSP, as well as the Path TSP can also be formulated for directed graphs, where
the costs c are asymmetric. (Note that c still has to satisfy the triangle inequality, which implies
the following bound for the self-loops: cpvvq ď maxu‰v tcpvuq ` cpuvqu.) In a recent breakthrough,
Svensson et al. [52] gave the first constant-factor approximation for the metric ATSP. In subsequent
work, Traub and Vygen [54] improved the constant factor to 22` ε for any ε ą 0. Moreover, Feige
and Singh [14] proved that an α-approximation for the metric ATSP yields a p2α`εq-approximation
for the metric Path-ATSP, for any ε ą 0. By combining these results with a suitable modification
of Algorithm 1, we can obtain a p23 ` εq-approximation for the metric Many-visits ATSP, and
a p45 ` εq-approximation for any ε ą 0 for the metric Many-visits Path-ATSP in polynomial
time.

4 A 3{2-Approximation for the Metric Many-visits Path TSP

In this section we show how to obtain a 3{2-approximation for the metric Many-visits Path TSP.
Our approach follows the general strategy of Zenklusen [58], but we need to make several crucial
modifications for the many-visits setting with exponentially large requests. This means that instead
of calculating a constrained spanning tree, we use the result in Theorem 4 to obtain a connected

3 One can obtain a 5{2-approximation for the metric Many-visits TSP by simply running Algorithm 1 for every
pair pu, vq P V ˆ V and setting s “ u and t “ v, then choosing a solution whose cost together with the cost of the
edge uv is minimal. However, Algorithm 1 can be simplified while maintaining the same approximation guarantee.
This approach appeared in the unpublished manuscript [4] by a superset of the authors and has a simpler proof, as
the algorithm does not involve making shortcuts.
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multigraph P with a sufficiently large number of edges. Then compute a matching M so that all
the degrees in P `M have the correct parity, and the cost of P `M is at most 3{2 times the optimal
cost. In order to ensure this bound, we have to enforce certain restrictions on P , similarly to the
computation of the spanning tree in [58]. However, as we will show, the many-visits setting leads
to further challenges.

For technical reasons, from now on we assume that the two endpoints s and t are different. Let us
start by defining the Held-Karp relaxation of the Many-visits Path TSP as mintcTx | x P PMV

HK u,
where PMV

HK denotes the following polytope:

(2) PMV
HK :“

$

’

’

’

’

’

&

’

’

’

’

’

%

x P RE
ě0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xpδpCqq ě 2 @C Ă V,C ‰ H, |C X ts, tu| P t0, 2u
xpδpCqq ě 1 @C Ď V, |C X ts, tu| “ 1

xp 9δpvqq “ 2 ¨ rpvq @v P V ´ ts, tu

xp 9δpsqq “ 2 ¨ rpsq ´ 1

xp 9δptqq “ 2 ¨ rptq ´ 1

,

/

/

/

/

/

.

/

/

/

/

/

-

The Q-join polytope (where Q Ď V is of even cardinality) is defined as follows:

(3) P ÒQ-join :“
 

x P RE
ě0

ˇ

ˇ xpδpCqq ě 1 @Q-cut C Ă V
(

,

where a Q-cut is a set C Ď V with |C XQ| odd.
In the following we assume arbitrary but fixed parameters c, r and denote the optimal many-

visits TSP path by P‹ “ P‹c,r,s,t. Given a solution y of the linear program mintcTx | x P PMV
HK u,

the vector y{2 is not necessarily in P ÒQ-join for every even set Q Ď V . Indeed, y only needs to have

a load of 1 on s-t-cuts, therefore y{2 may violate some of the constraints of P ÒQ-join. This means
that calculating a minimum cost perfect matching on an arbitrary even set Q Ď V might lead to
a matching M with higher cost than cpP‹q{2. Therefore, simply taking a solution P provided by
Theorem 4 and a minimum cost matching M on the vertices with degrees having incorrect parity,
then applying shortcuts would not lead to a 3{2-approximation.

To circumvent this problem, we would like to have a control over the vertices of P that take
part in the perfect matching phase of the algorithm. Similarly to Zenklusen [58], we calculate a
point q that is feasible for the Held-Karp relaxation of the Many-visits Path TSP, and that is
only needed for the analysis of the algorithm. Let oddpP q denote the vertices v with an odd degree
in P . We need P and q to meet the following requirements:

(R1) cpP q ď cpP‹q,

(R2) cpqq ď cpP‹q, and

(R3) q{2 P P ÒQP -join, where QP :“ oddpP q4ts, tu,

where cpqq stands for the cost of the vector q with respect to c, that is, cpqq “
ř

ePE cpeqqpeq.
Adding a shortest QP -join J to the multigraph P results in a multigraph P 1 where every vertex

v P V ´ ts, tu has an even degree at least 2 ¨ rpvq, and every v P ts, tu has an odd degree at least
2 ¨ rpvq ´ 1. Due to (R3), the cost of the shortest QP -join J satisfies cpJq ď cpqq{2. Therefore, using
Wolsey’s analysis for Christofides’ algorithm, the solution P 2 obtained by taking the edges of P 1

and applying shortcuts has cost at most 3{2 ¨ cpP‹q.
Let x˚ be an optimal solution to the Held-Karp relaxation of the Many-visits Path TSP:

(4) mintcTx | x P PMV
HK u .
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In order to obtain P and q that satisfy the conditions (R1)-(R3) above, we will calculate
another solution y P PMV

HK with cpyq ď cpP‹q, and set q to be the midpoint between x˚ and y, that
is, q “ x˚{2` y{2. The construction of P also depends on y, the details are given in Algorithm 2 and
the reasoning in the proof of Theorem 2. Being a convex combination of two points in PMV

HK , q is

in PMV
HK as well. We would like to ensure the existence of a multigraph P such that q{2 P P ÒQP -join,

therefore we need to construct y accordingly.
Let Q Ď V be a set of even cardinality. Recall the definition of P ÒQ-join at Equation (3), which

requires that the load on Q-odd cuts is at least 1. Since q is in PMV
HK , qpδpCqq{2 ě 1 holds for any non-

s-t-cuts, i.e. any cuts C Ă V,C ‰ H with |C X ts, tu| P t0, 2u. However, for s-t-cuts, the property
y P PMV

HK only implies ypδpCqq ě 1. If in addition x˚pδpCqq ě 3 holds, then we get qpδpCqq{2 ě 1
regardless of our choice of the multigraph P . If, however, x˚pδpCqq ă 3 holds, we cannot use the
same argument. In that case we need to take care of the constraints of P ÒQP -join that correspond to
s-t-cuts, where the x˚-load is strictly less than 3. Let us denote these cuts by Bpx˚q, that is,

(5) Bpx˚q :“ tC Ď V | s P C, t R C, x˚pδpCqq ă 3u .

For a family B Ď tC Ď V | s P C, t R Cu of s-t-cuts, we say that a point y P PMV
HK is B-good, if

for every B P B we have

(i) either ypδpBqq ě 3,

(ii) or ypδpBqq “ 1, and y is integral on the edges δpBq.

Therefore, if y P PMV
HK is Bpx˚q-good, then q “ x˚{2 ` y{2 satisfies qpδpCqq{2 ě 1 for every QP -cut C.

We will refer to a cut B satisfying condition (i) as a type (i) cut, and if it satisfies condition (ii)
we will refer to it as a type (ii) cut. Note that condition (ii) translates to having a single edge
f P δpBq with ypfq “ 1 and ypeq “ 0 for all other edges e from δpBq. The notion of B-goodness was
introduced by Zenklusen for the elements of the polytope PHK in relation to metric Path TSP.

Lemma 9. The characteristic vector χU of any many-visits s-t path U is B-good for any family B
of s-t-cuts.

Proof. The lemma easily follows from the fact that a many-visits s-t path U crosses any s-t-cut an
odd number of times.

We present our algorithm for the metric Many-visits Path TSP as Algorithm 2.
In Step 4 of the algorithm, we use Theorem 4 to obtain a multigraph with additional properties

besides the degree requirements. In the single-visit counterpart of the problem, one can show
that even though x˚pδpBqq ă 3 and ypδpBqq “ 1 for type (ii) cuts B, the corresponding point
q{2 “ x˚{4 ` y{4 is still in P ÒQP -join. However, due to the possible parallel edges in P , the parity
argument given by Zenklusen [58] does not hold, therefore we need to treat this case separately.
For this reason we make the following distinction. Let Ey denote the set of edges that correspond
to type (ii) cuts in y, that is

(6) Ey :“ te P E | DB P B : supppyq X δpBq “ eu .

We let U‹peq :“ 1 for all e P Ey, U
‹peq :“ `8 for the rest of the edges of supppyq, and U‹peq :“ 0

for edges e P E ´ supppyq. Finally, we set L‹peq :“ 0 for every edge e P E. According to the claim
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Algorithm 2 A 3{2-approximation algorithm for the metric Many-visits Path TSP

Input: A complete undirected graph G “ pV,Eq, costs c : E Ñ Rě0 satisfying the triangle inequality,
requests r : V Ñ Zě1, distinct vertices s, t P V .
Output: An s-t-path that visits each v P V exactly rpvq times.

1: Calculate an optimal solution x˚ to the Held-Karp relaxation of the Many-visits Path TSP, i.e.
x˚ :“ argmintcTx | x P PMV

HK u.
2: Determine a Bpx˚q-good solution y P PMV

HK minimizing cTy.
3: Let B1 Ă ¨ ¨ ¨ Ă Bk denote the type (ii) cuts with respect to y.
4: Compute a connected multigraph P on pV, supppyqq such that

a: each vertex v P V ´ ts, tu has degree at least 2 ¨ rpvq ´ 1,
b: each vertex v P ts, tu has degree at least 2 ¨ rpvq ´ 2, and
c: P contains no parallel edges leaving Bi for i “ 1, . . . , k.

5: Compute a minimum-cost matching M with respect to c on the vertices oddpP q4ts, tu.
6: Let P 1 denote the many-visits path P `M .
7: Do shortcuts in P 1 and obtain an s-t-walk P 2 that visits each city v exactly rpvq times.

return P 2.

of Theorem 4, we can compute a multigraph P satisfying the conditions in Steps 4.a to 4.c, such
that the cost of P is at most mintcTx | x P PCGpρ‹, L‹, U‹qu, where the polytope PCGpρ‹, L‹, U‹q
depends on the instance pG, c, r, s, tq and can be written in the following form:

(7) PCGpρ‹, L‹, U‹q :“

$

’

’
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ˇ

supppxq is connected
xpEq “ rpV q

xp 9δpvqq ě 2 ¨ rpvq @v P V ´ ts, tu

xp 9δpvqq ě 2 ¨ rpvq ´ 1 @v P ts, tu
0 ď xpeq ď 1 @e P Ey
0 ď xpeq ď `8 @e P supppyq ´ Ey
xpeq “ 0 @e P E ´ supppyq

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

It is not difficult to see that y P PCGpρ, L, Uq, and thus

(8) cpP q ď min
!

cTx
ˇ

ˇ

ˇ
x P PCGpρ‹, L‹, U‹q

)

ď cTy ,

therefore cpP q ď cTy holds; this is one of the reasons behind restricting P to supppyq. Moreover,
according to Lemma 9, the inequality cTy ď cpP‹q holds, hence the bound cpP q ď cpP‹q follows.
Now we have all the ingredients to prove our main theorem.

Theorem 2. There is a polynomial-time 3{2-approximation for the metric Many-visits Path
TSP. The algorithm runs in time polynomial in n and log r.

Proof. Recall that QP “ oddpP q4ts, tu. First prove that q “ x˚{2`y{2 implies that q{2 is in P ÒQP -join.
For that we need to show that we calculated the solution y in a way that q satisfies qpδpCqq{2 ě 1 for
all cuts C Ă V for which |C X oddpP q4ts, tu| is odd.

Clearly, q P PMV
HK , as q is the midpoint of two points from PMV

HK . Therefore, for any QP -cut
C Ď V that is a not an s-t-cut, we have qpδpCqq{2 ě 1 as needed. Moreover, by definition, for any
QP -cut C Ď V that is an s-t-cut and is not included in Bpx˚q, we have x˚pδpCqq ě 3, and so

(9)
1

2
qpδpCqq “

1

4

`

x˚pδpCqq ` ypδpCqq
˘

ě 1,
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as y P PMV
HK , and thus ypδpCqq ě 1.

It remains to consider QP -cuts C Ď V that are in Bpx˚q. Since y is Bpx˚q-good by construction,
either ypδpCqq ě 3, or ypδpCqq “ 1 with y being integral on the edges δpCq. If ypδpCqq ě 3, then
qpδpCqq{2 ě 1 follows from x˚pδpCqq ě 1 and the definition of q. If ypδpCqq “ 1 and y is integral on
the edges δpCq, it holds that ypeq “ 0 for all edges of δpCq except for one f P δpCq where ypfq “ 1.
It is at this point where we exploit the restrictions imposed on P . Since supppP q Ď supppyq, and the
load on an edge e P Ey is at most 1 in P , the only edge of P with a positive load on δpCq is f , and
that load is at most 1. Moreover, every cut has at least 1 load in P , which means |P X δpCq| “ 1.
But an s-t-cut C Ď V with |δP pCq| odd cannot be a QP -cut because of the following:

(10)
|C X oddpP q| ”

ÿ

vPC

| 9δP pvq| pmod 2q

“ 2 ¨ |tuv P P | u, v P Cu| ` |δP pCq| .

Equation (10) implies that |C X oddpP q| is odd, and hence |C XQP | “ |C X poddpP q4ts, tuq|
is even because C is an s-t-cut. By the above, any cut of type (ii) partitions the vertices of
oddpP q4ts, tu into two subsets of even cardinality.4 This means that no cut constraint of P ÒQP -join

requires a load of 1 for q{2 on C, and so q{2 P P ÒQP -join holds.
The cost of the matching M can therefore be bounded as follows:

(11) cpMq ď c
´q

2

¯

“
1

4
cTx˚ `

1

4
cTy ď

1

2
cpP‹q,

since cTx˚ ď cpP‹q. Thus, the multigraph obtained from P `M has cost at most 3{2 ¨ cpP‹q, as
claimed.

Shortcuts and complexity. According to Theorem 4, every vertex v P V ´ ts, tu has degree at
least 2 ¨ rpvq´ 1, while vertices s and t have degrees at least 2 ¨ rpsq´ 2 and 2 ¨ rptq´ 2 respectively,
in the multigraph P . The matching M provides 1 additional degree for vertices with the wrong
parity, therefore P 1 will have an even degree at least rpvq for all v P V ´ ts, tu and an odd degree
at least rpvq´ 1 for v P ts, tu. This means that P 1 corresponds to a many-visits s-t-path that visits
each vertex v at least rpvq times, but possibly more. In Step 7 we proceed with taking shortcuts
the way described in Algorithm 1, so that P 2 is a feasible solution to the Many-visits Path TSP
instance pG, c, r, s, tq.

Now we turn to the complexity analysis. The constraints of the Held-Karp relaxation (Equa-
tion (4)) of the Many-visits Path TSP can be tested in time polynomial in n and log rpV q, hence
calculating x˚ takes a polypn, log rpV qq time as well [47, §58.5]. This means Step 1 takes time poly-
nomial in n and log rpV q. According to Lemma 14, Step 2 also has polynomial time complexity,
and By Theorem 4, Step 4 takes polynomial time and calculating a matching in Step 5 can be done
efficiently as well. Finally, since the number of edges in P is rpV q and the matching M contributes
at most n{2 edges, we remove at most n{2 edges from P 1 to obtain our solution P 2. This means
that the number of operations performed in Step 7 can be bounded by Opnq. The claimed time
complexity follows.

4For a cut C with ypδpCqq “ 1 and y being integral on δpCq, the term |T X δpCq| in the proof of Theorem 2.1 of
Zenklusen [58] corresponds to the term |δP pCq| in Equation (10). Since the spanning tree T computed on supppyq in
the algorithm of [58] cannot contain parallel edges, |T X δpCq| has a value of 1 without enforcing an upper bound on
the edge e P δT pCq for ypeq “ 1.
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Corollary 3. There is a 3{2-approximation for the metric Many-visits TSP that runs in time
polynomial in n and log r.

Proof. Let G “ pV,Eq be a graph and pG, c, rq denote a metric Many-visits TSP instance. Choose
an arbitrary vertex v P V , and construct a metric Many-visits Path TSP instance pĜ, ĉ, r̂, sv, tvq
as follows. Let Ĝ be an undirected graph on the vertex set V̂ :“ V ´ v Y tsv, tvu and edge set
Ê :“ V̂ ˆ V̂ . We define ĉpsvtvq as the cost of a self loop at v, cpvvq, and ĉpsvuq “ ĉptvuq :“ cpvuq
for every vertex u P V ´ v. Moreover, the self-loops at vs and vt have cost cpvvq as well. It is easy
to check that ĉ satisfies the triangle inequality. Finally, set r̂psvq :“ rpvq and r̂ptvq :“ 1.

Now we prove that the Many-visits TSP instance pG, c, rq and the corresponding Many-
visits Path TSP instance pĜ, ĉ, r̂, sv, tvq can be reduced to each other. First let T be a solution to
pG, c, rq. Choose an edge vu from T such that v ‰ u, and let P denote the many-visits sv-tv-path
obtained from T by deleting v, replacing each occurrence of any edge vw P T with a copy of svw if
w P V ´ tu, vu or with a copy of the loop on sv if w “ v, and replacing all but one occurrence of
the edge vu P T with a copy of svu, while one copy of vu is substituted by tvu. In other words, sv
‘inherits’ all copies of all edges and self-loops incident to v, except one copy of uv, and tv inherits
one copy of uv. This means that degP psvq “ 2 ¨ rpvq ´ 1 and degP ptvq “ 1. Note that each edge of
T is replaced by an edge of the same cost, and every vertex w P V ´ v has the same degree in T
and P , hence degP pwq “ 2 ¨ rpwq. Therefore, P is a feasible solution to pĜ, ĉ, r̂, sv, tvq of the same
cost as T .

Now consider a multigraph P that is a solution to pĜ, ĉ, r̂, sv, tvq. Identify the vertices sv and
tv, denote the new vertex by v, and introduce an edge vv for every copy of the edge svtv in P .
Let us denote the resulting multigraph by T . Since cpuvq “ ĉpsvuq “ ĉptvuq for all u P V ´ v
and cpvvq “ ĉpsvsvq “ ĉptvtvq “ ĉpsvtvq, replacing sv and tv by v the way described above does
not change the cost of the multigraph. Moreover, the degree of v in T is degT pvq “ degP psvq `
degP ptvq “ 2 ¨ rpvq ´ 1` 1 “ 2 ¨ rpvq. The degrees of vertices w P V ´ v remain unchanged, thus T
is a feasible solution to pG, c, rq of the same cost as P .

We therefore showed that for every solution of pG, c, rq there exists a solution of pĜ, ĉ, r̂, sv, tvq
with the same cost, and vice versa. Let now pG, c, rq be a metric Many-visits TSP instance.
Pick an arbitrary vertex v P V , and consider the corresponding metric Many-visits Path TSP
instance pĜ, ĉ, r̂, sv, tvq, and obtain a 3{2-approximation P using Algorithm 2. Identify sv and tv
into v again, and substitute each copy of the edge svtv in P by a copy of the self-loop vv. By the
above, the resulting multigraph T gives a 3{2-approximation to the instance pG, c, rq.

Remark 2. Alternatively, one can directly obtain a 3{2-approximation for the metric Many-visits
TSP by performing Step 4.a, Step 5 and Step 7 of Algorithm 2. More precisely, calculate a connected
multigraph T with degrees at least 2 ¨ rpvq ´ 1 and cost at most the optimum using the result of
Theorem 4, then calculate a matching on the odd degree vertices and apply shortcuts. This procedure
was described by a superset of the authors [4].

Before we show how to calculate a Bpx˚q-good point y P PMV
HK , let us show that the number of

cuts in B is polynomial in n, and that the set B can be computed efficiently:

Lemma 10. Let q P PMV
HK . Then the family Bpqq of s-t-cuts of q-value strictly less than 3 satisfies

|Bpqq| ď n4 and can be computed in Opmn4q time, where n :“ |V | and m :“ supppqq.

Proof. Let us define an auxiliary graph H “ pV,E1q whose edge set E1 consists of the edges in
supppqq and an additional st edge. Let qH “ q`χst. Clearly, for non-s-t-cuts we have qHpδHpCqq “
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qpδpCqq, while for s-t-cuts we have qHpδHpCqq “ qpδpCqq ` 1 ě 2 because of the newly added edge
st. Therefore, the family Bpqq can be written as

Bpqq “ tC Ă V | s P C, t R C, qHpδHpCqq ă 4u .

The minimum cut has a load of at least 2, and due to Karger [32] the number of cuts with a load less
than k times the minimum cut is at most Opn2kq. Moreover, using an algorithm by Nagamochi et
al. [42], we can enumerate the cuts of size at most k times the minimum cut in time Opm2n`n2kmq.
These results prove that the number of cuts in |Bpqq| is Opn4q, and that they can be enumerated
in time Opmn4q.

The dynamic program

Given a family B of s-t-cuts, our goal is to determine a minimum cost B-good point y P PMV
HK . We

use the dynamic programming approach introduced by Traub and Vygen [54] and improved upon
by Zenklusen [58]. More precisely, the goal of the dynamic program is to determine which cuts in
B are of type (i), and which ones are of type (ii). Our approach is constructive as the dynamic
program also determines a point y that is Bpx˚q-good.

Consider a Bpx˚q-good point y. Let B1, . . . , Bk denote the type (ii) s-t cuts in B with respect
to y, that is, ypviuiq “ 1 for exactly one edge viui P δpBiq and ypeq “ 0 for e P δpBiq´viui. It is not
difficult to see that these cuts necessarily form a chain (see e.g. [58]), thus we set the indices such
that B1 Ĺ ¨ ¨ ¨ Ĺ Bk. The endpoints of viui are named such that vi P Bi, ui R Bi. Furthermore, we
define B0 :“ H, Bk`1 :“ V , u0 :“ s and vk`1 :“ t for notational convenience. Note that ui and
vi`1 might coincide for some i “ 0, . . . , k ` 1.

The work of Zenklusen [58] argues that the ‘first’ and ‘last’ cuts are type (ii) cuts, that is,
B1 “ tsu and Bk “ V ´ ttu, because the constraints of PMV

HK enforce a degree of 1 on vertices s
and t. In the many-visits setting, however, this is not necessarily true, as the instance possibly
requires more than one visit for s or t.

Assume for a moment that we knew the cuts B1, . . . , Bk and the edges viui, and we are looking
for a Bpx˚q-good point y P PMV

HK such that among all cuts in B the cuts B1, . . . , Bk are precisely
those where (a) y is integral, and (b) ypδpBiqq “ 1 for all i “ 1, . . . , k. Then the B-good points
y P PMV

HK that satisfy these constraints (a) and (b) have the following properties for all i “ 1, . . . , k:

(P1) ypviuiq “ 1 and ypeq “ 0 for all edges e P δpBiq ´ viui,

(P2) the restriction of y to the vertex set Bi`1 ´ Bi is a solution to the Held-Karp relaxation for
the Many-visits Path TSP with endpoints ui and vi`1, with the additional property that
ypδpBqq ě 3 for every cut B P B such that Bi Y ui Ď B Ď Bi`1 ´ vi`1.

The dynamic program thus aims to find cuts B1, . . . , Bk while exploiting the properties (P1)
and (P2) above. Formally, it is defined to find a shortest path on an auxiliary directed graph. Let
us define the auxiliary directed graph H “ pN,Aq with node set N , arc set A, and length function
d : AÑ Rě0. The node set N is defined by N “ N` YN´, where

N` “ tpB, uq P B ˆ V | u R Bu Y tpH, squ , and

N´ “ tpB, vq P B ˆ V | v P Bu Y tpV, tqu .
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The arc set A is given by A “ AHK YAE , where

AHK “
 `

pB`, uq, pB´, vq
˘

P N` ˆN´
ˇ

ˇ B` Ď B´, u, v P B´ ´B`
(

, and

AE “
 `

pB´, vq, pB`, uq
˘

P N´ ˆN`
ˇ

ˇ B´ “ B`
(

.

Finally, the lengths d : AÑ Rě0 are defined as follows:

dpaq “

#

cpvuq if a “ ppB, vq, pB, uqq P AE ,

OPTpLPpaqq if a P AHK,

where OPTpLPpaqq denotes the optimum value of

min cTx

subject to x P PMV
HK pB

´ ´B`, u, vq(LPpaq)

xpδpBqq ě 3 for all B P B s.t. B` Ď B Ď B´,

u P B, v R B,

where a “ ppB`, uq, pB´, vqq.
For y-values across the cuts B P B so that B R tB1, . . . , Bku, we require that ypδpBqq ě 3

holds. We ensure this by defining modified Held-Karp relaxations of the Many-visits Path TSP
instances between cuts Bi and Bi`1 for every i “ 0, . . . , k. More precisely, such an instance is
defined on the subgraph of G induced on the vertex set Bi`1 ´ Bi with distinguished vertices ui
and vi`1, with the additional property that it has a y-load of at least 3 on each cut B P B with
Bi Ă B Ă Bi`1, as shown in (LPpaq). In case u ‰ v, the polytope PMV

HK pW,u, vq is defined as
follows:

(12) PMV
HK pW,u, vq :“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x P RE
ě0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xpδpCqq ě 2 @C ĂW,C ‰ H,
|C X tu, vu| P t0, 2u

xpδpCqq ě 1 @C ĂW, |C X tu, vu| “ 1

xp 9δpwqq “ 2 ¨ rpwq @w PW ´ tu, vu

xp 9δpuqq “ 2 ¨ rpuq ´ 1

xp 9δpvqq “ 2 ¨ rpvq ´ 1
xpeq “ 0 @e P E ´ ErW s

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

Note that unlike in the single-visit case [58], we allow u being equal to s or v being equal to t in
Equation (12), and the corresponding polytopes PMV

HK pB1, s, v1q and PMV
HK pV ´Bk, uk, tq are feasible.

Let us now cover the case when for some index i P t0, . . . , ku, vertices ui and vi`1 coincide. 5

In the single-visit Path TSP, the solution is defined to be the all-zero vector if ui “ vi`1 is the
only vertex in Bi`1 ´ Bi, and there exists no solution otherwise. However, since we allow for a
vertex to be visited more than once (i.e. have a degree more than 2) in a solution to the Held-Karp
relaxation for the Many-visits Path TSP, we use a different extension in our approach. We
define the corresponding subproblem as the Held-Karp relaxation for the Many-visits TSP. First
assume that ui ‰ s and ui ‰ t. Since ypviuiq “ 1 and ypuiui`1q “ 1 by construction, the degree
requirement for ui in the Many-visits TSP subproblem is two less that in PMV

HK , namely rpuiq´2.

5 Note that the corresponding arc in H will have the form
`

pB`, wq, pB´, wq
˘

P AHK.
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If ui “ s (or ui “ t), then due to yps u1q “ 1 (or ypvk tq “ 1) the degree requirement for ui in
the subproblem is one less that in PMV

HK , which also equals to rpuiq ´ 2. Note that if ui “ vi`1
there is no cut B P B with ui P B and vi`1 R B, thus the linear program LPpaq has the form
mintcTx | x P PMV

HK pW,u, uqu, where:

(13) PMV
HK pW,u, uq :“

$

’

’

&

’

’

%

x P RE
ě0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xpδpCqq ě 2 @C ĂW,C ‰ H,

xp 9δpwqq “ 2 ¨ rpwq @w PW ´ u

xp 9δpuqq “ 2 ¨ rpuq ´ 2
xpeq “ 0 @e P E ´ ErW s

,

/

/

.

/

/

-

.

If the requirement for u is rpuq “ 1 and |W | ą 1, the polytope PMV
HK pW,u, uq is empty, and

thus the linear program LPpaq has no solution. In this case the cost of the arc a is defined to
be infinity. Note however that if rpuq “ 1 and W “ tuu, the corresponding linear program has a
non-zero solution, namely a vector that has value rpuq ´ 1 in the coordinate of the self-loop uu,
and 0 otherwise.

To find a B-good point with minimum cost cTy, we compute a shortest pH, sq–pV, tq path
with respect to d in H; due to Lemmas 9 and 11 this path has finite length. Let pH, sq, pB1, v1q,
pB1, u1q, pB2, v2q, . . . , pBk, ukq, pV, tq be the nodes on this shortest path, and similarly as before,
define B0 :“ H, u0 :“ s and Bk`1 :“ V, vk`1 :“ t. By construction of H, we have B0 Ă B1 Ă ¨ ¨ ¨ Ă

Bk`1. Let xi P RE be an optimal solution to LPpaq for a “ ppBi, uiq, pBi`1, vi`1qq. Set

(14) y :“
k
ÿ

i“0

xi `
k
ÿ

i“1

χviui .

By the definition of the lengths d in H, cTy necessarily equals the length `˚ of a shortest pH, sq–
pV, tq path in H with respect to d. We now show that y computed in Equation (14) is indeed a
Bpx˚q-good point of minimum cost.

Lemma 11. The length `˚ of a shortest pH, sq–pV, tq path in H with respect to d satisfies `˚ ď
mintcTz | z P PMV

HK , z is B-goodu.

Proof. Let Bz Ď B be the family of cuts B P B such that zpfq “ 1 for precisely one edge f P δpBq,
and zpeq “ 0 for all other edges e P δpBq ´ f . These are the sets in B that are type (ii) cuts with
respect to z, and also Bz forms a chain: B1 Ă ¨ ¨ ¨ Ă Bk holds, where Bi P Bz for i “ 1, . . . , k. The
cuts tB1, . . . , Bku defines a partition of V into sets B10 :“ B1, B

1
1 :“ B2´B1, . . . , B

1
k´1 :“ Bk´Bk´1,

B1k :“ V ´ Bk. For i P t1, . . . , ku, let viui be the unique edge in δpBiq where zpviuiq “ 1, so that
vi P Bi and ui R Bi.

Consider the path along nodes pB0, u0q, pB1, v1q, pB1, u1q, . . . , pBk`1, vk`1q. It suffices to show
that the length ` of the path is at most cTz. For each i P t0, . . . , ku, the vector zi P RE is defined
to be the restriction of z to ErBi`1 ´ Bis. Assume for a moment that zi is a feasible solution of
LPpaq with a “ ppBi, uiq, pBi`1, vi`1qq. Then the total length ` is equal to

řk
i“0 c

Txi`
řk
i“1 cpviuiq

by definition, which is at most
řk
i“0 c

Tzi `
řk
i“1 cpviuiq “ cTz. Since `˚ is minimum among all

possible `’s, we get `˚ ď ` ď cTz.
Since z is B-good, and zipδpBqq “ zpδpBqq for any cut B with Bi Ĺ B Ĺ Bi`1, that means

zipδpBqq “ zpδpBqq ě 3. It remains to show that zi P PMV
HK pB

1
i, ui, vi`1q or zi P PMV

HK pB
1
i, ui, uiq

follows for i “ 0, . . . , k.
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Distinct endpoints. Let us start with the case when ui ‰ vi`1. By definition, zipeq “ zpeq if both
endpoints of e are in B1i and zipeq “ 0 otherwise. Hence, for vertices w P B1i such that w R tui, vi`1u,
zip 9δpwqq “ zp 9δpwqq “ 2 ¨ rpwq. First assume that ui ‰ s and vi`1 ‰ t. Both of the endpoints ui
and vi`1 have a total z-value of 1 on the edge set δpB1iq due to zpviuiq “ 1 and zpvi`1ui`1q “ 1,
therefore the zi-value on the edges incident to the endpoints is zip 9δpuiqq “ zp 9δpuiqq´1 “ 2 ¨rpuiq´1
and zip 9δpvi`1qq “ zp 9δpvi`1qq ´ 1 “ 2 ¨ rpvi`1q ´ 1. If ui “ s or vi`1 “ t, their zi-values equal to
their z-values, that is 2 ¨ rpsq ´ 1 or 2 ¨ rptq ´ 1, respectively. The degree constraints are therefore
satisfied.

Finally, we have to show that for a cut C Ď B1i, z
ipδpCqq ě 1 holds if C is a ui-vi`1-cut,

and zipδpCqq ě 2 if C does not separate ui and vi`1. For the single-visit variant, the proof goes
by showing that zi is in the spanning tree polytope of GrB1is, using the fact that z is in the
spanning tree polytope of G and the degree constraints of v P B1i [58]. However, these terms do not
immediately generalize to the many-visits setting, so we show that the connectivity of zi follows
from the properties of z.

Non-ui-vi`1-cuts: First let us consider the cuts that do not separate ui and vi`1, and prove
that the total zi-value across these cuts is at least 2. We may assume that C Ă B1i does not contain
neither ui nor vi`1 throughout this paragraph. In case ui, vi`1 P C, we can take B1i ´ C and we
are done, as zipδpCqq “ zipδpB1i ´ Cqq “ zpδpCqq ě 2, yielding zipδpCqq ě 2. Assume first that
ui ‰ s and vi`1 ‰ t, and let C Ă B1i. Then zipδpCqq ě 2 simply because C is a non-s-t-cut and
thus zpδpCqq ě 2. Now let ui be equal to s, and let C Ă B1i be a cut that does not contain either s
or v1. Likewise, z0pδpCqq ě 2 because C is a non-s-t-cut and thus zpδpCqq ě 2. The argument for
vi`1 “ t goes the same way.

ui-vi`1-cuts: Here we have to prove that if C is a ui-vi`1-cut, then zipδpCqq ě 1.
Assume that ui ‰ s and vi`1 ‰ t. Without the loss of generality, we may assume that ui P C.

Since C is a non-s-t-cut, zpδpCqq ě 2. If we account for zpviuiq “ 1, then zipδpCqq ě 1 follows.
One can similarly prove the claim if ui R C and vi`1 P C. Assume now that ui “ s and ui P C;
then C is an s-t-cut, so zpδpCqq ě 1. Moreover, vi`1 R C, so vi`1ui`1 R δpCq, therefore zipδpCqq “
zpδpCqq ě 1. If ui “ s and vi`1 P C, then zipδpCqq ě zpδpCqq ´ zpvi`1ui`1q ě 1, since C is a
non-s-t-cut and thus zpδpCqq ě 2. The case vi`1 “ t can be proved similarly.

Same endpoints. Now we cover the case when ui “ vi`1. We need to prove that zi P PMV
HK pB

1
i, ui, uiq,

as defined in Equation (13). The argument about the degrees is analogous to the case above, the
fact that zip 9δpwqq “ 2 ¨ rpwq directly follows for vertices w P B1i ´ ui. Moreover, if ui R ts, tu, the
endpoint ui has a z-load of 2 on δpB1iq because of zpviuiq “ 1 and zpvi`1ui`1q “ zpuiui`1q “ 1,
hence zip 9δpuiqq “ zp 9δpuiqq ´ 2 “ 2 ¨ rpuiq ´ 2, as desired. If ui P ts, tu, then zp 9δpuiqq “ 2 ¨ rpuiq ´ 1.
Moreover, zps u1q “ 1 or zpvk tq “ 1 if ui “ s or ui “ t, respectively. In both cases this means
zip 9δpuiqq “ zp 9δpuiqq ´ 1 “ 2 ¨ rpuiq ´ 2.

Now turn to the cut constraints, and let C Ă B1i be a cut. We can assume that ui R C, otherwise
we take B1i´C, and we are done. If ui R C, then zipδpCqq “ zpδpCqq ě 2 because C is a non-s-t-cut.
The proof is complete.

Lemma 12. y P PMV
HK .

Proof. To prove this claim, we use the properties of xi. We again distinguish two cases, based on
whether the endpoints of subproblem LPpaq are the same or different.
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Degree constraints. First, consider the indices i with ui ‰ vi`1. By definition, the vector xi

satisfies xi P PMV
HK pBi`1 ´ Bi, ui, vi`1q, meaning that it is a solution to the Held-Karp relaxation

for Many-visits Path TSP in the induced subgraph GrBi`1 ´ Bis with endpoints ui and vi`1.
Recall that y “

řk
i“0 x

i `
řk
i“1 χviui by definition. For a v P Bi`1 ´Bi, the value yp 9δpvqq is equal

to

1. xip 9δpvqq if v “ ui “ s or v “ vi`1 “ t,

2. xip 9δpvqq ` 1 “ 2 ¨ rpvq if v R ts, tu and v “ ui or v “ vi`1 for some i, due to the edge viui or
vi`1ui`1, respectively; and

3. xip 9δpvqq “ 2 ¨ rpvq otherwise.

By the above, yp 9δpsqq “ 2 ¨ rpsq ´ 1, yp 9δptqq “ 2 ¨ rptq ´ 1, and yp 9δpvqq “ 2 ¨ rptq for v R ts, tu,
therefore the degree constraints are satisfied for all v P V .

If ui “ vi`1, the value yp 9δpvqq is equal to

1. xip 9δpvqq ` 1 if v “ s or v “ t, because of the edge vu1 or vkv, respectively,

2. xip 9δpvqq ` 2 “ 2 ¨ rpvq if v R ts, tu and v “ ui “ vi`1 for some i, due to the edge viui and
vi`1ui`1; and

3. xip 9δpvq “ 2 ¨ rpvq otherwise.

Again, we get yp 9δpsqq “ 2 ¨ rpsq ´ 1, yp 9δptqq “ 2 ¨ rptq ´ 1, and yp 9δpvqq “ 2 ¨ rptq for v R ts, tu,
therefore the degree constraints are satisfied for all v P V .

Cut constraints. It remains to show that y satisfies the cut constraints. As in the proof of
Lemma 11, instead of building on a spanning subgraph polytope, we directly prove that the cut
constraints hold. As before, the cuts tB1, . . . , Bku define a partition of V into sets B10 :“ B1,
B11 :“ B2 ´B1, . . . , B

1
k´1 :“ Bk ´Bk´1, B

1
k :“ V ´Bk.

Let us first consider the value of y on s-t-cuts. For Bi P tB1, . . . , Bku the y-load on δpBiq equals
to 1 due to the edge viui, therefore it satisfies the constraint ypδpBiqq ě 1. If C is a s-t-cut such
that C R tB1, . . . , Bku, then there is at least one index i P t0, . . . , ku, such that both B1i X C and
B1i´C are not empty. In other words, there is at least one vertex from B1i on both sides of the cut
C.

If ui ‰ vi`1, x
i satisfies the constraints of LP for a “ ppBi, uiq, pBi`1, vi`1qq, we have xi P

PMV
HK pB

1
i, ui, vi`1q. That means xi has a load of at least 1 on edges leaving every proper subset of

B1i, including B1i X C, and xipδpB1i X Cqq ě 1 implies ypδpB1i X Cqq ě 1, which yields ypδpCqq ě 1.
If ui “ vi`1, then xi P PMV

HK pB
1
i, ui, uiq, which means that ypδpB1i´C,B

1
iXCqq ě 2, so ypδpCqq ě 1

follows.
If C is a non-s-t-cut, we distinguish the following three cases. Note that in neither of the cases

is B10 Ď C or B1k Ď C a possibility, as that would make C an s-t-cut.
If C Ĺ B1i for some i, and C is a ui-vi`1-cut so that ui P C (or vi`1 P C), then ypδpCqq

has at least 1 load from the fact that xi P PMV
HK pB

1
i, ui, vi`1q, and 1 load from the edge vi´1ui (or

viui`1). If C is not a ui-vi`1-cut, and ui, vi`1 are in C, then ypδpCqq ě 2 because of the edges viui
and vi`1ui`1; while if ui, vi`1 are not in C then ypδpCqq ě 2 follows from xi P PMV

HK pB
1
i, ui, vi`1q.

Note that if ui “ vi`1, C can only be a non-ui-vi`1-cut. In that case xipδpCqq ě 2 because
xi P PMV

HK pB
1
i, ui, uiq, and thus ypδpCqq ě 2 follows.
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If C “
Ť

iPI
B1i for some I Ă t0, . . . , ku, let us define imin :“ minti | B1i Ă Cu and imax :“ maxti |

B1i Ă Cu. Then ypδpCqq ě ypvimin´1uiminq ` ypvimaxuimax`1q “ 2 .
Else there exists a set B1i such that C XB1i ‰ H and C Ę B1i and B1i Ę C hold, then let

us define imin and imax as follows:

imin :“ minti | C XB1i ‰ H, C Ę B1i, B
1
i Ę Cu ,

imax :“ maxti | C XB1i ‰ H, C Ę B1i, B
1
i Ę Cu .

Suppose that imin ‰ imax. Then, δpCq has at least 1 y-load on δpB1imin
X C,B1imin

´ Cq, as well as
at least 1 y-load between on δpB1imax

X C,B1imax
´ Cq, thus ypδpCqq ě 2. In case of imin “ imax,

there must exist another index i ‰ imin such that B1i Ă C (as otherwise we are back in one of the
previous two cases), in which case there is at least one edge e in δpC X B1iq such that ypeq “ 1
(either viui or vi`1ui`1 or both); in total ypδpCqq ě 2 holds.

This concludes the proof of Lemma 12.

Lemma 13. y is B-good.

Proof. The proof follows the lines of the corresponding proof of Lemma 3.3 of Zenklusen [58]: there
the claim can be deduced from cut constraints of PHK, while in our case it follows from those of
the polytope PMV

HK . Nevertheless, we include the full proof here for the sake of completeness.
For i P t1, . . . , ku, we have by construction of y that ypviuiq “ 1 and ypeq “ 0 for other edges

e P δpBiq. This means that all cuts Bi satisfy (ii) of the definition of B-goodness, i.e. the y-value
is 1 and y is integral. Let us show that for any other cut B P B´ tB1, . . . , Bku, the y-load satisfies
(i) of the definition.

First suppose that tB1, . . . , BkuYB is not a chain, in this case there is some index j P t0, . . . , ku,
such that neither B Ď Bj nor Bj Ď B is true. Hence

ypδpBqq ` 1 “ ypδpBqq ` ypδpBjqq

ě ypδpB ´Bjqq ` ypδpBj ´Bqq

ě 4 .

The first line follows from ypδpBjqq “ 1, this was shown at the beginning of the proof. The first
inequality holds by the cut functions C Ñ ypδpCqq being symmetric and submodular. Since B and
Bj are s-t-cuts, B´Bj and Bj ´B are non-s-t-cuts, and the y-load of both of these cuts is at least
2, hence the second inequality follows.

Suppose that tB1, . . . , Bku Y B is a chain, then there is an index j such that Bj Ĺ B Ĺ Bj`1.
If uj P B and vj`1 R B, then xjpδpBqq ě 3 because of the constraints of the corresponding linear
program LPpaq, where a “ ppBj , ujq, pBj`1, vj`1qq. Since y ě xj holds for all j component-wise,
ypδpBqq ě 3 follows. If uj R B and vj`1 P B, then both the edges vjuj and vj`1uj`1 are in δpBq;
moreover xjpδpBqq ě 1 since B is a uj-vj`1-cut, therefore

ypδpBqq ě xjpδpBqq ` ypvjujq ` ypvj`1uj`1q ě 3 .

Finally, if B is not an uj-vj`1-cut, xjpδpBqq ě 2 since xj P PMV
HK pBj`1´Bj , uj , vj`1q. Moreover,

either uivi or ui`1vi`1 is an edge in δpBq, depending on whether ui and vj`1 are in B or not; both
of the possibilities imply ypδpBqq ě 3.
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Lemma 14. Let B Ď tC Ď V | s P C, t R Cu. One can determine in time polynomial in |B| and
the input size of pG, s, t, cq a B-good point y P PMV

HK of minimum cost.

Proof. The number of nodes and arcs in H are polynomial in |B|. Calculating a shortest path on
H takes time polynomial in |H|. The feasibility of the linear programs (LPpaq) can be checked in
time polypn, log r, |B|q, therefore an optimal solution can also be found, using the ellipsoid method,
in time polynomial in n, log r and |B| (see the discussion in §58.5 of Schrijver’s book [47]).

Remark 3. It is worth considering how Algorithm 2 proceeds when applied to the single-visit
TSP, that is, when rpvq “ 1 for each v P V . The output of Algorithm 3 in Step 4 is then a
connected multigraph with rpV q´1 “ n´1 edges. This means that each vertex v has degree at least
2 ¨ rpvq ´ 1 “ 1, which boils down to a connected graph with n´ 1 edges, therefore a spanning tree
on G with the additional properties (R1)-(R3). Thus Algorithm 2 performs the same operations,
as the algorithm of Zenklusen [58] for the Path TSP.

5 Approximation Algorithm for the Bounded Degree g-Polymatroid
Element with Multiplicities Problem

5.1 Polyhedral background

In what follows, we make use of some basic notions and theorems of the theory of generalized
polymatroids. For background, see for example the paper of Frank and Tardos [18] or Chapter 14
in the book by Frank [17].

Given a ground set S, a set function b : 2S Ñ Z is submodular if

bpXq ` bpY q ě bpX X Y q ` bpX Y Y q

holds for every pair of subsets X,Y Ď S. A set function p : 2S Ñ Z is supermodular if ´p is
submodular. As a generalization of matroid rank functions, Edmonds introduced the notion of
polymatroids [12]. A set function b is a polymatroid function if bpHq “ 0, b is non-decreasing, and b
is submodular.

We define
P pbq :“ tx P RS

ě0 | xpY q ď bpY q for every Y Ď Su .

The set of integral elements of P pbq is called a polymatroidal set. Similarly, the base polyma-
troid Bpbq is defined by

Bpbq :“ tx P RS | xpY q ď bpY q for every Y Ď S, xpSq “ bpSqu .

Note that a base polymatroid is just a facet of the polymatroid P pbq. In both cases, b is called the
border function of the polyhedron. Although non-negativity of x is not assumed in the definition
of Bpbq, this follows by the monotonicity of b and the definition of Bpbq: xpsq “ xpSq ´ xpS ´ sq ě
bpSq ´ bpS ´ sq ě 0 holds for every s P S. The set of integral elements of Bpbq is called a base
polymatroidal set. Edmonds [12] showed that the vertices of a polymatroid or a base polymatroid
are integral, thus P pbq is the convex hull of the corresponding polymatroidal set, while Bpbq is the
convex hull of the corresponding base polymatroidal set. For this reason, we will call the sets of
integral elements of P pbq and Bpbq simply a polymatroid and a base polymatroid.
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Hassin [24] introduced polyhedra bounded simultaneously by a non-negative, monotone non-
decreasing submodular function b over a ground set S from above and by a non-negative, monotone
non-decreasing supermodular function p over S from below, satisfying the so-called cross-inequality
linking the two functions:

bpXq ´ ppY q ě bpX ´ Y q ´ ppY ´Xq for every pair of subsets X,Y Ď S .

We say that a pair pp, bq of set functions over the same ground set S is a paramodular pair if
ppHq “ bpHq “ 0, p is supermodular, b is submodular, and they satisfy the cross-inequality.
The slightly more general concept of generalized polymatroids was introduced by Frank [16]. A
generalized polymatroid, or g-polymatroid is a polyhedron of the form

Qpp, bq :“
 

x P RS | ppY q ď xpY q ď bpY q for every Y Ď S
(

,

where pp, bq is a paramodular pair. Here, pp, bq is called the border pair of the polyhedron. It is
known (see e.g. [17]) that a g-polymatroid defined by an integral paramodular pair is a non-empty
integral polyhedron.

A special g-polymatroid is a box βpL,Uq “ tx P RS | L ď x ď Uu where L : S Ñ Z Y t´8u,
U : S Ñ Z Y t8u with L ď U . Another illustrious example is base polymatroids. Indeed, given
a polymatroid function b with finite bpSq, its complementary set function p is defined for X Ď S
by ppXq :“ bpSq ´ bpS ´Xq. It is not difficult to check that pp, bq is a paramodular pair and that
Bpbq “ Qpp, bq.

Theorem 14.3.9 (Frank [17]). The intersection Q1 of a g-polymatroid Q “ Qpp, bq and a box
β “ βpL,Uq is a g-polymatroid. If LpY q ď bpY q and ppY q ď UpY q hold for every Y Ď S, then Q1

is non-empty, and its unique border pair pp1, b1q is given by

p1pZq “ maxtppZ 1q ´ UpZ 1 ´ Zq ` LpZ ´ Z 1q | Z 1 Ď Su ,

b1pZq “ mintbpZ 1q ´ LpZ 1 ´ Zq ` UpZ ´ Z 1q | Z 1 Ď Su .
(15)

Given a g-polymatroid Qpp, bq and Z Ă S, by deleting Z Ď S from Qpp, bq we obtain a g-
polymatroid Qpp, bqzZ defined on set S ´ Z by the restrictions of p and b to S ´ Z, that is,

Qpp, bqzZ :“ tx P RS´Z | ppY q ď xpY q ď bpY q for every Y Ď S ´ Zu .

In other words, Qpp, bqzZ is the projection of Qpp, bq to the coordinates in S ´ Z.
Extending the notion of contraction from matroids to g-polymatroids is not immediate. A set

can be naturally identified with its characteristic vector, that is, in the case of matroids contraction
is basically an operation defined on 0´1 vectors. In our proof, we will need a generalization of
this to the integral elements of a g-polymatroid. However, such an element might have coordinates
larger than one as well, hence finding the right definition is not straightforward. In the case of
matroids, the most important property of contraction is the following: I is an independent of M{Z
if and only if F Y I is independent in M for any maximal independent set F of Z.

With this property in mind, we define the g-polymatroid obtained by the contraction of an
integral vector z P Qpp, bq to be the polymatroid Qpp1, b1q :“ Qpp, bq{z on the same ground set S
with the border functions

p1pXq :“ ppXq ´ zpXq

b1pXq :“ bpXq ´ zpXq .
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Observe that p1 is obtained as the difference of a supermodular and a modular function, implying
that it is supermodular. Similarly, b1 is submodular. Moreover, p1pHq “ b1pHq “ 0, and

b1pXq ´ p1pY q “ bpXq ´ zpXq ´ ppY q ` zpY q

ě bpX ´ Y q ` ppY ´Xq ´ zpX ´ Y q ` zpY ´Xq

“ b1pX ´ Y q ´ p1pY ´Xq,

hence pp1, b1q is indeed a paramodular pair. The main reason for defining the contraction of an
element z P Qpp, bq is shown by the following lemma.

Lemma 15. Let Qpp1, b1q be the polymatroid obtained by contracting z P Qpp, bq. Then x ` z P
Qpp, bq for every x P Qpp1, b1q.

Proof. Let x P Qpp1, b1q. By definition, this implies p1pY q ď xpY q ď b1pY q for Y Ď S. Thus
ppY q “ p1pY q ` zpY q ď xpY q ` zpY q ď b1pY q ` zpY q “ bpY q, concluding the proof.

5.2 The algorithm

The aim of this section is to prove Theorem 5 and Theorem 6. Theorem 5 extends the result
of Király et al. [33] from matroids to g-polymatroids. However, adapting their algorithm is not
immediate due to the following major differences. A crucial step of their approach is to relax the
problem by deleting a constraint corresponding to a hyperedge ε with small gpεq value. This step
is feasible when the solution is a 0´1 vector, but it is not applicable for g-polymatroids (or even
for polymatroids) where an integral element might have coordinates larger than 1. This difficulty
is compounded by the presence of multiplicity vectors, that makes both the computations and the
tracking of changes after hyperedge deletions more complicated. Finally, in contrast to matroids
that are defined by a submodular function (the rank function), g-polymatroids are determined by
a pair of supermodular and submodular functions. Thus the structure of the family of tight sets is
more complex, which affects the proof of one of the key claims (Claim 16).

We start by formulating a linear programming relaxation for the Bounded Degree g-poly-
matroid Element Problem:

minimize
ÿ

sPS

cpsq xpsq

subject to ppZq ď xpZq ď bpZq @Z Ď S(LP)

fpεq ď
ÿ

sPε

mεpsqxpsq ď gpεq @ε P E

Although the program has an exponential number of constraints, it can be separated in poly-
nomial time using submodular minimization [28, 41, 46]. Algorithm 3 generalizes the approach by
Király et al. [33]. We iteratively solve the linear program, delete elements which get a zero value in
the solution, update the solution values and perform a contraction on the polymatroid, or remove
constraints arising from the hypergraph. In the first round, the bounds on the coordinates solely
depend on p and b, while in the subsequent rounds the whole problem is restricted to the unit cube.

Theorem 5. There is an algorithm for the Bounded Degree g-polymatroid Element with
Multiplicities problem which returns an integral element x of Qpp, bq of cost at most the optimum
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Algorithm 3 Approximation algorithm for the Bounded Degree g-polymatroid Element
with Multiplicities problem.

Input: A g-polymatroid Qpp, bq on ground set S, cost function c : S Ñ R, a hypergraph H “ pS, Eq,
lower and upper bounds f, g : E Ñ Zě0, multiplicities mε : S Ñ Zě0 for ε P E satisfying mεpsq “ 0 for
s P S ´ ε.
Output: z P Qpp, bq of cost at most OPTLP , violating the hyperedge constraints by at most 2∆´ 1.

1: Initialize zpsq Ð 0 for every s P S.
2: while S ‰ H do
3: Compute a basic optimal solution x for (LP).

(Note: starting from the second iteration, 0 ď x ď 1.)
a: Delete any element s with xpsq “ 0. Update each hyperedge εÐ ε´ s and mεpsq Ð 0.

Update the g-polymatroid Qpp, bq Ð Qpp, bqzs by deletion.
b: For all s P S update zpsq Ð zpsq ` txupsq.

Apply polymatroid contraction Qpp, bq Ð Qpp, bq{txu, that is, redefine ppY q :“ ppY q ´ txupY q
and bpY q :“ bpY q ´ txupY q for every Y Ď S.

Update fpεq Ð fpεq ´
ÿ

sPε

mεpsqtxupsq and gpεq Ð gpεq ´
ÿ

sPε

mεpsqtxupsq for each ε P E .

c: If mεpεq ď 2∆´ 1, let E Ð E ´ ε.
d: if it is the first iteration then

Take the intersection ofQpp, bq and the unit cube r0, 1sS , that is, ppY q :“ maxtppY 1q´|Y 1´Y | |
Y 1 Ď Su and bpY q :“ mintbpY 1q ` |Y ´ Y 1| | Y 1 Ď Su for every Y Ď S.

4: return z

value such that fpεq ´ 2∆ ` 1 ď
ř

sPεmεpsqxpsq ď gpεq ` 2∆ ´ 1 for each ε P E, where ∆ “

maxsPS t
ř

εPE:sPεmεpsqu. The run time of the algorithm is polynomial in n and log
ř

ε pfpεq ` gpεqq.

Proof. Our algorithm is presented as Algorithm 1.

Correctness. First we show that if the algorithm terminates then the returned solution z satisfies
the requirements of the theorem. In a single iteration, the g-polymatroid Qpp, bq is updated to
pQpp, bqzDq{txu, where D “ ts : xpsq “ 0u is the set of deleted elements. In the first iteration, the
g-polymatroid thus obtained is further intersected with the unit cube. By Lemma 15, the vector
x´ txu restricted to S ´D remains a feasible solution for the modified linear program in the next
iteration. Note that this vector is contained in the unit cube as its coordinates are between 0 and 1.
This remains true when a lower degree constraint is removed in Step 3.c as well, therefore the cost
of z plus the cost of an optimal LP solution does not increase throughout the procedure. Hence the
cost of the output z is at most the cost of the initial LP solution, which is at most the optimum.

By Lemma 15, the vector x´txu`z is contained in the original g-polymatroid, although it might
violate some of the lower and upper bounds on the hyperdeges. We only remove the constraints
corresponding to the lower and upper bounds for a hyperedge ε when mεpεq ď 2∆ ´ 1. As the
g-polymatroid is restricted to the unit cube after the first iteration, these constraints are violated
by at most 2∆´1, as the total value of

ř

sPεmεpsqzpsq can change by a value between 0 and 2∆´1
in the remaining iterations.

It remains to show that the algorithm terminates successfully. The proof is based on similar
arguments as in Király et al. [33, proof of Theorem 2].

Termination. Suppose, for sake of contradiction, that the algorithm does not terminate. Then
there is some iteration after which none of the simplifications in Steps 3.a to 3.c can be performed.
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This implies that for the current basic LP solution x it holds 0 ă xpsq ă 1 for each s P S and
mεpεq ě 2∆ for each ε P E . We say that a set Y is p-tight (or b-tight) if xpY q “ ppY q (or
xpY q “ bpY q), and let T p “ tY Ď S : xpY q “ ppY qu and T b “ tY Ď S : xpY q “ bpY qu denote the
collections of p-tight and b-tight sets with respect to solution x.

Let L be a maximal independent laminar system in T p Y T b.

Claim 16. span ptχZ | Z P Luq “ span ptχZ | Z P T p Y T buq

Proof of Claim 16. The proof uses an uncrossing argument. Let us suppose indirectly that there
is a set R from T p Y T b for which χR R span ptχZ | Z P Luq. Choose this set R so that it is
incomparable to as few sets of L as possible. Without loss of generality, we may assume that
R P T p. Now choose a set T P L that is incomparable to R. Note that such a set necessarily exists
as the laminar system is maximal. We distinguish two cases.
Case 1. T P T p. Because of the supermodularity of p, we have

xpRq ` xpT q “ ppRq ` ppT q ď ppRY T q ` ppRX T q ď xpRY T q ` xpRX T q

“ xpRq ` xpT q,

hence equality holds throughout. That is, R Y T and R X T are in T p as well. In addition, since
χR`χT “ χRYT`χRXT and χR is not in span ptχZ | Z P Luq, either χRYT or χRXT is not contained
in span ptχZ | Z P Luq. However, both R Y T and R X T are incomparable with fewer sets of L
than R, which is a contradiction.
Case 2. T P T b. Because of the cross-inequality, we have

xpT q ´ xpRq “ bpT q ´ ppRq ě bpT zRq ´ ppRzT q ě xpT zRq ´ xpRzT q

“ xpT q ´ xpRq,

implying T zR P T b and RzT P T p. Since χR ` χT “ χRzT ` χRzT ` 2 χRYT and χR is not in
span ptχZ | Z P Luq, one of the vectors χRzT , χRzT and χRYT is not contained in span ptχZ | Z P Luq.
However, any of these three sets is incomparable with fewer sets of L than R, which is a contradic-
tion.

The case when R P T b is analogous to the above. This completes the proof of the Claim. ♦

We say that a hyperedge ε P E is tight if fpεq “
ř

sPεmεpsqxpsq or gpεq “
ř

sPεmεpsqxpsq.
As x is a basic solution, there is a set E 1 Ď E of tight hyperedges such that tmε | ε P E 1u Y
tχZ | Z P Lu are linearly independent vectors with |E 1| ` |L| “ |S|.

We derive a contradiction using a token-counting argument. We assign 2∆ tokens to each
element s P S, accounting for a total of 2∆|S| tokens. The tokens are then redistributed in such
a way that each hyperedge in E 1 and each set in L collects at least 2∆ tokens, while at least one
extra token remains. This implies that 2∆|S| ą 2∆|E 1| ` 2∆|L|, leading to a contradiction.

We redistribute the tokens as follows. Each element s gives ∆ tokens to the smallest mem-
ber in L it is contained in, and mεpsq tokens to each hyperedge ε P E 1 it is contained in. As
ř

εPE:sPεmεpsq ď ∆ holds for every element s P S, thus we redistribute at most 2∆ tokens per
element and so the redistribution step is valid. Now consider any set U P L. Recall that LmaxpUq
consists of the maximal members of L lying inside U . Then U ´

Ť

WPLmaxpUqW ‰ H, as otherwise
χU “

ř

WPLmaxpUq χW , contradicting the independence of L. For every set Z in L, xpZq is an
integer, meaning that xpU ´

Ť

WPLmaxpUqW q is an integer. But also 0 ă xpsq ă 1 for every s P S,
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which means that U ´
Ť

WPLmaxpUqW contains at least 2 elements. Therefore, each set U in L
receives at least 2∆ tokens, as required. By assumption, mεpεq ě 2∆ for every hyperedge ε P E 1,
which means that each hyperedge in E 1 receives at least 2∆ tokens, as required.

If
ř

εPE 1:sPεmεpsq ď ∆ holds for any s P S or LmaxpSq is not a partition of S, then an extra
token exists. Otherwise,

ř

εPE 1mε “ ∆ ¨ χS “ ∆ ¨
ř

WPLmaxpSq χW , contradicting the independence

of tmε | ε P E 1u Y tχZ | Z P Lu.

Time complexity. Solving an LP, as well as removing a hyperedge in Step 3.a or removing an
element from a hyperedge in Step 3.c can be done in polynomial time. In Steps 3.b and 3.d, we
calculate the value of the current functions p and b for a set Y only when it is needed during the
ellipsoid method. We keep track of the vectors txu that arise during contraction steps (there is only
a polynomial number of them), and every time a query for p or b happens, it takes into account
every contraction and removal that occurred until that point.

Step 3.a can be repeated at most |S| times, while Step 3.c can be repeated at most |E | times.
Starting from the second iteration, we are working in the unit cube. That is, when Step 3.b adds
the integer part of a variable xpsq to zpsq and reduces the problem, then the given variable will be 0
in the next iteration and so element s is deleted. This means that the total number of iterations of
Step 3.b is at most Op|S|q.

Now we consider case when only lower or only upper bounds are given.

Theorem 6. There is an algorithm for Lower Bounded Degree g-polymatroid Element
with Multiplicities which returns an integral element x of Qpp, bq of cost at most the optimum
value such that fpεq´∆`1 ď

ř

sPεmεpsqxpsq for each ε P E. An analogous result holds for Upper
Bounded Degree g-polymatroid Element, where

ř

sPεmεpsqxpsq ď gpεq ` ∆ ´ 1. The run
time of these algorithms is polynomial in n and log

ř

ε fpεq or log
ř

ε gpεq, respectively.

Proof. The proof is similar to the proof of Theorem 5, the main difference appears in the counting
argument. When only lower bounds are present, the condition in Step 3.c changes: we delete a
hyperedge ε if fpεq ď ∆ ´ 1. Suppose, for the sake of contradiction, that the algorithm does not
terminate. Then there is an iteration after which none of the simplifications in Steps 3.a to 3.c can
be performed. This implies that in the current basic solution 0 ă xpsq ă 1 holds for each s P S and
fpεq ě ∆ for each ε P E . We choose a subset E 1 Ď E and a maximal independent laminar system L
of tight sets the same way as in the proof of Theorem 5. Recall that |E 1| ` |L| “ |S|.

Let Z1, . . . , Zk denote the members of the laminar system L. As L is an independent system,
Zi ´

Ť

WPLmaxpZiq
W ‰ H. Since xpsq ă 1 for all s P S,

xpZi ´
ď

WPLmaxpZiq

W q ă |Zi ´
ď

WPLmaxpZiq

W | .

As we have integers on both sides of this inequality, we get

|Zi ´
ď

WPLmaxpZiq

W | ´ xpZi ´
ď

WPLmaxpZiq

W q ě 1 for all i “ 1, . . . , k .
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Moreover,
ř

sPεmεpsqxpsq ě fpεq ě ∆ for all hyperedges; therefore,

|E 1| ` |L| ď
ÿ

εPE 1

ř

sPεmεpsqxpsq

∆
`

k
ÿ

i“1

»

–|Zi ´
ď

WPLmaxpZiq

W | ´ xpZi ´
ď

WPLmaxpZiq

W q

fi

fl

“
ÿ

sPS

xpsq

∆

ÿ

εPE 1
sPε

mεpsq `
ÿ

WPLmaxpSq

|W | ´
ÿ

WPLmaxpSq

xpW q ď |S| .

In the last line, the first term is at most xpSq since
ř

εPE:sPεmεpsq ď ∆ holds for each element s P S.
From xpSq ´

ř

WPLmaxpSq xpW q ď |S| ´
ř

WPLmaxpSq |W | the upper bound of |S| follows. As |S| “

|L| ` |E 1|, we have equality throughout. This implies that

ÿ

εPE 1
mε “ ∆ ¨ χS “ ∆ ¨

ÿ

WPLmaxpSq

χW ,

contradicting linear independence.
If only upper bounds are present, we remove a hyperedge ε in Step 3.c when gpεq`∆´1 ě mεpεq.

Suppose, for the sake of contradiction, that the algorithm does not terminate. Then there is an
iteration after which none of the simplifications in Steps 3.a to 3.c can be performed. This implies
that in the current basic solution 0 ă xpsq ă 1 holds for each s P S and mεpεq ´ gpεq ě ∆ for each
ε P E . Again, we choose a subset E 1 Ď E and a maximal independent laminar system L of tight
sets the same way as in the proof of Theorem 5.

Let Z1, . . . , Zk denote the members of the laminar system L. As L is an independent system,
Zi ´

Ť

WPLmaxpZiq
W ‰ H and so

xpZi ´
ď

WPLmaxpZiq

W q ě 1 .

By
ř

sPεmεpsqxpsq ď gpεq, we get
ř

sPεmεpsq ´
ř

sPεmεpsqxpsq ě mεpεq ´ gpεq ě ∆. Thus,

|E 1| ` |L| ď
ÿ

εPE 1

ř

sPεmεpsq ´
ř

sPεmεpsqxpsq

∆
`

k
ÿ

i“1

xpZi ´
ď

WPLmaxpZiq

W q

“
ÿ

sPS

1´ xpsq

∆

ÿ

εPE 1
sPε

mεpsq `
ÿ

WPLmaxpSq

xpW q

ď
ÿ

sPS

1´ xpsq

∆

ÿ

εPE 1
sPε

mεpsq ` xpSq ď |S| .

In the last line, the first term is at most |S|´xpSq since
ř

εPE:sPεmεpsq ď ∆ holds for every element
s P S. Therefore, the upper bound of |S| follows. As |S| “ |L| ` |E 1|, we have equality throughout.
This implies that

ř

εPE 1mε “ ∆ ¨ χS “ ∆ ¨
ř

WPLmaxpSq χW , contradicting linear independence.

Remark 4. Note that Theorems 5 and 6 only provide a solution if there exists a (fractional) solution
to the underlying linear program in (LP). Consequently, Theorem 4 only provides a solution if the
polytope PCG in Equation (1) is not empty.
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We have seen in Section 5.1 that base polymatroids are special cases of g-polymatroids. This
implies that the results of Theorem 6 immediately apply to polymatroids. In the Lower Bounded
Degree Polymatroid Basis with Multiplicities problem, we are given a base polymatroid
Bpbq “ pS, bq with a cost function c : S Ñ R, and a hypergraph H “ pS, Eq on the same ground
set. The input contains lower bounds f : E Ñ Zě0 and multiplicity vectors mε : ε Ñ Zě1 for
every hyperedge ε P E . The objective is to find a minimum-cost element x P Bpbq such that
fpεq ď

ř

sPεmεpsqxpsq holds for each ε P E .

Corollary 17. There is a polynomial-time algorithm for the Lower Bounded Degree Poly-
matroid Basis with Multiplicities problem which returns an integral element x of Bpbq of cost
at most the optimum value such that fpεq ´∆` 1 ď

ř

sPεmεpsqxpsq for each ε P E.

5.3 Proof of Theorem 4

In this section we show that Algorithm 3 can be applied in order to obtain an approximation to
the Minimum Bounded Degree Connected Multigraph with Edge Bounds problem, as
described in Theorem 4.

Theorem 4. There is an algorithm for the Minimum Bounded Degree Connected Multi-
graph with Edge Bounds problem that, in time polynomial in n and log

ř

v ρpvq, returns a
connected multigraph T with ρpV q{2 edges, where each vertex v has degree at least ρpvq ´ 1 and the
cost of T is at most the cost of mintcTx | x P PCGpρ, L, Uqu, where

(1) PCGpρ, L, Uq :“

$

’

’

&

’

’

%

x P RE
ě0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

supppxq is connected
xpEq “ ρpV q{2

xp 9δpvqq ě ρpvq @v P V
Lpvwq ď xpvwq ď Upvwq @v, w P V

,

/

/

.

/

/

-

.

Let us take a Minimum Bounded Degree Connected Multigraph with Edge Bounds
problem instance pG, c, ρ, L, Uq on a graph GpV,Eq, where c, ρ, L, U are non-negative and ρpV q “
ř

vPV ρpvq is even. 6 Note that we do not require c to satisfy the triangle inequality. We start
with defining the specific input variables passed over Algorithm 3. Then, we show that given the
specified input, the algorithm yields an approximate solution to the Minimum Bounded Degree
Connected Multigraph with Edge Bounds problem. From now on we use ρ̂ “ ρpV q{2´|V |`1.

We first set the base set S as the edge set E of our original graph G. In the hypergraph
H “ pS, Eq, the elements of S thus correspond to the edges of G. Moreover, there is a hyperedge ε
for every vertex in V , defined the following way: E :“ tδpvq | v P V u. The multiplicity of an element
s in a hyperedge ε is 1, that is, mεpsq :“ 1 if s corresponds to a regular edge e P E, and mεpsq :“ 2
if s corresponds to a self-loop. We set the lower bound f for a hyperedge ε according to the degree
requirement of the corresponding vertex v, that is fpεq :“ ρpvq.

We now define the second input of Algorithm 3, a g-polymatroid QpS, p, bq. This is done in
two steps, by first defining an auxiliary polymatroid Q1pS, p1, b1q, then taking the intersection of the
g-polymatroid Q1 with a box. We define the border function p1 as the zero vector on S, and b1pZq
as follows:

6Due to the handshaking lemma, the sum of degrees in a graph is even, therefore ρpV q being even is necessary.

28



Lemma 18. Let b1 denote the following function defined on sets Z Ď S:

(16) b1pZq “

#

|V pZq| ´ comppZq ` ρ̂, if Z ‰ H,

0, otherwise .

Then b1 is a polymatroid function.

Proof. By definition, b1pHq “ 0 and b is monotone increasing. It remains to show that b1 is
submodular. Let X,Y Ď S. The submodular inequality clearly holds if one of X and Y is
empty. If none of X and Y is empty then the submodular inequality follows from the fact that
|V pZq| ´ comppZq is the rank function of the graphical matroid.

Consider the g-polymatroid Bpp1, b1q determined by the border functions defined in Equa-
tion (16). Let us define the set B “ tx P ZEě0 : xpEq “ ρpV q{2, supppxq is connectedu.

Lemma 19. B “ Bpp1, b1q X ZEě0.

Proof. Take an integral element x P Bpp1, b1q and let C Ď E be an arbitrary cut between V1 and V2
for some partition V1 Z V2 of V . Then

xpCq “ xpEq ´ x
`

EpV1q Y EpV2q
˘

ě |V | ´ 1` ρ̂´ p|V1| ` |V2| ´ comp
`

EpV1q Y EpV2q
˘

` ρ̂q

ě 1,

thus supppxq is connected. As xpEq “ |V | ´ 1 ` ρ̂ “ ρpV q{2, we obtain x P B, showing that
Bpp1, b1q Ď B.

To see the other direction, take an element x P B. As supppxq is connected, xpE ´ F q ě
comppF q ` |V | ´ |V pF q| ´ 1 for every F Ď E. That is,

xpF q “ xpEq ´ xpE ´ F q

ď rpV q ´ p|V ´ V pF q| ` comppF q ´ 1q

“ |V pF q| ´ comppF q ` ρ̂,

thus xpF q ď b1pF q. As xpEq “ rpV q “ |V |´1`ρ̂, we obtain x P Bpp1, b1q, showing B Ď Bpp1, b1q.

So far we proved that the integral points of Q1pS, p1, b1q correspond to a connected multigraph
on V that has ρpV q{2 edges. Let βpL,Uq be the box defined by

βpL,Uq :“
 

x P RS
ě0 | Lpsq ď xpsq ď Upsq @s P S

(

.

Let us define the polymatroid Q “ pS, p, bq as the intersection of the polymatroid Q1 and the
box β, where the border functions p, b are defined as in Equation (15). We now prove that taking
H “ pS, Eq and QpS, p, bq as input, the output of Algorithm 3 corresponds to a multigraph with
the properties stated in Theorem 4.

Proof of Theorem 4. Consider the linear program (LP) that is defined in the iterative rounding
method for the g-Polymatroid Element with Multiplicities problem. The constraints re-
garding the bounds on the hyperedges imply ρpvq ď xp 9δpvqq for every v P V : note that mεpsq “ 2
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for self loops and 1 for simple edges, and this equals to the contribution of an edge uv to the value
xp 9δpvqq. This, together with Lemma 19 and the fact that x is contained in the box βpL,Uq, implies
that Algorithm 3 returns an integral solution z such that the cost of z is at most the minimum cost
element of PCG.

According to Theorem 6, the integral solution z violates the bounds f on the hyperedges by
at most ∆ ´ 1, where ∆ :“ maxsPS t

ř

εPE:sPεmεpsqu. But we defined mεpsq to be equal to 2
if s corrensponds to a self-loop in G and 1 otherwise, meaning that the solution z violates the
bounds on the hyperedges f and thus the bounds on the vertices ρ by at most 1. The solution z
is also connected, with a total number of edges ρpV q{2 and z satisfies the edge bounds L,U ; due to
Theorem 6. Therefore, the solution z corresponds to a multigraph, that admits the properties in
the claim of Theorem 4.

5.4 Strongly polynomial time implementation

The transportation problem in Algorithm 1 can be solved in strongly polynomial time [34, 43].
Computing compact path-cycle representations uses the algorithm of Grigoriev and van de Klun-
dert [23]; which, along with computing the Eulerian trail and making shortcuts, can be done in
strongly polynomial time. Moreover, the algorithm uses the 3{2-approximation for the Path TSP
by Zenklusen [58] as a black-box, which can also be implemented in strongly polynomial time.
Making shortcuts in Algorithm 1 can be performed in strongly polynomial time as well, thus we
can find a 5{2-approximation for the metric Many-visits Path TSP in strongly polynomial time.

Algorithm 2 involves solving three types of LPs. According to §58.5 in Schrijver’s book [47], if
the feasibility of a linear program for a vector x can be tested in polynomial time, then the ellipsoid
method can find a solution in strongly polynomial time.

In Step 1, we calculate an optimal solution to PMV
HK as defined in Equation (2), while a number

of linear programs of form LPpaq arise throughout the dynamic program in Step 2. The feasibility
of the cut constraints can be checked in strongly polynomial time, by solving a minimum cut
problem. The number of degree constraints in both types of these LPs and the number of constraints
xpδpBqq ě 3 in (LPpaq) is polynomial in n. Finally, in (LP), the number of constraints involving
hyperedges is polynomial in n, and one can check the feasibility of the constraints involving the
border functions using submodular minimization [29]. This means all of the linear programs arising
in Algorithm 2 can be solved in strongly polynomial time.

According to Lemma 10, the number of cuts in B is polynomial in n, hence Steps 1, 2 and 4
can be performed in strongly polynomial time. This is true for computing a matching in Step 5,
as well as all the remaining graph operations, using the same arguments as in case of Algorithm 1.
Therefore we provide a 3{2-approximation for the metric Many-visits Path TSP in strongly
polynomial time.

6 Discussion

In this paper we gave an approximation algorithm for a far-reaching generalization of the metric
Path TSP, the metric Many-visits Path TSP where each city v has a (potentially exponentially
large) requirement rpvq ě 1. Our algorithm yields a 3{2-approximation for the metric Many-visits
Path TSP in time polynomial in the number n of cities and the logarithm of the rpvq’s. It therefore
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generalizes the recent fundamental result by Zenklusen [58], who obtained a 3{2-approximation for
the metric Path TSP, finishing a long history of research.

At the heart of our algorithm is the first polynomial-time approximation algorithm for the
minimum-cost degree bounded g-polymatroid element with multiplicities problem. That algorithm
yields a solution of cost at most the optimum, which violates the lower bounds only by a constant
factor depending on the weighted maximum element frequency ∆.

Finally, we show a simple approach, that gives a 5{2-approximation for the metric Many-visits
TSP in strongly polynomial time, and an Op1q-approximation for the metric Many-visits ATSP
in polynomial time.
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[4] K. Bérczi, A. Berger, M. Mnich, and R. Vincze. Degree-bounded generalized polymatroids
and approximating the metric many-visits TSP. Technical report, 2019. https://arxiv.org/
abs/1911.09890.

[5] A. Berger, L. Kozma, M. Mnich, and R. Vincze. Time- and space-optimal algorithm for the
many-visits TSP. ACM Trans. Algorithms, 2020.

[6] L. Bianco, P. Dell’Olmo, and S. Giordani. Minimizing total completion time subject to release
dates and sequence-dependent processing times. Ann. Oper. Res., 86:393–415, 1999.

[7] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. A push-relabel approximation algorithm
for approximating the minimum-degree MST problem and its generalization to matroids. The-
oret. Comput. Sci., 410(44):4489–4503, 2009.

[8] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. What would Edmonds do? Augmenting
paths and witnesses for degree-bounded MSTs. Algorithmica, 55(1):157–189, 2009.

[9] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical Report 388, Carnegie Mellon University, 1976.

31

https://arxiv.org/abs/1911.09890
https://arxiv.org/abs/1911.09890


[10] S. S. Cosmadakis and C. H. Papadimitriou. The traveling salesman problem with many visits
to few cities. SIAM J. Comput., 13(1):99–108, 1984.

[11] M. A. Deppert and K. Jansen. Near-linear approximation algorithms for scheduling problems
with batch setup times. In Proc. SPAA 2019, 2019.

[12] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Struc-
tures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pages 69–87.
Gordon and Breach, New York, 1970.

[13] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. In Combinatorial Structures and their Applications (Proc. Calgary Internat.
Conf., Calgary, Alta., 1969), pages 93–96. Gordon and Breach, New York, 1970.

[14] U. Feige and M. Singh. Improved approximation ratios for traveling salesperson tours and
paths in directed graphs. In Proc. APPROX-RANDOM 2007, pages 104–118. 2007.

[15] H. Fleischner. Eulerian graphs and related topics. Part 1. Vol. 2, volume 50 of Annals of
Discrete Mathematics. North-Holland Publishing Co., Amsterdam, 1991.

[16] A. Frank. Generalized polymatroids. In Finite and infinite sets, pages 285–294. 1984.

[17] A. Frank. Connections in combinatorial optimization, volume 38 of Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press, Oxford, 2011.
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