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In this paper, we investigate the Hausdorff dimension of the invariant measures of the iterated function system
(IFS) {αx, βx, γx + (1 − γ)}. We provide an "almost every" type result by a direct application of the results
of Feng and Hu [5] and Kamalutdinov and Tetenov [9].
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1 Introduction and Statement

Let S = {S1, . . . , Sm} be a family of contracing similarities on the real line, that is, Si(x) = rix + ti for some
−1 < ri < 1 and ti ∈ R. It is well known that there exists a unique, nonempty compact set Λ ⊂ R such that

Λ =

m⋃
i=1

Si(Λ),

see Hutchinson [8]. We call the set Λ self-similar set or the attractor of the iterated function system (IFS) S .
Hutchinson [8] also showed that for every probability vector p = (p1, . . . , pm) there exists a unique, compactly
supported Borel probability measure ν such that

ν =

m∑
i=1

pi(Si)∗ν.

We call the measure ν self-similar measure or invariant measure with respect to the IFS S and probability vector
p.

One of the most important topics in the field of fractal geometry is the dimension theory of self-similar sets and
measures. Let us denote the Hausdorff dimension of Borel subset A of R by dimH A. Moreover, let us denote
the t-dimensional Hausdorff measure with Ht. For the definition and basic properties of Hausdorff dimension
and measure we refer the reader to [2]. One can define the (lower and upper) Hausdorff dimension of a Borel
measure µ on R as

dimHµ = inf{dimH A : µ(A) > 0},
dimHµ = inf{dimH A : µ(R \A) = 0}.

These quantities are related to the local dimension of the measure µ. Precisely, let

dµ(x) = lim inf
r→0

logµ(B(x, r))

log r
and dµ(x) = lim sup

r→0

logµ(B(x, r))

log r
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2 B. Bárány and E. Szvák: Dimension of self-similar measures with overlaps

be respectively the lower and upper local dimension of the measure µ at the point x, where B(x, r) denotes the
ball with radius r and centered at x. Then

dimHµ = ess inf
x∼µ

dµ(x) and dimHµ = ess sup
x∼µ

dµ(x).

For proofs, see [3]. Moreover, we say that the measure µ is exact dimensional if there exists a constant c such
that for µ-almost every x dµ(x) = dµ(x) = c. In this case, dimHµ = dimHµ = c, which value is denoted by
dimH µ.

It is natural to associate the points of Λ with infinite sequences of symbols A = {1, . . . ,m}. That is, let
Σ = {1, . . . ,m}N+

and let π : Σ→ Λ be the natural projection

π(i1, i2, . . .) = lim
n→∞

Si1 ◦ · · · ◦ Sin(0).

Hence, Λ = π(Σ). Moreover, if µ = {p1, . . . , pm}N
+

is the Bernoulli measure on Σ then ν = π∗µ = µ ◦ π−1 is
the self-similar measure with respect to the IFS S and probability vector p. We denote the left shift operator on
Σ with σ.

For a finite word i = (i1, . . . , in) ∈ A∗, let Si = Si1 ◦ · · · ◦ Sin and ri =
∏n
k=0 rik . If i = (i1, . . . , in) ∈ A∗,

then we will use the notation [i] = {j ∈ Σ : j1 = i1, . . . , jn = in}. Moreover, if i = (i1, . . . , in) ∈ A∗ and
j = (j1, j2, . . .) ∈ A∗ ∪ Σ, then let i ∗ j = (i1, i2, . . . , in, j1, j2, . . .) be the concatenation of the words i and j.
For an i = (i1, i2, . . .) ∈ Σ and n ≥ 1, let i|n = (i1, . . . , in).

The Hausdorff dimension of the self-similar sets and measures is well understood if some separation holds
between the functions of the IFS. Namely, we say that the IFS S = {S1, . . . , Sm} satisfies the open set condition
(OSC) if there exists an open set U 6= ∅ such that

Si(U) ⊆ U for every i = 1, . . . ,m and Si(U) ∩ Sj(U) = ∅ for i 6= j.

Hutchinson [8] showed that under the OSC for the attractor Λ and invariant measure ν,

dimH Λ = s0, where
m∑
i=1

|ri|s0 = 1 and

dimH ν =
hν
χν
, where hν = −

m∑
i=1

pi log pi and χν = −
m∑
i=1

pi log |ri|.

The quantity hν is called the entropy of ν and χν is called the Lyapunov exponent of ν.
The situation becomes more difficult when overlaps occur in the structure of the self-similar set. In general,

dimH Λ ≤ min{1, s0} and dimH ν ≤ min{1, hν
χν
}.

Lau and Ngai [10] introduced the weak separation condition (WSC), which allows exact overlaps between
the cylinders but otherwise the cylinders are "well separated". That is, the identity is an isolated point of {Si ◦
S−1
j }i,j∈A∗ . Zerner [17] showed that if WSC holds then 0 < HdimH Λ(Λ) <∞. Recently, Farkas and Fraser [4]

showed that for a self-similar set Λ on the real line, 0 < HdimH Λ(Λ) < ∞ if and only if the corresponding IFS
satisfies the WSC.

Feng and Hu [5] showed that any self-similar measure ν is exact dimensional, regardless of separation. They
also presented a formula for the dimension of the measure, which relies on the push-back of the Borel σ-algebra
from R to Σ. For precise details see Section 3. The formula is usually very hard to calculate, and according to the
best knowledge of ours, it has not been used to determine the value dimH ν directly other than the cases of OSC
or WSC. The purpose of this paper is to present an example, for which WSC does not hold, but it is possible to
apply Feng and Hu’s result [5] directly.

According to our best knowledge, Pollicott and Simon [12] studied first a special family of parameterized
self-similar IFS’s, for which the WSC does not hold typically but they managed to calculate the Hausdorff di-
mension of the self-similar set for Lebesgue almost every parameters. In their paper, they introduced the so-called
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transversality condition. Later, the transversality condition had several applications in the dimension theory of
iterated function systems.

We say that a parameterized family of IFS’s Sλ = {S(λ)
i (x) = ri(λ)x+ ti(λ)}mi=1 satisfies the transversality

condition over the open set parameter space U ⊆ Rd if there exists δ > 0 such that for every i, j ∈ Σ with i1 6= j1

if |πλ(i)− πλ(j)| < δ for λ ∈ U then ‖gradλ(πλ(i)− πλ(j))‖ > δ. (1.1)

Simon and Solomyak [15] showed that for Lebesgue almost every t = (t1, . . . , tm) ∈ Rm

dimH Λt = min{1, s0},

where Λt is the attractor of St = {Si(x) = rix+ ti}mi=1. Similarly, Simon, Solomyak and Urbański [16] showed
that if maxi 6=j |ri|+ |rj | < 1 then

dimH νt = min{1,
∑m
i=1 pi log pi∑m
i=1 pi log |ri|

} for Lebesgue almost every t = (t1, . . . , tm) ∈ Rm,

where νt is the invariant measure w.r.t. St and the probability vector p = (p1, . . . , pm).
The folklore conjecture of fractal geometry claims that dimension drop (dimH Λ < min{1, s0}) can occur

only via exact overlaps, see Hochman [7], but it has not been verified so far. Hochman [7, Theorem 1.1] gave
a strong sufficient condition in case of self-similar systems, using methods from additive combinatorics, which
ensures that there is no dimension drop. This condition is often referred as exponential separation or Diophantine
condition. Precisely, we say that the exponential separation condition holds if

lim sup
n→∞

1

n
log min

i6=j∈An
ri=rj

|Si(0)− Sj(0)| > −∞.

Hochman [7, Theorem 1.8] also showed the atypicality of the dimension drop in a stronger sense, namely, for
any real analytic and non-degenerate parameterisations λ 7→ ri(λ) and λ 7→ ti(λ) for λ ∈ U ⊆ R,

dimH{λ : dimH Λλ < min{1, s0(λ)}} = dimH{λ : dimH(πλ)∗µ < min{1, hν
χν
}} = 0.

In this paper, we have a special interest in the following family of self-similar IFS’s.

Sα,β,γ = {S1(x) = αx, S2(x) = βx, S3(x) = γx+ 1− γ}, (1.2)

where 0 < α, β, γ < 1 and max{α, β} + γ < 1. The system Sα,β,γ has a very special structure, namely
S1 ◦ S2 ≡ S2 ◦ S1. Thus, Sα,β,γ does not satisfy the transversality, nor the exponential separation condition.
Also it is easy to see if logα/ log β /∈ Q and α, β, γ < 1/3 then Sα,β,γ does not satisfy the WSC, and thus,
HdimH Λα,β,γ (Λα,β,γ) = 0, see for example Fraser [6, Section 3.1].

The first author [1] already considered the Hausdorff dimension of the attractor for every fixed value of 0 <
β, γ < 1 with 0 < β + γ < 1 and Lebesgue almost every α ∈ (0, β). The proof was based on sufficiently large
subsystems, which satisfy the transversality condition. Using the result of Hochman [7], one can provide a better
estimate on the exceptional set.

Proposition 1.1 Let Sα,β,γ be the IFS defined in (1.2) and let Λα,β,γ be the attractor of Sα,β,γ . Then for every
0 < β, γ < 1 with β + γ < 1 there exists a set E ⊂ (0, β) such that dimH E = 0 and for every α ∈ (0, β) \ E,

dimH Λα,β,γ = min{1, s1}, where s1 is the unique solution of αs1 + βs1 + γs1 − αs1βs1 = 1.

For the completeness, we give the proof here.

P r o o f. Let 0 < β, γ < 1 with β + γ < 1 be arbitrary but fixed. Let Snα,β,γ := {Si}i∈Cn with attractor
Λnα,β,γ , where

Cn = {(
k︷ ︸︸ ︷

1 · · · 1
`︷ ︸︸ ︷

2 · · · 2 3) : k + ` ≤ n}.
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4 B. Bárány and E. Szvák: Dimension of self-similar measures with overlaps

By [1, Proposition 3.2], for every ε > 0 the IFS Snα,β,γ satisfies the transversality condition (1.1) on (ε, β−ε) with
respect to the parameter α. Hence, by [7, Theorem 1.8], there exists a set Eβ,γn ⊂ (0, β) with dimH E

β,γ
n = 0

such that for every α ∈ (0, β) \ Eβ,γn

dimH Λnα,β,γ = min{1, ŝn}, where γŝn
n∑
k=0

k∑
`=0

α`ŝnβ(k−`)ŝn = 1.

It is easy to see that limn→∞ ŝn = s1, where s1 is defined in the statement of the proposition. Thus, for every
α ∈ (0, β) \

⋃∞
n=0E

β,γ
n

dimH Λα,β,γ ≥ min{1, s1}.

The upper bound follows by [1, Lemma 3.5, and the Proof of Theorem 1.1].

Unfortunately, this method does not allow us to handle the Hausdorff dimension of the corresponding self-
similar measures. Recently, Kamalutdinov and Tetenov [9] studied the so-called two-fold Cantor sets, which
has similar structure to (1.2). Precisely, the considered system {αx, βx, αx + 1 − α, βx + 1 − β}. Based on a
similar method to the transversality, Kamalutdinov and Tetenov [9] showed that for Lebesgue typical parameters
in (0, 1/16)2 the cylinders satisfy certain separation properties.

By adapting the method of Kamalutdinov and Tetenov [9] with a direct application of the result of Feng and
Hu [5], we prove the following.

Theorem 1.2 Let Sα,β,γ be the IFS defined in (1.2) and let να,β,γ be the self-similar measure with probability
vector (p1, p2, p3) and pi > 0 for i = 1, 2, 3. Then for every 0 < β, γ < 1/9 and Lebesgue almost every
α ∈ (0, β)

dimH(να,β,γ) =
−(p1 log(p1) + p2 log(p2) + p3 log(p3)) + Φ(p1, p2, p3)

−(p1 log(α) + p2 log(β) + p3 log(γ))
, (1.3)

where

Φ(p1, p2, p3) =

∞∑
k=1

k∑
m=1

(
k − 1

m− 1

)
p3 log

(m
k

)
(pm1 p

k−m
2 + pk−m1 pm2 ).

The structure of the paper is as follows: in Section 2 we define a certain separation condition (forward separa-
tion), and state some geometric lemmas. In Section 3, we apply Feng and Hu’s formula [5, Theorem 2.8] directly
to calculate the dimension of the invariant measures under forward separation. Finally, using the General Posi-
tioning Theorem of Kamalutdinov and Tetenov [9, Theorem 14], we show that almost every parameters verify
the forward separation property in Section 4.

2 Preliminaries

First, let us state some basic properties of the IFS Sα,β,γ and the attractor Λα,β,γ . For that, we adapt the Sec-
tion 1.2 of [9] to our case and coin the property (i) of [9, Proposition 2] by a term forward separation. Let
Lα,β,γ = S1(Λα,β,γ) ∪ S2(Λα,β,γ) and Rα,β,γ = S3(Λα,β,γ). It is easy to see that Λα,β,γ = Lα,β,γ ∪Rα,β,γ .

Lemma 2.1 For 0 < α, β, γ < 1
2 , we have

1. for all i ∈ {1, 2} and every m,n ∈ N with m 6= n, Smi (Rα,β,γ) ∩ Sni (Rα,β,γ) = ∅,

2. for all m,n ∈ N, Sm1 S
n
2 (Λα,β,γ) ⊆ Sm1 (Λα,β,γ) ∩ Sn2 (Λα,β,γ),

3. Λα,β,γ\{0} =

∞⋃
n,m=0

Sm1 S
n
2 (Rα,β,γ) .
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P r o o f. 1. We prove only for i = 1, the case i = 2 is similar. Let m,n ∈ N m > n. Since γ < 1/2,
Rα,β,γ ⊆ ( 1

2 , 1), and thus Sm1 (Rα,β,γ) ⊆ ( 1
2α

m, αm) and Sn1 (Rα,β,γ) ⊆ ( 1
2α

n, αn). One can see that the
right endpoint of one interval is smaller than the left endpoint of the other interval, that is, αm = α ·αm−1 <
1
2α

m−1 ≤ 1
2α

n.

2. Letm,n ∈ N, then Sm1 (Λα,β,γ) ⊆ Λα,β,γ and Sn2 (Λα,β,γ) ⊆ Λα,β,γ . So, we conclude that Sn2 S
m
1 (Λα,β,γ) ⊆

Sn2 (Λα,β,γ) and Sm1 S
n
2 (Λα,β,γ) ⊆ Sm1 (Λα,β,γ). Using commutativity we can get the statements.

3. It is easy to see that

π−1
α,β,γ(

∞⋃
m,n=0

Sm1 S
n
2 (Rα,β,γ)) = {i ∈ Σ : there exists k ≥ 1 such that ik = 3}. (2.1)

For those i ∈ Σ such that there is no k for which ik = 3, then the image of i is 0.

Now, we introduce a separation property, which allows us to calculate the dimension of invariant measures.

Definition 2.2 We call the system Sα,β,γ forward separated, if α, β, γ ∈ (0, 1
9 ) and

for every m,n ∈ N m,n > 0 Sm1 (Rα,β,γ) ∩ Sn2 (Rα,β,γ) = ∅. (2.2)

Notation 2.3 We denote the disjoint union with t.

Lemma 2.4 The system Sα,β,γ is forward separated if and only if

Λα,β,γ\{0} =

∞⊔
n,m=0

Sm1 S
n
2 (Rα,β,γ). (2.3)

P r o o f. First, we assume that Sα,β,γ is forward separated. Let (m1, n1) 6= (m2, n2), then

Sm1
1 Sn1

2 (Rα,β,γ) = S
min{m1,m2}
1 S

min{n1,n2}
2 (Sk11 Sl12 (Rα,β,γ))

Sm2
1 Sn2

2 (Rα,β,γ) = S
min{m1,m2}
1 S

min{n1,n2}
2 (Sk21 Sl22 (Rα,β,γ))

(2.4)

hold. At least one of k1, k2 is zero and one of l1, l2 is zero. Thus, by the definition the forward separated property,
we get that (2.3) holds.

On the other hand, assume that Λα,β,γ\{0} =
⊔∞
n,m=0 S

m
1 S

n
2 (Rα,β,γ). Then we can get that Sα,β,γ is forward

separated by using the conditon for the indeces (m, 0) and (0, n).

3 Feng and Hu’s formula under forward separation

In this section, we describe Feng and Hu’s formula [5, Theorem 2.8] in details. First, we need some basic
properties of the conditional measures and conditional expectations.

3.1 Conditional measures and expectations

Let Z be a compact metric space. We consider the probability space (Z,B, µ), where B is the Borel σ-algebra of
Z and µ is a probability measure on Z.

Definition 3.1 Let (Z,B, µ) be a probability space as above and let G ⊆ B be an arbitrary sub-σ-algebra.
If ϕ ∈ L1(Z,B, µ), then the function ψ ∈ L1(Z,B, µ) is the conditional expectation of ϕ with respect to the
σ-algebra G, if

1. ψ is G-measurable,

Copyright line will be provided by the publisher



6 B. Bárány and E. Szvák: Dimension of self-similar measures with overlaps

2. for every G ∈ G∫
Z

ϕ(x)1G (x) dµ(x) =

∫
Z

ψ(x)1G (x) dµ(x). (3.1)

Theorem 3.2 Let G ⊆ B be an arbitrary σ-algebra. If ψ and ψ̃ are conditional expectations of the function
ϕ ∈ L1(Z,B, µ) with respect to G, then ψ(z) = ψ̃(z) for µ-almost every z ∈ Z.

We denote the conditional expectation of ϕ ∈ L1(Z,B, µ) with respect to G with Eµ(ϕ|G).
For a collectionB of subsets ofZ, denote σ(B) the generated σ-algebra by the setB. IfAi ⊆ B are σ-algebras

for all i = 1, 2, . . . , then denote
∞∨
i=1

Ai the common refinement of the σ-algebras, that is
∞∨
i=1

Ai = σ

( ∞⋃
i=1

Ai

)
.

We call P ⊆ B a partition of Z, if for every P1 6= P2 ∈ P , P1 ∩ P2 = ∅ and
⋃
P∈P

P = Z. For z ∈ Z, the set

P(z) denotes the unique P(z) ∈ P such that z ∈ P(z).
Let F be a σ-algebra such that there exists some E1, E2, . . . ∈ B for which

F =

∞∨
i=1

{∅, Ei, Z/Ei, Z}. (3.2)

For every n = 1, 2, . . . let Pn be a partition of Z such that

σ(Pn) =

n∨
i=1

{∅, Ei, Z/Ei, Z}, (3.3)

Definition 3.3 The set {µz}z∈Z of Borel probability measures on Z is a system of conditional measures of µ
with respect to the σ-algebra F , if

1. for every E ∈ F , z ∈ E µz(E) = 1 holds for µ-almost every z ∈ Z,

2. for every bounded measurable function ϕ : Z → R the function z 7→
∫
Z

ϕ(x) dµz(x) is F-measurable and

∫
Z

ϕ(x) dµ(x) =

∫
Z

∫
Z

ϕ(x) dµz(x) dµ(z). (3.4)

Theorem 3.4 If {µz}z∈Z and {νz}z∈Z are two systems of condtional measures of µ with respect to F , then
µz = νz for µ-almost every z ∈ Z.

The proof is in [13].
Theorem 3.5 The limit of the measures

µFz = lim
n→∞

µ|Pn(z)

µ(Pn(z))
exists for µ-almost every z ∈ Z, (3.5)

where the limit is meant in the weak-star topology.
Moreover, the set {µFz }z∈Z is a system of conditional measures of µ with respect to the σ-algebra F .
The proof can be found in [14].
Theorem 3.6 Let {µz}z∈Z be a system of conditional measures of µ with respect to F . Let ϕ : Z → R is

bounded and measurable, then the function

ψ : Z → R for which

ψ(z) =

∫
Z

ϕ(x)dµz(x) for µ-almost every z ∈ Z (3.6)

is the conditional expectation of ϕ with respect to F , thus Eµ(ϕ|F) = ψ.
The proof is in [14].
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3.2 Dimension of self-similar measures

First, we introduce some notations in general, which will be used later for our specific case.
Let (Z,B, µ) be as in the previous section. Let ξ ⊆ B be a countable partition of Z. LetA ⊆ B be an arbitrary

σ-algebra. Then Iµ(ξ|A) denotes the conditional information of the partition ξ given by A, which is

Iµ(ξ|A)(x) = −
∑
E∈ξ

1E (x) log[Eµ(1E |A)(x) ]. (3.7)

The conditional entropy of ξ given A is defined by the following formula

Hµ(ξ|A) =

∫
Z

Iµ(ξ|A)dµ. (3.8)

Now, we consider a self-similar IFS S = {S1, . . . , Sm} on the interval [0, 1]. The symbolic space is Σ =

{1, . . . ,m}N+

and the attractor of S is Λ. We denote the natural projection of S with π. We study the probability
space (Σ, C, µ), where C is the σ-algera generated by the cylinder sets, and µ is a σ-invariant probability measure.
We define the measure ν on Λ with ν = π∗µ = µ ◦ π−1. The set P = {[1], . . . , [m]} is a Borel partition of Σ
and γ denotes the Borel σ-algebra on [0, 1]. We define the projection entropy of µ under π to the IFS S as

hπ(σ, µ) = Hµ(P|σ−1π−1γ)−Hµ(P|π−1γ). (3.9)

We state here a special case of [5, Theorem 2.8] for self-similar systems.

Theorem 3.7 (Feng-Hu) Let µ be a σ-invariant, ergodic Borel probabilty measure on Σ, and let S and π be
as above and let ν = π∗µ = µ ◦ π−1. Then

dν(x) =
hπ(σ, µ)

−
∑m
i=1 µ([i]) log |ri|

for ν-almost every x ∈ Λ. (3.10)

In order to calculate hπ(σ, µ), we need the following two lemma.

Lemma 3.8 Let S = {S1, . . . , Sm} be an IFS on [0, 1]. If µ is a Bernoulli measure on Σ for the probability
vector p = (p1, . . . , pm), then

Hµ(P|σ−1π−1γ) = −
m∑
k=1

pk log(pk). (3.11)

P r o o f. Let [k] ∈ P , then the generated σ-algebra by the function 1[k] is
σ(1[k]) = {∅, [k],Σ/[k],Σ} ⊆ σ(P), where σ(P) is the generated σ-algebra by P . We can easily check that
σ(P) and σ−1π−1γ are independent σ-algebras. We know that if ϕ ∈ L1(Σ, C, µ), σ(ϕ) and G are independent
σ-algebras, then Eµ(ϕ|G) = Eµ(ϕ) =

∫
ϕdµ. Thus Eµ(1[k]|σ−1π−1γ) = µ([k]) = pk. So by using (3.8) and

(3.7) we can conclude that Hµ(P|σ−1π−1γ) = −
m∑
k=1

pk log(pk).

It is well known that the σ-algebra γ is generated by countable many finite partitions, that is, let for n =
1, 2, . . .

Qn =

{[
k

2n
,
k + 1

2n

)
: 0 ≤ k ≤ 2n − 1

}
, (3.12)

then γ =

∞∨
i=1

σ(Qi) is the Borel σ-algebra on [0, 1].
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8 B. Bárány and E. Szvák: Dimension of self-similar measures with overlaps

Lemma 3.9 Let S = {S1, . . . , Sm} be an IFS on [0, 1]. If µ is a Bernoulli measure on Σ for the probability
vector p = (p1, . . . , pm), then

Hµ(P|π−1γ) = −
∫
Σ

log(µi([i1]))dµ(i), (3.13)

where

µi([i1]) = lim
n→∞

µ(π−1(Qn(π(i))) ∩ [i1])

µ(π−1(Qn(π(i))))
for µ-a.e. i. (3.14)

P r o o f. Using Theorem 3.4 and Theorem 3.5, we get that a system of conditional measures {µi}i∈Σ with
respect to the σ-algebra π−1γ exists and unique up to a set of zero measure. Then by using Theorem 3.6,

Eµ(1[k]|π−1γ)(i) =

∫
Σ

1[k] (j) dµi(j) = µi([k]). (3.15)

Thus, by the definition of the conditional entropy (3.7) and (3.8), we get

Hµ(P|π−1γ) = −
m∑
k=1

∫
Σ

1[k](i) logµi([k])dµ(i)

= −
∫
Σ

log(µi([i1]))dµ(i).

(3.16)

By Theorem 3.5, the weak-star limit of the sequence
µ|π−1(Qn(π(i)))

µ(π−1(Qn(π(i)))) exists for µ-a.e. i and equals to µi. Since
[k] ⊆ Σ is open and closed,

µi([i1]) = lim
n→∞

µ(π−1(Qn(π(i))) ∩ [i1])

µ(π−1(Qn(π(i))))
.

3.3 Entropy under forward separation

Now, we calculate the integral in Lemma 3.9 under forward separation.

Proposition 3.10 Let Sα,β,γ = {S1, S2, S3} be a forward separated system. (See Definition 2.2.) Let µ =

(p1, p2, p3)N
+

be a Bernoulli measure on Σ for the probability vector p = (p1, p2, p3), and let {µi}i∈Σ be the
family of conditional measures of µ with respect to π−1

α,β,γγ. Then

∫
Σ

logµi([i1])dµ(i) =

∞∑
k=1

k∑
m=1

(
k − 1

m− 1

)
p3 log

(m
k

)
(pm1 p

k−m
2 + pk−m1 pm2 ).

P r o o f. We use simpler notation for the mathematical objects which belongs to the IFS Sα,β,γ . We denote
the attractor of Sα,β,γ with Λ. The natural projection is π.

We define for all m,n = 0, 1, . . . the set

E(m,n) = {(i1, . . . , im+n+1) : im+n+1 = 3, |{k : ik = 1}| = m, |{k : ik = 2}| = n}

and

H(m,n) = {i = (i1, i2, . . . ) ∈ Σ : i|n+m+1 ∈ E(m,n)} . (3.17)
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It is easy to see that π(H(m,n)) = Sm1 S
n
2 S3(Λ) ⊆ [a(m,n), 1], where a(m,n) = (1− γ)(min{α, β})m+n.

Let i ∈ H(m,n) be arbitrary but fixed. Then π(i) 6= 0 thus, there exists N ≥ 1 such that 0 /∈ Q`(π(i)) for
every ` ≥ N . So if p, q ∈ N are such that (max{α, β})p+q < 2−(N+1), then Sp1S

q
2S3(Λ) ∩ Q`(π(i)) = ∅ for

every ` ≥ N .
Let

H =
{
Sk1S

l
2S3(Λ) : (max{α, β})k+l ≥ 2−(N+1), k, l = 0, 1, . . .

}
. (3.18)

Note that Sm1 S
n
2 S3(Λ) ∈ H. By Lemma 2.4, the set H is a finite collection of disjoint compact sets, thus there

exists ε1 > 0 such that

for every H1 6= H2 ∈ H Bε1(H1) ∩Bε1(H2) = ∅, (3.19)

where Bε(H) means the ε neighbourhood of the set H .
Thus, by choosing N ′ = max{N,− log ε1

2 }, Q`(π(i)) ∩ Λ ⊆ Sm1 S
n
2 (S3(Λ)) for every ` ≥ N ′, and hence

π−1(Q`(π(i)) ⊆ H(m,n). More precisely,

π−1(Q`(π(i))) = E(m,n)× T`(im+n+2, im+n+3, . . .) = E(m,n)× T`.

Indeed, if j ∈ σn+m+1π−1(Q`(π(i))), then for any k ∈ E(m,n), k ∗ j ∈ π−1(Q`(π(i))). Since µ is a Bernoulli
measure

µ(E(m,n)× T` ∩ [i1])

µ(E(m,n)× T`)
=
µ(H(m,n) ∩ [i1])µ(T`)

µ(H(m,n))µ(T`)
=
µ(H(m,n) ∩ [i1])

µ(H(m,n))
. (3.20)

On the other hand,

µ(H(m,n)) =
(m+ n)!

m!n!
pm1 p

n
2p3, (3.21)

µ(H(m,n) ∩ [1]) =
(m+ n− 1)!

(m− 1)!n!
pm1 p

n
2p3 and (3.22)

µ(H(m,n) ∩ [2]) =
(m+ n− 1)!

m!(n− 1)!
pm1 p

n
2p3. (3.23)

Thus, for every i ∈ H(m,n) and every sufficiently large `

µ(π−1(Q`(π(i))) ∩ [i1])

µ(π−1(Q`(π(i))))
=

{
m

m+n i1 = 1,
n

m+n i1 = 2.
(3.24)

If i ∈ H(0, 0) = [3] then for large enough ` we get π−1(Q`(π(i))) ⊆ [3], and thus

µi([i1]) = lim
`→∞

µ(π−1(Q`(π(i))) ∩ [i1])

µ(π−1(Q`(π(i))))
= 1. (3.25)

Since µ(
⋃∞
m,n=0H(m,n)) = 1, the integral that we want to calculate is

∫
Σ

log(µi([i1]))dµ(i) =

∞∑
k=1

k∑
m=1

(
k − 1

m− 1

)
p3 log

(m
k

)
(pm1 p

k−m
2 + pk−m1 pm2 ).

Summarizing the above.
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Theorem 3.11 Let Sα,β,γ = {S1, S2, S3} be a forward separated system. (See Definition 2.2.) Let µ =

(p1, p2, p3)N
+

be a Bernoulli measure on Σ for the probability vector p = (p1, p2, p3), and let να,β,γ = πα,β,γ∗µ.
Then

dimH να,β,γ =
−
∑3
i=1 pi log pi +

∑∞
k=1

∑k
m=1

(
k−1
m−1

)
p3 log

(
m
k

)
(pm1 p

k−m
2 + pk−m1 pm2 )

−p1 logα− p2 log β − p3 log γ
.

P r o o f. The statement follows by the combination of Theorem 3.7, Lemma 3.8, Lemma 3.9 and Proposi-
tion 3.10.

Remark 3.12 An alternative proof of Theorem 3.11 would be an application the results of Mihailescu and
Urbański [11]. Namely, one can show that if the IFS Sα,β,γ = {S1, S2, S3} in (1.2) is forward separated then

the self-similar measure ν′ of the infinite IFS S ′ = {Si}i∈C , where C = {(
k︷ ︸︸ ︷

1 · · · 1
`︷ ︸︸ ︷

2 · · · 2 3) : 0 ≤ k, `} with
probability vector p′ =

((
k+`
k

)
pk1p

`
2p3

)
0≤k,`

is equivalent to the self-similar measure ν of the IFS Sα,β,γ with

probabilities p = (p1, p2, p3). Then the Theorem 3.11 follows by simple algebraic manipulations and by [11,
Theorem 2.5(b), Theorem 3.11] on infinite IFS.

4 Existence of forward separated systems

In this section, we follow the argument of Kamalutdinov and Tetenov [9]. The proof of the following theorem
can be found in [9, Theorem 14].

Theorem 4.1 (General Position Theorem) Let (D, dD), (L1, dL1), (L2, dL2) be compact metric spaces and
let ϕi(ξ, x) : D × Li → Rn for i ∈ {1, 2} be continuous functions. Suppose that

1. there exists α > 0 and C > 0 such that for all i ∈ {1, 2}, ξ ∈ D and for all x, y ∈ Li

‖ϕi(ξ, x)− ϕi(ξ, y)‖ ≤ CdLi(x, y)α,

where ‖·‖ is the Euclidean norm in Rn.

2. Let Φ : D × L1 × L2 → Rn Φ(ξ, x1, x2) = ϕ1(ξ, x1)− ϕ2(ξ, x2) such that

there exist M > 0 for all ξ, ξ′ ∈ D for all x1 ∈ L1 for all x2 ∈ L2

‖Φ(ξ, x1, x2)− Φ(ξ′, x1, x2)‖ ≥MdD(ξ, ξ′).
(4.1)

Then the set ∆ = {ξ ∈ D : ϕ1(ξ, L1) ∩ ϕ2(ξ, L2) 6= ∅} is compact in D and

dimH(∆) ≤ dimH(L1 × L2)

α
. (4.2)

Lemma 4.2 (Displacement lemma) Let S = {S1, . . . , Sm} and S̃ = {S̃1, . . . , S̃m} be two iterated function
systems on Rn. We denote the natural projection of S with π : Σ → Rn and the natural projection of S̃ with
π̃ : Σ→ Rn, where Σ = {1, . . . ,m}N+

is the symbolic space. Let V ⊆ Rn be a compact set such that for every
i ∈ {1, . . . ,m}, Si(V ) ⊆ V and S̃i(V ) ⊆ V . Then

for all i = (i1, i2, . . . ) ∈ Σ ‖π(i)− π̃(i)‖ ≤ δ

1− p
, (4.3)

where

δ = max{
∥∥∥Si(x)− S̃i(x)

∥∥∥ : i ∈ {1, . . . ,m}, x ∈ V } and

p = max
1≤i≤m

{max{Lip(Si),Lip(S̃i)}}.
(4.4)
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The proof of Lemma 4.2 can be found in [9, Theorem 15].
Let us equip the symbolic space Σ = {1, . . . ,m}N+

with the metric ρa such that ρa(i, j) = as(i,j), where
0 < a < 1 and s(i, j) = inf{k ≥ 0 : ik+1 6= jk+1}. It is a well known fact that the metric space (Σ, ρa) is
compact, moreover

dimH(Σ) =
logm

− log a
<

1

2
. (4.5)

The symbolic space of Sα,β,γ is Σ = {1, 2, 3}N+

. By the above consideration dimH(Σ) < 1
2 in the metric ρa

if and only if 0 < a < 1
9 .

In the rest of this section we investigate the family of the systems Sα,β,γ .

Lemma 4.3 Let a ∈
(
0, 1

9

)
and α, β, γ < a. Then the natural projection πα,β,γ : Σ→ R of the system Sα,β,γ

is 1-Lipschitz with respect to the metric ρa and the usual Euclidean norm on R.

P r o o f. Let i, j ∈ Σ with s(i, j) = k. Then ρa(i, j) = ak and i1 = j1, . . . , ik = jk, thus πα,β,γ(i), πα,β,γ(j) ∈
Si1...ik(Λα,β,γ). The diameter of Si1...ik(Λα,β,γ) is Lip(Si1) · · · · · Lip(Sik), which is strictly smaller than ak.
So |πα,β,γ(i)− πα,β,γ(j)| ≤ ak = ρa(i, j).

Lemma 4.4 Letm,n ∈ N+ be arbitrary. Letα, β, γ ∈
(
0, 1

9

)
and consider the system Sα,β,γ . If Sm1 (Rα,β,γ)∩

Sn2 (Rα,β,γ) 6= ∅, then 8
9 ≤

αm

βn ≤
9
8 .

P r o o f. If α, β, γ ∈
(
0, 1

9

)
, then Rα,β,γ ⊆ [ 8

9 , 1]. Thus Sm1 (Rα,β,γ) ⊆ [ 8
9α

m, αm] and Sn2 (Rα,β,γ) ⊆
[ 8
9β

n, βn]. The intersection can not happen if αm < 8
9β

n or βn < 8
9α

m. Thus we do not have intersection if
αm

βn < 8
9 or α

m

βn > 9
8 . So 8

9 ≤
αm

βn ≤
9
8 .

Lemma 4.5 Let m,n ∈ N+ and β, γ ∈ (0, 1
9 ) be fixed. Denote

Dm,n(β, γ) =

{
α ∈

(
0,

1

9

)
:

8

9
≤ αm

βn
≤ 9

8

}
. (4.6)

Let us define for α ∈ Dm,n(β, γ) and i ∈ Σ

ϕ1(α, i) = πα,β,γ((1)m ∗ (3) ∗ i) = Sm1 S3(πα,β,γ(i)),

ϕ2(α, i) = πα,β,γ((2)n ∗ (3) ∗ i) = Sn2 S3(πα,β,γ(i)).

Then for every α, α′ ∈ Dm,n(β, γ) and for every i, j ∈ Σ

|ϕ1(α, i)− ϕ2(α, j)− ϕ1(α′, i) + ϕ2(α′, j)| ≥M |α− α′| , (4.7)

where M(m,n, β, γ) > 0 constant.

P r o o f. Let α, α′ ∈ Dm,n(β, γ) and i, j ∈ Σ be arbitrary. We introduce the notation S = Sα,β,γ =
{S1, S2, S3}, S ′ = Sα′,β,γ = {S′1, S′2, S′3}, let π = πα,β,γ and π′ = πα′,β,γ . Observe S′2 = S2 and S′3 = S3.

Let α < α′ and δ = |α′ − α|, then using Lagrange mean value theorem

mαm−1 ≤ α′m − αm

α′ − α
=
|α′m − αm|

δ
≤ mα′m−1. (4.8)

We defined δ = |α′ − α| and using Lemma 4.2 for S and S ′, then we get

for every i ∈ Σ |π(i)− π′(i)| ≤ 9

8
δ. (4.9)
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Consider the difference that we have to estimate

ϕ1(α, i)− ϕ1(α′, i) + ϕ2(α′, j)− ϕ2(α, j) =

= Sm1 S3(π(i))− S′m1 S′3(π′(i)) + S′n2 S
′
3(π′(j))− Sn2 S3(π(j)) =

= Sm1 S3(π(i))− S′m1 S3(π′(i)) + Sn2 S3(π′(j))− Sn2 S3(π(j)) =

= Sm1 S3(π(i))− Sm1 S3(π′(i))︸ ︷︷ ︸
A

+ Sm1 S3(π′(i))− S′m1 S3(π′(i))︸ ︷︷ ︸
B

+Sn2 S3(π′(j))− Sn2 S3(π(j))︸ ︷︷ ︸
C

.

We will use the estimate

|A+B + C| ≥ |B| − |A+ C| ≥ |B| − |A| − |C| . (4.10)

Consider |A| part of the above calculation

|A| = |Sm1 S3(π(i))− Sm1 S3(π′(i))| = αmγ |π(i)− π′(i)| ≤ 9

8
αmγδ,

where in the inequation we use (4.9). The next part is

|B| = |Sm1 S3(π′(i))− S′m1 S3(π′(i))| = |αm − α′m| |S3(π′(i))| ≥ 8

9
mαm−1δ,

where in the inequation we use (4.8). Finally,

|C| = |Sn2 S3(π′(j))− Sn2 S3(π(j))| = βnγ |π(j)− π′(j)| ≤ 9

8
βnγδ,

where we used again (4.9).
Now estimate

|B| − |A| ≥
(

8m

9α
− 9

8
γ

)
αmδ ≥

(
8− 9

8

)
αmδ ≥

(
8− 9

8

)
8

9
βnδ > 6βnδ, (4.11)

where in the second inequation we use γ < 1, m ≥ 1, α < 1
9 .

The following

|C| ≤ 9

8
γβnδ < βnδ (4.12)

is true, beacuse γ < 1
9 . Thus

|ϕ1(α, i)− ϕ2(α, j)− ϕ1(α′, i) + ϕ2(α′, j)| ≥ 5βn |α′ − α| , (4.13)

so M = 5βn.

Theorem 4.6 Let β, γ ∈ (0, 1
9 ). Then

L ((0, β) \ {α ∈ (0, β) : Sα,β,γ is a forward separated system}) = 0. (4.14)

P r o o f. Let m,n ∈ N+ and β, γ ∈ (0, 1/9) be arbitrary but fixed. First, we show that for the set

∆m,n(β, γ) =

{
α ∈

(
0,

1

9

)
: Sm1 (Rα,β,γ) ∩ Sn2 (Rα,β,γ) 6= ∅

}
(4.15)

L(∆m,n(β, γ)) = 0.
Let ε > 0 be such that 1

9 − ε > β, γ. Then Em,n(β, γ) = Dm,n(β, γ)∩ [ε, 1
9 − ε] is a closed interval in R, so

it is compact. We consider the compact metric space (Σ, ρa), where Σ = {1, 2, 3}N+

and a = 1
9 −

ε
2 .
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Let ϕi : Em,n(β, γ)× Σ→ R for i = 1, 2 as in Lemma 4.5. Let

Ξεm,n(β, γ) = ∆m,n(β, γ) ∩
[
ε,

1

9
− ε
]
.

For an α the Sm1 (Rα,β,γ)∩Sn2 (Rα,β,γ) 6= ∅ holds if and only if there exist i, j ∈ Σ such that ϕ1(α, i) = ϕ2(α, j),
thus

Ξεm,n(β, γ) = {α ∈ Em,n(β, γ) : ϕ1(α,Σ) ∩ ϕ2(α,Σ) 6= ∅}. (4.16)

Using Lemma 4.3 one can see that ϕi is Hölder continuous with respect to the second variable for i = 1, 2.
Applying Lemma 4.5, we get that the conditions of the General Position Theorem 4.1 holds. Using General
Position Theorem 4.1, then get

dimH(Ξεm,n(β, γ)) ≤ dimH(Σ× Σ) ≤ 2dimH(Σ) < 1, (4.17)

the last inequality holds because of (4.5). So L(Ξεm,n(β, γ)) = 0. Moreover,

∆m,n(β, γ) =

∞⋃
k=1

Ξ1/k
m,n(β, γ), (4.18)

thus the continuity of measure yields that L(∆m,n(β, γ)) = 0.
Finally,

(0, β) \ {α ∈ (0, β) : Sα,β,γ is a forward separated system} =

∞⋃
m,n=1

∆m,n(β, γ), (4.19)

and thus, the statement follows.

Finally, Theorem 1.2 follows by Theorem 3.11 and Theorem 4.6.
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