
Performance Evaluation of a Novel JWT
Revocation Algorithm

Laszlo Janoky1 Janos Levendovszky2 Peter Ekler3

Department of Automation and Applied Informatics1,3
Department of Networked Systems and Services2

Budapest University of Technology and Economics
{laszlo.janoky1,peter.ekler3}@aut.bme.hu, levendov@hit.bme.hu2

Abstract. JSONWeb Tokens (JWT) are a technology that is widely used for securing
distributed web applications. The main advantage of such tokens is that they can
be verified without accessing a central authority. On the other hand, the lack of
centralized access means that revoking a JWT is not a trivial task. In our previous
works in the field, we enumerated the possible revocation approaches and introduced
our novel solution, which improved on them. In this work, we aim to evaluate the
performance of different solutions more in-depth, backed by a common mathematical
framework.

Keywords: JSON Web Tokens, JWT, Token revocation, Performance modeling

1 Introduction

Our previous work in the field included the examination of different revoca-
tion mechanisms for JSON Web Tokens [1] and the introduction of our novel
approach [2]. This paper further elaborates on the performance aspect of the
later. We provide the general basis of comparison and examine each method
accordingly.

The paper is structured as follows: in this first section (I), a quick overview
of the current revocation schemes are enumerated, their main characteristics
presented. The second section (II) is dedicated to the description of our novel
approach. In the third section (III), we introduce a mathematical model for
dealing with the performance comparison of different methods. In the fourth
section (IV), we wrap the discussion by drawing conclusions and outlining future
developments.

1.1 About JSON Web Tokens

A JWT called access token is typically used to authenticate and authorize user
access to a protected resource. To ensure the validity of token, a cryptographic
scheme is usually employed, such as digital signatures [3]. In a general way,
we simply refer to the signing key or the public key as the secret. In typical



New solutions in the Design of . . . Janoky, Levendovszky, Ekler

scenarios, a refresh token is usually employed along with the access token. This
second token is used by the clients to acquire new access tokens.

When a client wants to log out from the system, the refresh token is de-
stroyed, and existing JWT tokens should be revoked. The revocation is not
trivial, as the validity of a token is only determined by the cryptographic assur-
ance; there is no easy way to invalidate it.

1.2 Common revocation methods

In the industry, there are three standard methods of revocation that are cur-
rently used [4].

1.2.1 Short-lived tokens

In the most common case, each token has a limited - usually very short - lifespan.
In this method, a token is never directly revoked. Instead, the means of a client
acquiring a new token is revoked. Therefore, when the access token’s lifetime
runs out, no new token can be acquired, so the client’s access to the system is
revoked.

1.2.2 Blacklist

In the blacklist scheme, revoked tokens are stored in a shared location (usually
a database), where the consuming services can lookup invalidated tokens. The
downside of this method is that it requires checking the shared storage for each
token validation. Even if a token is valid (not on the blacklist), this checking
must be done. Ultimately, this means that the validity of the token cannot be
determined in itself. Therefore this method loses one of the main benefits of
using the JWT scheme.

1.2.3 Secret change

The secret change method, while applicable in theory, is rarely used in a real-
world application. The basis of the method is the changing of the cryptographic
secret on client logout. Changing this secret means that every other access
tokens are also revoked. While incurring a significant performance hit, using
the refresh tokens, the still logged in users can request new ones for staying in
the system.

2 Our novel revocation algorithm

The revocation strategy we came up with is based on the secret change method.
The basic idea is to minimize the impact of token revocations on non logged out
clients while keeping the main architectural benefits of the JWT scheme intact.
In the following section, we provide an overview of our novel approach.



Janoky, Levendovszky, Ekler New solutions in the Design of . . .

2.1 Basic principle

When the secret is changed, all issued tokens are revoked. This means that if a
client logs out, every other active user must also request a new token.

In our method, we arranged the users in groups to overcome the performance
hit of unnecessary token revocations. The grouping can be done on any arbitrary
method, such as the hash of usernames. Each group has a different secret.
Therefore a revocation only means changing the secret in each group, limiting
the amount of total token request.

Log-outs events can be modeled statistically; this means that optional group
sizes can be calculated to minimize the total performance impact on the system,
while still maintaining a manageable number of groups and secrets.

2.2 Secret change event propagation

With our method, revocation is instantaneous, and the main architectural ad-
vantages of the JWT scheme remain intact, and tokens are valid without the
need for a central authority.

A requirement of our solution is the availability of a channel for propagating
the information about the secret change event. The channel must be available
between the token consuming services and the token issuer.

This channel may be unavailable in certain cases; to overcome this limitation,
we came up with an alternate solution for propagating secret change events. The
basis of the solution is that the secret is generated by a deterministic pseudo-
random number generator [5]. Each token consuming service is initiated with
the same seed, keeping track of the current active secret. When a token in
the group is revoked, and the secret is changed, the next random number is
taken, and the new tokens are issued with this new secret. When a consuming
service still uses the old secret and receives a token signed with a new secret
(the next value from the random number generator), it will update its stored
secret accordingly.

This alternate approach provides eventual consistency for the system in the
long term. As a trade-off for the relaxed consistency guarantees, the need for
the secret change propagation channel is dropped. This also means that instan-
taneous revocation is no longer possible, an invalidated token is only revoked
after the new secret is assigned (another token, using this new secret is received
by the service).

3 Performance model

To accurately model the performance of different revocation methods, a common
mathematical framework must be set up. This section deals with the common
model for performance comparison and the evaluation of the different methods
using this framework.



New solutions in the Design of . . . Janoky, Levendovszky, Ekler

3.1 Cost model

As the basis of the performance comparison framework, we identified a set of
basic operations, which make up the performance cost of each method. Each
operation has an implementation dependant cost, which can be considered as
a system characteristic, a parameter of the model. These main parameters are
the following:

• Cc (Communication cost): the cost of system components communi-
cating with each other.

• Cd (Data access cost): the cost of accessing data stored in a shared
storage.

• Ci (Issue cost): the cost of issuing a new token.

• Cv (Validation cost): the cost of checking the validity of a token.

To predict the overall performance impact of a revocation scheme on the sys-
tem, the next step is to determine the number of individual operations occurring
in a given time. The main performance cost of a system is determined by the
clients consuming its services. By measuring and characterizing the metrics of
client sessions, it is possible to come up with predictions of their impact on the
system [6]. The following client metrics have to be measured to determine the
performance impact.

• N : number of clients in the system.

• fi(t): probability distribution of client session lengths.

• r: average number of resource access / client / second.

As demonstrated in our previous work on the topic, one can calculate the
average time between token revocations in a group of clients from these metrics.
This value is denoted as Trvk. Knowing the occurrences of typical operations in
the system, it is possible to determine the overall cost function.

To predict the performance characteristics of a system, one must determine
the typical cost associated with the operations defined previously and measure
the characteristics of the client population. With these metrics known, one can
choose an optimal revocation algorithm.

Each revocation algorithm has its own cost function. This function uses the
client pool behavior to determine the number of operations. These operations
can then be used to calculate the overall performance cost of a given method.

Some revocation algorithms have parameters, which can be used to optimize
their performance.



Janoky, Levendovszky, Ekler New solutions in the Design of . . .

3.2 Short-lived tokens

The short-lived method has a single parameter, Tlife, which denotes the lifetime
of a token. To maximize the performance of this approach, this Tlife should be
chosen to the maximum tolerable time for token revocation after logout.

The overall cost function is made up of two main factors. The first one is
the cost of validating the tokens sent along with the request, the second one
being the cost of issuing new tokens to replace the expiring ones.

C = (N ∗ r ∗ Cv) + (N ∗ 1

Tlife
∗ Ci)

3.3 Blacklist

In the blacklist scheme, the main factor of the cost comes from checking each
token received in a request against the shared blacklist. This extra step on each
request makes this approach the worst in terms of scaling with the number of
requests. The cost function of this method is the following:

C = N ∗ r ∗ Cv ∗ Cd

3.4 Secret change

In the case of the secret change approach, the same performance cost of au-
thorizing incoming requests can still be found. On top of this load, the task of
generating new tokens for each client still in the system is added.

C = (N ∗ r ∗ Cv) + (N ∗ 1

Trvk
∗ Ci)

Notice that the formula for secret change is similar to the one associated
with the short-lived method. This can be attributed to the fact that in both
cases, the number of token revocations depends on the average lifetime of a
token. In the short-lived case, it is determined by the age of token, while in the
secret change case, client logout events trigger it.

3.5 Our novel algorithm

Because our method is built on the secret change event, the cost function can
be constructed in a similar way too. The main difference is the introduction
of parameter K, which denotes the number of client groups. With different
groups, the Trvk - which was calculated for the whole client population in the
secret change method - should be calculated for the number of clients in a
group, denoted as N

K . This group-level revocation time is denoted by Trvk. As
K increases, Trvk monotonously increasingly approaches the mean value of fi(t).

C = (N ∗ r ∗ Cv) + (K ∗ 1

T ′
rvk

)(
N

K
∗ Ci + Cc)



New solutions in the Design of . . . Janoky, Levendovszky, Ekler

As for the application of this model, in our previous work in the field, we
prove that a system using our approach can be parametrized in a way, that our
solution provides the best performance of the different options.

4 Overview

In this paper, we gave an overview of the JWT revocation problem and intro-
duced the current solutions. After that, we introduced our novel solution, with
the intention to improve on the performance of current solutions, while keeping
the architectural gains of the JWT auth scheme.

We described a common mathematical model for comparing the performance
of different solutions in different systems. This model works by determining the
basic operations of a system while dealing with a revocation scheme. The cost of
these common operations can then be measured and used in actual comparisons.
We also outlined the necessary characteristics to measure in a client population
of such a system. Using the cost operations and client model, we determined
the cost function of each solution.

With the mathematical framework we provided, one can determine the op-
timal revocation method for any system where JWT revocation is necessary. In
schemes, where the cost function has additional parameters, traditional mini-
mizing approaches can be used to find the optimal solution.

Ultimately, we hope that our work will aid the capacity planning and system
design of distributed systems using the JWT auth scheme.

Acknowledgements

The research reported in this paper was supported by the BME Artificial Intel-
ligence TKP2020 IE grant of NKFIH Hungary (BME IE-MI-SC TKP2020) and
the Janos Bolyai Research Fellowship of the Hungarian Academy of Sciences.

References

[1] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” RFC
7519, RFC Editor, May 2015. Published: Internet Requests for Comments.

[2] L. V. Janoky, J. Levendovszky, and P. Ekler, “An analysis on the revoking
mechanisms for JSON Web Tokens,” International Journal of Distributed
Sensor Networks, vol. 14, p. 1550147718801535, Sept. 2018. Publisher:
SAGE Publications.

[3] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Signature (JWS),” RFC
7515, RFC Editor, May 2015. Published: Internet Requests for Comments.

[4] dWTV, “Learn how to revoke JSON Web Tokens,” July 2017.



Janoky, Levendovszky, Ekler New solutions in the Design of . . .

[5] M. Blum and S. Micali, “How to generate cryptographically strong sequences
of pseudorandom bits,” SIAM journal on Computing, vol. 13, no. 4, pp. 850–
864, 1984.

[6] M. Arlitt, “Characterizing web user sessions,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 28, no. 2, pp. 50–63, 2000.


