
Integral-direct and parallel implementation of the

CCSD(T) method: algorithmic developments and

large-scale applications

László Gyevi-Nagy,∗ Mihály Kállay, and Péter R. Nagy∗

Department of Physical Chemistry and Materials Science, Budapest University of

Technology and Economics, H-1521 Budapest, P.O.Box 91, Hungary

E-mail: gyevi-nagy.laszlo@mail.bme.hu; nagyrpeter@mail.bme.hu

Abstract

A completely integral-direct, disk I/O and network traffic economic coupled-cluster

singles, doubles, and perturbative triples [CCSD(T)] implementation has been devel-

oped relying on the density-fitting approximation. By fully exploiting the permutational

symmetry the presented algorithm is highly operation-count and memory efficient. Our

measurements demonstrate excellent strong scaling achieved via hybrid MPI/OpenMP

parallelization and a highly competitive, 60-70% utilization of the theoretical peak

performance on up to hundreds of cores. The terms whose evaluation time becomes

significant only for small- to medium-sized examples have also been extensively op-

timized. Consequently, high performance is also expected for systems appearing in

extensive data sets used, e.g., for density functional or machine learning parametriza-

tions, and in calculations required for certain reduced-cost or local approximations of

CCSD(T), such as in our local natural orbital scheme [LNO-CCSD(T)]. The efficiency

∗To whom correspondence should be addressed

1

of this implementation allowed us to perform some of the largest CCSD(T) calcula-

tions ever presented for systems of 31-43 atoms and 1037-1569 orbitals using only 4-8

many-core CPUs and 1-3 days of wall time. The resulting 13 correlation energies and

the 12 corresponding reaction energies and barrier heights are added to our previous

benchmark set collecting reference CCSD(T) results of molecules at the applicability

limit of current implementations.

1 Introduction

The coupled-cluster (CC)1–4 family of methods has become one of the most accurate and

versatile theoretical tools to simulate molecules and solids at the atomic scale. The size-

extensivity and the systematically improvable character of the CC methods are highly ad-

vantageous for computing energies and other molecular properties.5–7 For single reference

cases, assuming that sufficient convergence is achieved also for the single-particle orbital ba-

sis sets, the CC model with single and double excitations (CCSD) augmented with perturba-

tive triples correction [CCSD(T)]8 is regarded as the “gold standard” of quantum chemistry.

For most properties, CCSD(T) results are expected to agree with experiments within their

respective uncertainties.2,4 The price of such beneficial properties, at least for conventional

implementations, is the steep, sixth- and seventh-power-scaling operation count complexity

for CCSD and CCSD(T), respectively, and fourth-power-scaling data complexity for both

methods. This usually restricts the reach of conventional CCSD(T) codes to systems of up

to 20-25 atoms.

A straightforward way to extend this limitation is to employ the tools of modern high-

performance computing, such as parallel execution. Several recent CC implementations

employ Message Passing Interface (MPI) to distribute the workload between multiple com-

pute nodes.9–20 Efficient strong scaling performance was demonstrated for CCSD(T) up

to hundreds or thousands of processor cores with the PQS,16 GAMESS,13 and MOLCAS12

packages, while the implementations in the MPQC,17,19 ACESIII,14 Aquarius,18 FHI-aims,20

2

and NWChem10,11 program suits are shown to scale well even up to many thousands of cores.

Compared to the availability of well-parallelized implementations only a relatively limited

number of large-scale CCSD(T) applications were presented for systems including up to 1000

orbitals.13,14,19–21 To our knowledge only a few conventional CCSD(T) calculations reached

1500 orbitals to date. The CCSD(T)/aug-cc-pVQZ calculation of Janowski and Pulay per-

formed for the benzene dimer involved 1512 orbitals,16 but the C2h symmetry was fully

exploited to reduce the tremendous operation count and storage demand. Xantheas and

coworkers employed the NWChem package to obtain CCSD(T)/aug-cc-pVTZ energies for

water clusters including up to 17 molecules and 1564 orbitals, for which they employed

120,000 compute cores.22

Considering the steep-scaling arithmetic demand of CCSD(T) the use of multi-node par-

allelism or accelerators19,23–25 alone can only moderately extend the applicability limits of

CCSD(T). Nevertheless, many approximations have been developed aiming to preserve the

intrinsic accuracy of CCSD(T), while reducing the scaling or prefactor of the operation count

and/or space complexity. Regarding the latter, the storage and communication challenges

posed by the two-electron four-center electron repulsion integrals (ERIs) can be significantly

decreased via density-fitting (DF, often also referred to as resolution-of-identity),19,20,26–28

Cholesky decomposition,12,26,29 or alternative tensor factorization30–36 approaches. For in-

stance, Peng, Valeev, and coworkers recently presented a DF-CCSD implementation where

all four-center molecular orbital (MO) ERIs with more than two unoccupied indices are re-

assembled when needed to avoid the allocation and communication of fourth-power-scaling

arrays with high prefactor.19 Scheffler, Shen, and coworkers also chose to reassemble the inte-

grals with four unoccupied MO indices and the ERIs with three unoccupied indices which are

not available in the local memory in each iteration as needed.20 Compared to this repeated

integral assembly it is negligible to also recreate the Coulomb integrals with fewer than

three virtual indices in each iteration. In recognition of this, DePrince and Sherrill showed

that the faster, DF-based atomic orbital (AO) to MO integral transformation algorithm can

3

be utilized to design an efficient CCSD algorithm using the t1-transformed Hamiltonian,28

which technique is often utilized also in the context of second- and higher-order CC theories

employed for excited-state calculations.37–41 The DF approximation is thus highly useful to

break down memory and bandwidth bottlenecks, but it does not noticeably reduce the op-

eration count of CCSD(T), only one of the less expensive, sixth-power-scaling terms can be

accelerated via more efficient factorization.28

Active development is also aimed towards reduced-cost and reduced-scaling CCSD(T)

approximations. For instance, orbital transformation techniques12,42–44 relying on natural

orbitals (NOs) constructed at the level of second-order Møller–Plesset (MP2) perturbation

theory can effectively compress the unoccupied MO space while retaining high accuracy.

Recent cost-reduction efforts considered promising ideas utilizing, for example, sparsity ex-

ploitation,45 mixed single and double precision operations,46 or stochastic approaches.47,48

The most successful methods to date combine multiple strategies, such as DF and NOs,

with local approximations.21,49–51 For instance, we have recently demonstrated with our lo-

cal natural orbital (LNO)21,52–57 scheme that, while retaining high accuracy, LNO-CCSD(T)

calculations can be performed up to a few thousand atoms and 45,000 orbitals even with

a single CPU.21,57 As CC methods with local and NO approximations become increasingly

accepted and trusted in the literature,58 tightly converged approximations have mostly taken

over the role of massively-parallel implementations in large-scale CCSD(T) applications.

Considering this shift we identify three use cases and the corresponding algorithmic

properties for which our optimization efforts are aimed at. First, extensive conventional

CCSD(T) calculations are still vital to compute references for the accuracy assessment of

reduced-cost approximations.21 Second, as current local CC methods are not necessarily more

efficient for small systems, canonical CC implementations often provide benchmark data for

the construction of density functional approximations59,60 or for the training step in machine

learning approaches.61–68 Such data sets often collect thousands59,60,67,68 or even hundreds of

thousands62,69 of CC results obtained for relatively small systems, say below about a dozen

4

non-hydrogen atoms. Third, certain local CC approximations,70–75 including also the LNO-

CC scheme,21,52–57 obtain the final CC correlation energy from the contributions of a number

of independent, smaller-scale “domain” CC computations, for which often conventional, or

slightly modified CC implementations are invoked.

We report a CCSD(T) algorithm and implementation designed for the above three goals.

For efficient execution also on computer clusters or in a cloud compute environment where

local disks are not available or are relatively small, the algorithm is completely integral-direct

utilizing an effective DF-based and batched approach for the evaluation of t1-transformed

four-center integrals.28,76 At the same time, in preparation for moderate per-node mem-

ory cases only the absolutely necessary four-dimensional tensors are kept during the CCSD

iteration (doubles CC amplitudes and residuals). Low per-node memory footprint is also

ensured by a shared-memory intra-node (OpenMP) parallelization strategy and symmetry-

packed array formats. Consequently, disk input/output (I/O) and network use are com-

pletely avoided within a CCSD iteration and the evaluation of the (T) correction. In order

to minimize the operation count the highest possible permutational symmetry is exploited

throughout and, an additional layer of inter-node (MPI) parallelization is implemented on

top of OpenMP. We have found that, for a significant portion of the target use cases, when

the virtual/occupied (nv/no) ratio is in the range of 5–10, the usual assumption that the

O(n4
vn

2
o/4)-scaling particle-particle ladder (PPL) term dominates the cost of CCSD does not

hold. In such cases the remaining O(4n3
vn

3
o)-scaling terms also take comparable time, for

which a relatively limited attention have been devoted in the literature. Such cases occur

with relatively small, e.g., double-ζ quality basis sets, small molecules with only a few hun-

dred MOs, or when the virtual basis is successfully compressed via NO approximations, such

as in our LNO-CC scheme.21,57 Thus, we also developed hand-optimized, memory-efficient,

in-core, and well-parallelized algorithms to all terms appearing in the t1-transformed CCSD

equations.28,76 Our recent OpenMP parallel (T) algorithm56 was also updated to match the

minimum memory demand of the new CCSD code, while making it also MPI/OpenMP

5

parallel and free from disk I/O and network use.

Some of our algorithmic choices are inspired by the t1-transformed DF-CCSD implemen-

tation of DePrince and Sherrill28 with notable improvements regarding the MPI parallelism,

optimized non-PPL terms in CCSD, more than three times smaller minimum memory re-

quirement, and the rigorous avoidance of disk I/O during a CCSD iteration step. The most

recent CCSD(T) programs of the MPQC19 and FHI-aims20 packages are also similar to

ours in some aspects, like the DF-based (semi-)integral-direct execution and high parallel

efficiency. The main deviation in our algorithm design is that here the full permutational

symmetry is retained for all terms of the CCSD equations, while refs 19 and 20 employ

(partially) redundant solutions for some of the contractions and data structures appearing,

for instance, in the PPL term. Since the packing/unpacking operations required for the ef-

ficient matrix-matrix multiplication-based formulation of the most demanding contractions

do not scale well with the number of cores, the solutions of Peng et al.19 and Shen et al.20

are expected to perform better with thousands of cores. Since massive parallelism is already

provided by the completely independent evaluation of numerous moderate-sized CCSD(T)

problems in the second and third target applications, and we were able to perform large-

scale CCSD(T) calculations in the 1000-1500 orbital region with a few hundred cores, the

presented algorithm matches our goals well. It is also worth noting that while, the scheme

of Scheffler and coworkers20 and ours employ a hybrid MPI/OpenMP strategy and compute

the (T) correction via the “ijkabc” approach,77,78 Valeev and coworkers19 implemented a

purely MPI-based framework with extensions to graphics processing units and utilization of

many integrated cores, and evaluate an “abcijk ” type (T) expression.78,79 Additionally, refs

19 and 20 rely on a distributed-memory model suitable for massive-parallelism, whereas our

low-memory, batched, and fully integral-direct algorithms provide more bandwidth-economic

replicated memory solutions for systems of up to about 2000 orbitals.

After providing the theoretical background in Section 2 and the detailed introduction of

the novel algorithms in Section 3, extensive benchmarks are presented for both intra-node

6

and inter-node parallel scaling in Section 5. The measurements representing typical use

cases, e.g., appearing within an LNO-CCSD(T) calculation, demonstrate excellent strong

scaling comparable to that of state-of-the-art implementations,19,20,28,80 while close-to-ideal

absolute efficiency is also displayed in terms of peak performance utilization. Section 6

presents illustrative applications at the applicability limit of current CCSD(T) codes for three

reactions taken from recent mechanistic studies.81–83 The resulting 13 correlation energies

and 12 reaction energies and barrier heights are added to our recent 26-item correlation

energies of medium-sized systems (CEMS26) compilation21 and will be employed for the

accuracy assessment of CCSD(T) approximations.

2 Theoretical background

2.1 CCSD energy and amplitude equations

Assuming a closed-shell reference determinant consisting of spatial orbitals, the CCSD energy

can be written as

ECCSD = 2
∑
ia

fai t
a
i +

∑
ijab

Lab
ij

(
tabij + tai t

b
j

)
, (1)

where indices i, j, . . . (a, b, . . .) denote occupied (virtual) orbitals, tai and tabij represent

the singles and doubles amplitudes, respectively, fpq are elements of the Fock matrix with

general orbital indices p, q, . . . , and

Lab
ij = 2(ai|bj)− (aj|bi), (2)

with (pq|rs) as a two-electron repulsion integral in the Mulliken convention.

The equations determining the excitation amplitudes are derived by projecting the Schrö-

dinger equation on the space of excited determinants, e.g.,

〈
Φab

ij

∣∣ e−(T1+T2) H eT1+T2
∣∣Φ0

〉
= 0. (3)

7

Here, T1 and T2 are the cluster operators corresponding to single and double excitations,∣∣Φ0

〉
and

∣∣Φab
ij

〉
denote the Hartree–Fock (HF) and a doubly excited determinant, and H is

the Hamiltonian operator of the system.

The four-center ERIs, collected in matrix K with elements Kpq,rs = (pq|rs), will be

evaluated relying on the DF approximation84–86 as

K = IV−1I = JJT, (4)

where I collects the Ipq,Q = (pq|Q) three-center two-electron integrals with Q indexing the

functions of the auxiliary basis. The two-center two-electron integral matrix of the auxiliary

basis functions, with elements VP,Q = (P |Q), is factorized using Cholesky-decomposition as

V = LLT, where L is a lower triangular matrix. After the decomposition the inverse of V

can be recast as V−1 = (L−1)
T
L−1, and the inverse of L can be contracted with I, forming

J as

J = I(L−1)T. (5)

The CCSD amplitude equations can greatly be simplified by absorbing the effect of the

single excitations into the Hamiltonian87 via defining

Ĥ = e−T1 H eT1 . (6)

The above t1-transformed Hamiltonian is expressed by the elements of the corresponding

transformed Fockian (f̂pq) and the elements of the transformed three-center ERIs (ĴQ
pq) for

which eqs 29-31 of the Appendix collect the explicit expressions.

Substituting the t1-transformed Hamiltonian of eq 6 into the CC equations, the singles

8

(Ra
i) and doubles (Rab

ij) residuals can be written as28,87

Ra
i = f̂ia + Aa

i +Ba
i + Ca

i (7)

Rab
ij =

∑
P

ĴP
ai Ĵ

P
bj + Aab

ij +Bab
ij

+ P ab
ij

(
1

2
Cab

ij + Cab
ji +Dab

ij + Eab
ij +Gab

ij

)
, (8)

where the permutation operator, P ab
ij , is defined as P ab

ij

(
ab

ij

)
=

(
ab

ij

)
+

(
ba

ji

)
. The interme-

diates appearing in the t1-transformed CCSD residual equations28,76 read as

Aa
i =

∑
kcd

ucdki
∑
P

ĴP
kc Ĵ

P
ad (9)

Ba
i = −

∑
klc

uackl
∑
P

ĴP
ki Ĵ

P
lc (10)

Ca
i =

∑
kc

f̂kc u
ac
ik (11)

Aab
ij =

∑
cd

tcdij
∑
P

ĴP
ac Ĵ

P
bd (12)

Bab
ij =

∑
kl

tabkl

(∑
P

ĴP
ki Ĵ

P
lj +

∑
cd

tcdij
∑
P

ĴP
kc Ĵ

P
ld

)
(13)

Cab
ij = −

∑
kc

tbckj

(∑
P

ĴP
ki Ĵ

P
ac −

1

2

∑
ld

tadli
∑
P

ĴP
kd Ĵ

P
lc

)
(14)

Dab
ij =

1

2

∑
kc

ubcjk

(
L̂ak
ic +

1

2

∑
ld

uadil L̂
lk
dc

)
(15)

Eab
ij =

∑
c

tacij

(
f̂bc −

∑
kld

ubdkl
∑
P

ĴP
ld Ĵ

P
kc

)
(16)

Gab
ij = −

∑
k

tabik

(
f̂kj +

∑
lcd

ucdlj
∑
P

ĴP
kd Ĵ

P
lc

)
, (17)

9

where the following shorthand notations are also exploited:

uabij = 2 tabij − tbaij (18)

L̂pq
rs =

∑
P

(
2ĴP

pr Ĵ
P
qs − ĴP

ps Ĵ
P
qr

)
. (19)

2.2 The perturbative (T) correlation energy

The closed shell (T) energy expression in the canonical orbital basis can be written as8,79

E(T) =
1

3

∑
ijk

∑
abc

(4W abc
ijk +W bca

ijk +W cab
ijk)(V abc

ijk − V cba
ijk)/Dabc

ijk , (20)

where Dabc
ijk = fii +fjj +fkk−faa−fbb−fcc is the energy denominator with fpp as a diagonal

element of the Fock matrix. The W and V intermediates are defined as

W abc
ijk = P abc

ijk

(∑
d

(bd|ai) tcdkj −
∑
l

(ck|jl) tabil

)
(21)

and

V abc
ijk = W abc

ijk + (bj|ck)tai + (ai|ck)tbj + (ai|bj)tck. (22)

Here, the permutation operator, P abc
ijk is introduced as

P abc
ijk

(
abc

ijk

)
=

(
abc

ijk

)
+

(
acb

ikj

)
+

(
cab

kij

)
+

(
cba

kji

)
+

(
bca

jki

)
+

(
bac

jik

)
. (23)

Let us note that eqs 21 and 22 do not depend on the transformed f̂ and Ĵ since the evaluation

of the (T) correction cannot be accelerated by the t1-transformation.

The sixfold permutational symmetry of the intermediate quantities can be utilized to

evaluate the perturbative triples energy expression. When working in the canonical orbital

basis of a closed-shell system, two suitable energy expressions can be derived77,78 for this end.

Here, we limit our discussion to the case when the outermost loops run over the restricted

10

occupied indices. For the explicit energy formula corresponding to this so-called “ijkabc”

algorithm, we refer to eq 5 of ref 56.

3 Algorithm

This section presents algorithmic developments and parallelization efforts devoted to the

CCSD iteration and then to the perturbative triples correction. According to our target

application types the following priorities are set for the new DF-CCSD(T) code: minimal

memory footprint, optimal operation count in the sixth- and seventh-power-scaling terms,

negligible hard disk and network use, and good parallel scaling.

3.1 CCSD algorithm: data structures and integral assembly

Dealing with limited per node memory and data traffic bandwidths is one of the cornerstones

of current algorithm design. Hence we prioritize the minimization of data storage and hard

disk/network use to increase CPU efficiency. For that purpose our aim is to minimize the

storage requirement with minor sacrifices regarding the operation count so that all necessary

quantities will be available in local memory or can be effectively recomputed when needed

for as large orbital spaces as possible.

Since the best way to effectively factorize or compress the doubles amplitudes and resid-

uals on a production level is still under active development,32,35,36 they are currently kept in

four-dimensional tensors. All other potentially sizable quantities are either factorized (ERIs)

or split into at most O(N3)-scaling batches (all intermediates). Thus, the only fourth-power-

scaling arrays, stored in their permutational symmetry-packed form (c.f., tabij = tbaji), take

16n2
v no(no + 1)/2 bytes in double-precision, where nv and no denote the number of virtual

and occupied orbitals, respectively. The benefit is a factor of two saving in the size of the

largest arrays compared to the more convenient unpacked format. The drawback is that

repeated packing/unpacking operations are needed during each CCSD iterations, which is,

11

however, a low operation count task, hence it can be traded for memory efficiency.

Our integral-direct, DF approach brings down the scaling of all integral tensor sizes from

O(N4) to O(N3), with N = no + nv but necessitates the assembly of the required two-

electron integrals in every iteration. Since the corresponding operation is only of O(N5)-

scaling and can be handled with efficient, well-parallelizable tasks, this strategy effectively

trades space requirement for increased operation count, as also recognized previously in

similar contexts.19,20,28 The alternative would be to store the extensive O(N4)-scaling arrays

on hard disk or use distributed memory and network communication, both of which are

highly challenging to perform efficiently with good scaling. The cubic-scaling DF integral

tensors do not cause memory or data traffic bottlenecks, and we found that the reduced

I/O demand and the better parallelizability of the integral assembly compensate well for the

increased operation count of the DF approximation.

In order to minimize the storage requirement of the intermediates, we applied a batched

evaluation strategy to each term in the residual equations. Namely, the two-electron integrals

and intermediates are calculated in at most cubic-scaling blocks. Then their contribution

is immediately cumulated into the residuals, and the intermediate data is discarded. This

solution is again necessary to keep the O(N4)-scaling memory demand at minimum. In turn

it leads to more complicated algorithms since the batch dimensions have to be set as large as

possible to avoid performance loss when invoking vendor optimized BLAS routines for the

corresponding contractions.

It is worth noting that the above memory reduction techniques do not increase the

arithmetic complexity of the algorithm, that is, the O(N6)-scaling is retained for CCSD.

Compared to that the O(N4) and O(N5) complexity of unpacking the doubles amplitudes

and the integral assembly is affordable. It is still worth decreasing the number of integral

assemblies within an iteration as much as possible. As the t1-transformation incorporates

the effect of the singles amplitudes into the Hamiltonian, all terms containing the singles

amplitudes in the conventional CCSD equations are merged into terms reminiscent of the ones

12

that appear in the coupled-cluster doubles (CCD) equations.28 This simplification makes the

algorithm more amenable to hand-optimization and parallelization. One apparent benefit is

that one of the sixth-power-scaling terms can be more efficiently refactorized leading to a

small prefactor decrease in the overall CCSD algorithm.28 Additionally, a formulation can

be chosen that does not require the assembly of the three-external four-center integrals at

all, and the all virtual four-center integrals are only needed once per iteration.28 In turn,

the t1-transformation itself would correspond to an O(N5)-scaling transformation of the ERI

tensor and the Fock matrix in each iteration if DF or other factorization techniques were

not employed. However, once we commit to a fully integral-direct, DF-based algorithm, the

overhead of the t1-transformation becomes a negligible, O(N4)-scaling operation.

In the Appendix we introduce storage and operation effective solutions to carry out the

t1-transformation, which deviates from the algorithms of ref 28 in multiple aspects. For

instance, we transform the DF integrals from the AO to the MO basis only once and store

only the t1-transformed MO integrals corresponding to the singles amplitudes of the actual

iteration, while the approach of ref 28 employs a disk-based AO to MO transformation in

each iteration.

3.2 Algorithms for the CCSD residual equations

After finding a satisfactory solution for the representation of the integrals and wavefunction

parameters, we turn our attention to the optimization of wall times within the set constraints.

This is demonstrated by the detailed analysis of the individual terms.

First, we consider the supposedly most expensive O(N6)-scaling term, the Aab
ij contribu-

tion of eq 12, also known as the particle-particle ladder or PPL term. The total operation

count of a naive implementation of this term is 2n4
v n

2
o, where we consider both the addition

and multiplication operations in order to have accurate floating point operation (FLOP)

counts for performance analysis. It is well known that this operation count can be reduced

by symmetrizing the corresponding amplitude and ERI tensors,88,89 which is, however, still

13

challenging to implement with massive parallel scaling.10,11,19,20 Presently we take advantage

of the symmetrization as fourfold and twofold improvement can be achieved for the contrac-

tion and the four-external assembly steps, respectively. Following the DF-based formulation

of ref 28 the Aab
ij term is evaluated as

Aab
i≤j =

(+)Aab

ij + (−)Aab
ij , if a ≤ b

(+)Aab
ij − (−)Aba

ij otherwise
(24)

(±)Aab
ij =

1

2

∑
c≤d

(±)Iabcd
(±)tcdij (25)

(±)Iabcd = Iabcd ± Iabdc =
∑
P

ĴP
ac Ĵ

P
bd ±

∑
P

ĴP
ad Ĵ

P
bc (26)

(+)tabij = tabij + tbaij (1− δab) (27)

(−)tabij = tabij − tbaij , (28)

where superscripts (+) and (−) denote symmetric and antisymmetric combinations, respec-

tively, and δab stands for the Kronecker delta symbol. Compared to that of ref 28 our

algorithm for this term, presented in Algorithm 1, includes several improvements: it is more

memory economic, I/O-free, and massively parallel via an OpenMP/MPI strategy, while

retaining the use of effective matrix-matrix multiplications. The evaluation of the PPL term

Algorithm 1 Evaluation of the Aab
ij (or PPL) term.

1: for nblock = 1, d(nv(nv + 1)/2) /nBe // MPI and OpenMP parallel
2: for ab = (nblock − 1)nB + 1, nblock nB

3: Iabcd = Ĵa
c,P

(
Ĵ b
d,P

)†
4: (±)Icd ab = Iabcd ± Iabdc
5: end for
6: (±)Aab ij = 1/2

(
(±)Icd,ab

)† (±)Tcd,ij
7: for a ≤ b: Rabij ←(±)Aab ij

8: for a > b: Rabij ← ±(±)Aba ij

9: end for

14

is carried out in batches of restricted virtual index pairs, ab (see the loop over nblock in line

1 of Algorithm 1), where ab denotes a hyperindex with a ≤ b, and there is nB number of

ab pairs in a batch. First, the (ac|bd) integrals are assembled for each ab hyperindex in the

block and stored in array Iabcd (line 3), where upper indices are considered fixed. Here, Ĵa
c,P

is an nv ×Na array built from the corresponding elements of the three-index integral tensor

for a particular value of a, and Na stands for the number of auxiliary functions. Summation

over repeated indices, P in this case, is implied throughout this section. Additionally, the

comma separating the (hyper)indices of work arrays is used to denote the row and column

dimensions appearing in the matrix-matrix multiplications. In line 4 the assembled block

of integrals is (anti)symmetrized and then it is immediately discarded. Finally, the en-

tire (anti)symmetrized integral batch is contracted with the packed (anti)symmetric doubles

amplitudes ((±)T) and accumulated into the residual array (R).

The main drawback of utilizing the symmetrization in the PPL term is the appearance of

multiple symmetry packing operations, which are usually hard to vectorize and parallelize,

and bound by the bandwidth of memory operations. Let us note that the symmetrization

of the doubles amplitudes needed in line 6 is performed in place to avoid the increase of the

fourth-power-scaling memory footprint. Such redundant (un)packing operations naturally

alter the efficiency but the reduced operation count of the contraction and assembly steps

usually amply compensate this performance loss.

When employing some sort of NO approximation,42–44 as in the LNO-CC local correlation

methods,21,52–57 or when working with a relatively small, double-ζ quality AO basis set, the

virtual/occupied orbital ratio is too small to assume the cost dominance of the PPL term.

For such cases the computation time of the O(n3
v n

3
o)- and O(n2

v n
4
o)-scaling terms (Bab

ij , Cab
ij ,

and Dab
ij) also become significant compared to the O(n4

v n
2
o)-scaling particle-particle ladder

term. This is particularly true if the above symmetrization idea is used to reduce the

operation count of the PPL term by a factor of 4. Let us consider an example with the

cc-pVDZ basis set or with a average domain LNO orbital space dimensions a the LNO-CC

15

calculation,21,56,57 where, for a typical organic molecule, the nv/no ≈ 5 and Na/nv ≈ 4

dimension ratios occur. Considering only the most demanding terms the operation count of

PPL (including the on-the-fly integral assembly) is n4
v n

2
o/2 + n4

vNa, and the overall FLOP

count of the remaining O(N6)-scaling terms amounts to 8n3
v n

3
o + 4n2

v n
4
o. Substituting the

assumed nv/no ≈ 5 and Na/nv ≈ 4 relations the FLOP count ratio of the B, C, and D terms

is about (41no)/(12.5no+500) relative to the PPL. Thus, with these orbital space dimensions

the evaluation of the non-PPL terms becomes more demanding than that of the PPL term

even for relatively small systems with more than about 17 occupied orbitals. Consequently,

the optimization of the other O(N6)-scaling terms is equally important for an efficient CCSD

algorithm, especially when small or compressed basis sets are used. One could argue that

in these cases the (T) correction would still dominate the cost of a CCSD(T) calculation.

That argument is, however, not valid for our recent LNO-CCSD(T) algorithms,21,56,57 where

the LNO-CCSD and the LNO-(T) calculations take comparable time. This is explained

by the fact that a Laplace-transform based (T) expression56 allows the redundancy free

evaluation of the triples amplitudes, but the CCSD iteration is not accelerated by this

strategy. Consequently, both the LNO-CCSD and LNO-(T) domain calculations scale as

O(n4
v n

2
o) with the LNO dimensions, and both have comparable prefactors.

Due to the increased importance of these terms for our target applications and the fact

that these terms are mostly omitted in the algorithm optimization efforts in the literature,

we decided to devote more attention to these contributions. It turned out that there are

parts where a clearly optimal choice did not present itself because, for instance, the low-

memory symmetry-packed route deviates from the one that is best for parallelization. For

this reason, we found it interesting to present our thoughts on these terms in more detail

than usual since other preferences might lead to alternative algorithmic choices, and this

could contribute to a useful discussion in the literature of CCSD.

The evaluations of terms depending on the same integrals and intermediates are merged in

order to reduce the number of integral assembly steps via exploiting reusable intermediates.

16

Namely Cab
ij is calculated together with Bab

ij , and it is also beneficial to group Eab
ij , Gab

ij with

the terms contributing to the singles amplitudes equations (Aa
i , Ba

i , and Ca
i). The proposed

algorithms share the strategy that the operations are divided into blocks over an occupied

index (see the outermost loops over nblock in Algorithms 2-4). For instance, the analogous Cab
ij

and Dab
ij terms are computed for one occupied index at a time as apparent from the loops over

index i in lines 7 and 8 of Algorithms 2 and 3, respectively. Then the cubic-scaling Ci
abj and

Di
abj intermediates are gathered into the array of the residual inside the loops over index i and

discarded. Such batching obviates the storage of full-sized O(N4)-scaling intermediates but

allows the use of effective matrix algebra with sufficiently large work arrays. The otherwise

redundant assembly and unpacking of those four-center integrals and doubles amplitudes

that are independent of index i are carried out in advance for each block (see the inner loops

over index k at line 2 of Algorithms 2 and 3).

Note that the Idlck four-center integrals, assembled from the t1-transformed three-center

ERIs in line 3 of Algorithm 2, are required for the evaluation of the Cab
ij term, and they are also

reused to calculate the αlkij intermediate of the Bab
ij term (see line 15 of Algorithm 2). Thus

some of DF-direct integral assembly operations can be spared in this way. The contraction

of the doubles amplitudes with αlkij is also performed in blocks of occupied indices ensuring

that the unpacked amplitudes at line 20 of Algorithm 2 require at most cubic scaling storage

space.

The remaining terms, scaling as O(N5), do not require such exhaustive optimization.

It is, however, ensured that none of those terms lead to bottlenecks related to inefficient,

bandwidth-bound operations when many CPU cores are used, and that the minimal memory

requirement is not increased. For this reason, it is worth decreasing the number of these

O(N5)-scaling steps. The algorithm for these terms is shown in Algorithm 4. First, we

should recognize that almost all of these terms depend on the same u · Ĵ product. The

size of this intermediate is cubic-scaling, so the entire uJ array can be stored in memory

(see line 7 of Algorithm 4). The advantage of calculating uJ first is that it reduces the

17

Algorithm 2 Evaluation of the Cab
ij and the Bab

ij terms.

1: for nblock = 1, dno/nBe // MPI and OpenMP parallel
2: for k = (nblock − 1)nB + 1, nblock nB . Cab

ij

3: Idlck = Ĵkd,P

(
Ĵlc,P

)†
4: Iacik = Ĵac,P

(
Ĵki,P

)†
5: Tbjck = Tbckj
6: end for
7: for i = 1, no

8: Zi
ack = −1/2 T i

a,dl Idl,ck
9: Zi

ack ← I iack
10: Ci

abj = −Zi
a,ck (Tbj,ck)†

11: for j ≤ i: Rabji ← Ci
abj + 1/2 Ci

baj

12: for j ≥ i: Rabij ← 1/2 Ci
abj + Ci

baj

13: end for
14: Idclk = Idlck . Bab

ij

15: αlkij ← (Idc,lk)† Tdc,ij
16: end for
17: for i, j: αlkij ← Ĵ j

l,P

(
Ĵ i
k,P

)†
18: for nblock = 1, dno/nBe
19: for k = (nblock − 1)nB + 1, nblock nB

20: Rabij ← Tab,lk αlk,ij

21: end for
22: end for

FLOP count of some of the remaining operations to quartic-scaling eliminating 7 out of the

overall 10 quintic-scaling operations. The only other intermediate with a significant storage

requirement is the Gab
ij array, which is again batched into intermediates of cubic-scaling

memory requirement (see loop over index i in line 18 of Algorithm 4). The blocks of u can

also be reused to calculate Ca
i (line 8 of Algorithm 4) before discarding them.

3.3 Parallelization of the residual equations

The intra-node parallelization utilizing multi-core CPUs is performed using the OpenMP

application programming interface, which facilitates multi-threaded execution with a many-

18

Algorithm 3 Evaluation of the Dab
ij term.

1: for nblock = 1, dno/nBe // MPI and OpenMP parallel
2: for k = (nblock − 1)nB + 1, nblock nB

3: Ldl,ck = Ĵld,P

(
Ĵkc,P

)†
4: Ldl,ck = 2 Ldl,ck − Lcl,dk

5: Iacik = Ĵac,P

(
Ĵki,P

)†
6: Ubjck = 2 Tbcjk − Tcbjk
7: end for
8: for i = 1, no

9: uia,dl = 2 Tadil − Tdail
10: uLi

a,ck = 1/2 uia,dl Ldl,ck

11: uLi
a,ck ← 2Ĵ i

a,P

(
Ĵck,P

)†
− I iack

12: Di
abj = 1/2 uLi

a,ck (Ubj,ck)†

13: for j ≤ i: Rabji ← Di
baj

14: for j ≥ i: Rabij ← Di
abj

15: end for
16: end for

core processor. On top of that, the MPI protocol is employed to distribute the workload

among multiple nodes of a computer cluster. It is beneficial to combine the two paralleliza-

tion strategies because MPI tasks cannot access the memory space of the other processes

without introducing additional communication operations, while OpenMP threads running

on the same node can directly access data in a shared memory environment. Thus, in the

implemented hybrid MPI/OpenMP approach the memory of a non-uniform memory access

(NUMA) node, or optionally the entire memory of a multi-processor node is shared among

the threads of the OpenMP layer, and the MPI layer distributes the workload between the

NUMA or complete compute nodes.

Since the individual terms in the CCSD residual equations are already partitioned into

blocks, it is intuitive to spread the batches among nodes. Accordingly, the MPI paralleliza-

tion is performed by distributing the blocks of ab indices for the PPL term and the blocks of

the occupied k indices for the other terms across the MPI processes. This strategy is benefi-

19

Algorithm 4 Evaluation of Eab
ij , Gab

ij , Aa
i , Ba

i , and Ca
i terms.

1: // MPI parallelization: indices k and the
2: appropriate blocks are distributed across processes
3: for nblock = 1, dno/nBe
4: for k = (nblock − 1)nB + 1, nblock nB

5: ubkld = 2 Tbdkl − Tdbkl
6: end for
7: uJbkP = ubk,ld Ĵld,P
8: Rbk ← ubk,ld F̂ld . Ca

i

9: end for
10: Xbc = −uJb,kP

(
Ĵc,kP

)†
. Eab

ij

11: Xbc ← F̂bc

12: Rabij ← Xa,c Tc,bij
13: for ij: Rabij ← T ij

a,c (Xb,c)
†

14: Rbi ← −uJb,kP
(
Ĵi,kP

)†
. Ba

i

15: Rak ← Ĵa,bP (uJk,bP)† . Aa
i

16: βjk = Ĵj,bP

(
uĴk,bP

)†
. Gab

ij

17: βjk ← F̂jk

18: for i = 1, no

19: Gi
adk = T i

ad,j βj,k
20: for k ≤ i: Rdaki ← −Gi

adk

21: for k ≥ i: Radik ← −Gi
adk

22: end for

cial because, as long as the key quantities, e.g., the three-center two-electron MO integrals,

the amplitudes, and residuals, fit into the memory of a single node, their inter-node commu-

nication is not needed. It is only necessary to gather the residual contribution of each process

at the end of an iteration. Alternatively, the four-index arrays and the three-center integrals

could be distributed among the nodes.19,20 This strategy decreases the memory demand of

the MPI tasks running on a single node but introduces a potentially limiting communication

cost. The applications of the present report were performed with the replicated memory

model since this choice was allowed by our highly memory-efficient implementation. The

workload is distributed statically for each term except for the PPL. The distribution of

20

blocks in the PPL term occurs dynamically, and its evaluation takes place at the end of

the iteration for load balancing. This dynamic load distribution strategy also facilitates the

use of a heterogeneous hardware environment, e.g., nodes with different processor types or

memory amounts can also be utilized effectively up to a reasonable degree of heterogeneity.

The poor performance and parallel scaling of the bandwidth-bound operations, like the

(un)packing of amplitudes and residuals, e.g., line 4 in Algorithm 1 or lines 11 − 12 in Al-

gorithm 2, can be masked by overlapping them with compute-bound operations like matrix-

matrix multiplications. For this reason, we adopted a nested OpenMP parallel scheme. On

the outer OpenMP level several threads work on different blocks of the batched loops. Within

these blocks, on the inner level the intrinsic parallelism of level 3 threaded BLAS routines

is exploited. For example, this nested OpenMP strategy exhibits excellent scaling and a 7.6

speedup for a (H2O)10 cluster with the cc-pVDZ basis set on a 16-core node compared to

our previous CCSD program.53 Most of this gain can, however, be attributed to the fact

that the previous implementation was not optimized to run efficiently on a large number of

threads.

3.4 Integral-direct and parallel (T) algorithm

The so-called “ijkabc” type implementations of the (T) correction usually compute theW and

V intermediates of eqs 21 and 22 for all virtual orbital index triples in nested loops over fixed

“ijk ” triplets. In order to cumulate all contributions of W into the same three-dimensional

array, the indices of the intermediates resulting from the contractions of eq 21 are usually

permuted to a matching order, say “abc”. We have shown previously that this permutation,

despite its lower, sixth-power-scaling operation count, has a highly bandwidth-bound nature

as opposed to the effective, compute-bound contractions.56 For this reason we proposed an

algorithm for multi-threaded use which exploits the permutational symmetry of the Coulomb

integrals and the doubles amplitudes in order to eliminate all but one of the permutations

needed.56 Here, we report a further improved “ijkabc” (T) algorithm by eliminating the one

21

remaining permutation, as well as any remaining disk usage. Additionally, the minimal

memory requirement is compressed to be comparable to that of the new CCSD algorithm,

and the code is also parallelized via a similar MPI/OpenMP route.

The updated ijkabc (T) algorithm is presented in Algorithm 5. To avoid the redundant

unpacking of the doubles amplitudes inside the three loops over the i ≥ j ≥ k indices, it is

beneficial to perform this operation outside all the occupied loops. Since the residual array

from the CCSD calculation is no longer needed, the unpacked doubles amplitude tensor can

be stored in a space comparable to that allocated for the CCSD calculation. The storage of

the doubles amplitudes with permuted indices, as shown in array R in line 1 of Algorithm 5,

is also beneficial for the effective elimination of the index permutations of the intermediates

(see lines 12 and 15 of Algorithm 5). Since array R takes as much memory as the array

holding the double amplitudes, the storage of the entire R would almost double the minimal

memory requirement. Thus, if there is limited memory, we do not store the entire R and

perform the necessary amplitude index permutations inside the loops over indices i and j.

The two- and three-external index four-center ERIs can be assembled inside the occupied

loops for a single value of i, j, and k as needed (see lines 3, 6-8, 10, and 18 of Algorithm 5).

Consequently, the size of all intermediates can be kept at most cubic-scaling.

All in all, the minimal memory requirement for the (T) correction is 8n2
v n

2
o bytes for

the unpacked doubles amplitudes, 8 (n2
o +n2

v +no nv)Na bytes for the unpacked three-center

integrals, and 8 · 5n3
v bytes for the three-external two-electron integrals, i.e., (ac|bi), (ac|bj),

and (ac|bk) (for a given i, j or k index), as well as for the W and the V intermediates. This

minimal memory usage is comparable to that of the above described CCSD algorithm, which

does not include the storage of the two-external four-center ERIs. That is feasible since, if

there is insufficient per-node memory, the (ai|bj) integrals can be obtained when needed via

an effective integral-direct approach as shown in lines 6, 7, and 18 of Algorithm 5.

With a sufficiently low memory requirement, the next task is the wall time optimization

of the (T) correction because of its even steeper scaling than that of the CCSD method. The

22

Algorithm 5 Integral-direct and parallel ijkabc (T) algorithm.
1: Rbaij = Tabij
2: for l = no,m
3: I labc = Jab,P (J l

c,P)† // assembly as far as memory allows until index m
4: end for
5: for k = 1, no // MPI parallel
6: Ikbcj = Jbj,P (Jk

c,P)†

7: Ikaci = Jai,P (Jk
c,P)†

8: Ikabc = Jab,P (Jk
c,P)† // if unavailable

9: for ij (i ≥ j ≥ k) // OpenMP parallel
10: I labc = Jab,P (J l

c,P)† // if unavailable for l = i or l = j
11: for b = 1, nv // OpenMP parallel
12: wb

ac = Ijba,d T
ik
d,c + (Ibid,a)

† T jk
d,c+ T jb

a,l (Ikic,l)
† +Rbi

a,l (Ikjc,l)
†

13: end for
14: for c = 1, nv // OpenMP parallel
15: wc

ab ← T ik
a,d I

cj
d,b + T ij

a,d (Ickb,d)
† + Icka,d T

ij
d,b + (Icid,a)

† T kj
d,b+

I ija,l (T ck
b,l)
† + I ika,l (Rcj

b,l)
† + T ck

a,l (Ijib,l)
† +Rci

a,l (Ijkb,l)
†

16: vcab = wc
ab + T i

a I
cjk
b + Icika T j

b

17: end for
18: I ijab = J i

a,P (J j
b,P)†

19: for b = 1, nv // OpenMP parallel
20: vbac ← Ibija T k

c

21: end for
22: Calculate energy contribution according to eq 5 of ref 56
23: end for
24: end for

FLOP count for the naive, fully integral direct construction of the three-external two-electron

integrals would be about n3
o n

3
vNa/6, because all (ab|ci) integrals have to be assembled for

all independent a, b, and c indices and for all i ≥ j ≥ k triplets. Since that is too expensive

to be practical, as many of these integrals as possible are assembled and stored in memory

outside of the three outer loops (see lines 2-4). So far there is no overhead in the assembly

of (ab|ci) compared to alternative implementations, since the assembly of the three-external

integrals is not needed for the t1-transformed CCSD equations. Because of the restrictions

i ≥ j ≥ k, the reusability of the pre-assembled integrals is optimal if they are stored for

the highest occupied indices. Then only the missing integrals are assembled (redundantly)

23

inside the occupied loops when they are not available in memory (line 10). Alternatively, the

three-external two-electron integrals could be distributed across the memory of all nodes, but

this strategy results in a higher inter-node communication cost. The choice of assembling the

required integrals on each node obviates the communication at the expense of an increased

operation count. This cost is, however, acceptable, especially because the assembly can be

performed via highly-efficient and well-scaling BLAS level 3 gemm operations.

Regarding the multi-threaded scaling, we improved upon the contraction of the doubles

amplitudes and the two-electron integrals. By introducing a loop over a virtual index that is

not a summation index in the contraction, e.g., over b or c in lines 11 and 14 of Algorithm 5, it

became possible to cumulate the resulting W contribution immediately with the appropriate

index order for all six terms. Thus, the one remaining, poorly scaling permutation operation

is also eliminated from the present algorithm. Our measurements indicate that, especially

with high number of threads, this new contraction strategy is usually more efficient even

when the index order resulting from the contraction matches that of the array used for the

W intermediate. Therefore, we adopted this approach for the calculation of all six types of

terms contributing to the W intermediate.

Furthermore, via the introduction of OpenMP directives for the multi-threaded paral-

lelization of the j and i loops, it was possible to overlap the low arithmetic intensity opera-

tions, i.e., the dyadic products needed for theV intermediate (lines 16 and 20 of Algorithm 5)

and the calculation of the energy contribution (line 22 of Algorithm 5), with compute-bound

operations. To reduce the additional memory requirement originating from the thread-local

intermediates and integrals, we employ nested OpenMP parallelization. For that end, either

the loops over the virtual indices b and c can be parallelized (see lines 11, 14, and 19 of

Algorithm 5) or threaded BLAS routines can be called for the gemm operations. We have

found both solutions similarly effective. Consequently, by assigning some of the threads to

the inner OpenMP layer, the number of threads in the outer layer and hence the number

of thread-local arrays can be kept small. As a result of the aforementioned improvements,

24

in comparison to the previous, already multi-threaded algorithm,56 we measure an overall

decrease of about 40% in the wall times with 16 cores for the example of the (H2O)10 cluster

with the cc-pVDZ basis set.

On top of that, inter-node parallelization is also implemented by distributing the k indices

of the outer loop (line 5 of Algorithm 5) across the compute nodes using the MPI protocol.

The distribution of k indices is dynamic to achieve a balanced load on each compute node.

This task distribution is very effective and fits well into our data allocation strategy. Obvi-

ously, this choice does not scale any more if the number of MPI tasks exceeds the number

of occupied orbitals, but excellent speedups are measured up to a few hundreds of cores (see

Section 5).

It is also worth noting that relatively frequent checkpointing is implemented for both

the CCSD and the (T) parts of the calculation. For example, in the case of unexpected

power failure or expired wall time limit, the CCSD iteration can be restarted from the last

completed iteration. The more costly (T) correlation energy evaluation is checkpointed at

each completed iteration of the innermost occupied loop (over index i in Algorithm 5). When

restarting the (T) calculation the job simply skips the converged CCSD iteration, reads the

integrals and amplitudes from disk and continues the innermost occupied loop with the next

incomplete ijk index triplet.

4 Computational details

The above CCSD(T) approach has been implemented in the Mrcc suite of quantum chemical

programs, and it will be made available in a forthcoming release of the package.90

The benchmark tests were carried out with compute nodes containing two Intel Xeon

E5-2650 v2 CPUs with 8 physical cores per CPU. The theoretical peak performance of these

nodes (332.8 GFLOP/s) is identical to the ones used in previous benchmark studies assessing

alternative CCSD(T) implementations.17,19,20 Hence this CPU choice facilitates the direct

25

comparison of the performance of our code with alternative implementations. The compute

nodes have 125 GB RAM, and their interconnection is established with an InfiniBand FDR

network. The more extensive calculations of Section 6 were carried out using Intel Xeon

Platinum 8180M processors equipped with 28 physical cores each. The theoretical peak

performance of one such CPU is 2240 GFLOP/s.

For the benchmark calculations correlation consistent basis sets, cc-pVXZ,91 were utilized

with the corresponding DF auxiliary bases, cc-pVXZ-RI.92 The calculations in Section 6 uti-

lize triple- and quadruple-ζ valence basis sets including polarization93 and diffuse functions94

(def2-TZVPPD and def2-QZVPPD) with the corresponding auxiliary basis sets.95 The core

electrons were not correlated in any of the presented cases.

5 Performance analysis

In this section we analyze the multi-threaded and multi-node parallel performance of the in-

troduced DF-CCSD(T) program. The benchmark calculations were performed on the same

molecules and identical CPUs as in recent studies17,19,20 so that it will also be meaningful to

compare wall time measurements with the ones obtained with different programs. Namely,

the test molecules adopted from these studies are the (H2O)10 cluster20 for the study of

the multi-threaded performance of CCSD(T), and the uracil trimer19 as well as the (H2O)14

cluster19 for the multi-node performance analysis of CCSD and (T), respectively. To deter-

mine the basis set dependence of the parallel efficiency, calculations were performed on the

(H2O)6 cluster with basis sets of increasing size following the analogous test of ref 20. Vari-

ous choices for the number of MPI tasks and for nested OpenMP parallelism were examined

on the (H2O)10 cluster. On top of the above, we also find these examples fortunate because

their nv/no ratio and the number of correlated orbitals are highly representative of the aver-

age/maximum number of correlated natural orbitals in a single domain CCSD(T) calculation

of our LNO-CCSD(T) method.21,56,57 The benchmarked molecules with the applied basis sets

26

and the number of basis functions are collected in Table 1.

Table 1: Systems, basis sets, and the number of basis functions selected for the benchmark
calculations.

System Basis no nv Na

(H2O)6 cc-pVDZ 24 114 468
cc-pVTZ 24 318 846
cc-pVQZ 24 660 1452

(H2O)10 cc-pVDZ 40 190 780
(H2O)14 cc-pVDZ 56 266 1176

Uracil trimer cc-pVDZ 63 309 1512

5.1 Multi-threaded performance of CCSD(T)

The multi-threaded scaling of the CCSD algorithm is depicted in Figure 1. The calculations

were performed on the (H2O)10 cluster with the cc-pVDZ basis set using a single compute

node. The wall times and the speedups are plotted for five implementations (MPQC,19

ORCA,80 PSI4,28 FHI-aims,20 and MRCC90). Speedup values of the middle panel are ob-

tained using the single core measurement as reference. The performance value is obtained as

the ratio of the required double precision operations of our algorithm and the measured wall

times. For the relative performance shown in the right panel, this is divided by the peak

performance corresponding to the given number of cores and the CPU’s base frequency. In

some benchmark calculations more than 100% CPU utilization can be observed, which is

attributed to the use of the Intel Turbo Boost (ITB) technology. The theoretical peak per-

formance is calculated using the 2.6 GHz base frequency of the CPU, while with ITB the

clock rate can be significantly higher, up to 3.1 GHz above 4 threads or even 3.4 GHz with

only 1 thread. Unfortunately, this effect cannot be accounted for in our relative performance

expressions since the actual operating frequencies are not known. From this perspective

it might have been more fortunate to turn off ITB, but that was out of our control. In

turn, the measurements represent more realistic scenarios where ITB is operating. The

wall times obtained with the ORCA, PSI4, and MPQC packages in our measurements are

27

somewhat different from those presented in refs 19, 20, and 17. This could probably be

explained by the different configuration of the clusters (e.g., network, file system) used for

the measurements. Therefore, we acknowledge that wall time measurements have observable

uncertainties even if the same CPU type is used and we focus on the speedup values and the

relative performances compared to the theoretical peak performance, which are supposedly

more independent of the actual hardware.

Regarding the results for CCSD (Figure 1), all five investigated implementations show

an excellent speedup, mostly between 8 and 11 with 16 threads. Our implementation also

demonstrates an efficient CPU utilization with about 65% of the theoretical peak perfor-

mance with 16 threads.

 16

 32

 64

 128

 256

 512

 1024

 1 2 4 8 16

W
a
ll
 t

im
e
 [

s
]

Number of threads

ORCA
PSI4

MRCC
MPQC

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p

e
e
d

u
p

Number of threads

ORCA
PSI4
MRCC
FHI−aims
MPQC

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16

%
 o

f
p

e
a
k
 p

e
rf

o
rm

a
n

c
e

Number of threads

MRCC
Turbo Boost

Figure 1: Multi-threaded performance of a CCSD iteration of various implementations for
a (H2O)10 cluster using the cc-pVDZ basis set. Speedup values obtained for the FHI-aims
software, illustrated with a dashed line, are taken from ref 20. The left panel shows wall-
clock times, the middle panel depicts speedup values compared to the measurement with 1
thread, and the right panel illustrates performance values as the percentage of the theoretical
peak performance of the corresponding number of cores at their base frequency.

The scaling of the individual terms in CCSD is shown in detail in Figure 2. The shorthand

notation of Figure 2 refers to a contribution to the doubles amplitudes (e.g., A2 ≡ Aab
ij). Only

the terms with a wall time of at least 1% of a CCSD iteration are presented. In accordance

with Section 3, the cumulative wall time of the Bab
ij , the Cab

ij , and the Dab
ij terms is about twice

the time of PPL, representing about 2/3 of the total elapsed time of the calculation. This

measurement also emphasizes the importance of optimal algorithms in the case of the sixth-

power-scaling terms apart from PPL, at least when small basis sets are utilized. It can be

28

seen that the O(N6)-scaling terms (i.e., Aab
ij , Bab

ij , Cab
ij , and Dab

ij) that contain mostly compute

bound operations scale very well with the number of threads. Only the O(N5)-scaling Eab
ij

and Gab
ij terms exhibit worse speedup because of the more bandwidth-bound nature of the

involved operations. These two terms represent only ∼ 4% of the total run time with 16

threads, and their moderate scaling should make the lower speedup even less influential with

larger molecules or basis sets. Therefore, with larger systems a better overall speedup of

CCSD can be expected (c.f., Figure 7 below).

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16

W
a
ll
 t

im
e
 [

s
]

Number of threads

E2+G2
D2
C2
B2
A2

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p

e
e
d

u
p

Number of threads

E2+G2
D2
C2
B2
A2

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16

%
 o

f
p

e
a
k
 p

e
rf

o
rm

a
n

c
e

Number of threads

E2+G2
D2
C2
B2
A2
Turbo Boost

Figure 2: Scaling of the computationally most expensive terms in CCSD. The calculation
was performed on a (H2O)10 cluster with the cc-pVDZ basis set. See the caption of Figure 1
for further details.

Similar conclusions can be drawn from the (T) measurements depicted in Figure 3. The

speedups with the three implementations with which we performed measurements (ORCA,

PSI4, and Mrcc) are close to each other, on the average around 10-12 with 16 threads,

which is probably very close to the limit that is achievable with the given hardware. The

performance of Mrcc is better than in the case of CCSD, i.e., about 80% of the theoretical

peak is achieved with 16 threads.

The scaling of the computationally most expensive terms of the (T) correction are de-

picted in Figure 4. The operations needed for the steeper, O(N7)-scaling terms scale consid-

erably better (the speedup is about 12 on 16 cores) with the number of threads than those

required for the O(N6)-scaling calculation of the V intermediate. However, the evaluation

of V takes only about 7% of the (T) correction even with 16 threads and is expected to

become even shorter relative to the total calculation for larger systems because of the less

29

 8

 16

 32

 64

 128

 256

 1 2 4 8 16

W
a

ll
 t

im
e
 [

m
in

]

Number of threads

ORCA
PSI4

MRCC

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p

e
e

d
u

p

Number of threads

FHI−aims
ORCA
PSI4
MRCC

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16

%
 o

f
p

e
a

k
 p

e
rf

o
rm

a
n

c
e

Number of threads

MRCC
Turbo Boost

Figure 3: Multi-threaded performance of the (T) correction of various implementations for
a (H2O)10 cluster with the cc-pVDZ basis. Speedup values obtained with the FHI-aims
package, illustrated with a dashed line, are taken from refs 19 and 20, respectively. See the
caption of Figure 1 for further details.

steep scaling of its operation count.

 1

 4

 16

 64

 256

 1 2 4 8 16

W
a
ll
 t

im
e
 [

m
in

]

Number of threads

O(nv
4
 no

3
)

O(nv
3
 no

4
)

O(nv
3
 no

3
)

energy

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p

e
e
d

u
p

Number of threads

O(nv
4
 no

3
)

O(nv
3
 no

4
)

O(nv
3
 no

3
)

energy

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16

%
 o

f
p

e
a
k
 p

e
rf

o
rm

a
n

c
e

Number of threads

O(nv
4
 no

3
)

O(nv
3
 no

4
)

O(nv
3
 no

3
)

energy

Turbo Boost

Figure 4: Scaling of the computationally most expensive terms of the (T) correction. The
calculation was performed for a (H2O)10 cluster with the cc-pVDZ basis set. See the caption
of Figure 1 for further details.

We also determined the dependence of the performance (still within a single node) on

the number of MPI tasks and the number of threads in the outer parallel region [outside

of BLAS calls in CCSD or the inner virtual loops in the (T) algorithm] in case of nested

OpenMP parallelism (see line 1 of Algorithms 1, 2, and 3, and line 5 of Algorithm 5) for

the (H2O)10 cluster. The results are plotted in Figures 5 and 6. For better visibility we

show the decrease in wall times (left panels) and improvements in speedups (right panels)

in comparison to the single task measurement performed without nested OpenMP or MPI.

It is observed that the introduction of both the higher number of MPI tasks and outer

OpenMP threads increase the performance. The better performance obtained in the case

30

of nested OpenMP parallelism can be explained by the overlap of the memory-intensive

operations with other, more arithmetic-intensive ones as described in Section 3. For instance,

nested parallelism improves the relatively poorly scaling evaluation of the V intermediate.

According to our measurements, the speedup with more MPI processes, on the other hand,

can mostly be attributed to the better utilization of the NUMA architecture of the compute

nodes. This was verified by running two computations for the (H2O)10/cc-pVDZ example.

First, all threads and data allocations were assigned to the same NUMA node, and then the

threads and the data were fixed on different NUMA nodes. The wall time measured with the

data in the non-local memory was found about 13% longer compared to the one with only

local memory access. However, this is clearly the limiting case and, in realistic applications,

when only one MPI task is running on a node, the data is distributed between the local and

non-local memory. When there is enough memory, it is advisable to run at least as many

MPI processes per node as the number of NUMA nodes to avoid this slower memory access.

The CCSD calculation benefits more from the higher number of threads on the first

(outer) OpenMP level (line 1 of Algorithms 1, 2, and 3; denoted by 2OMP in the figures),

while (T) is better accelerated via MPI tasks (denoted by 2MPI). The cumulative effect of

the nested OpenMP and MPI parallelism (2MPI-2OMP) is smaller in both cases. Using both

nested OpenMP and MPI parallelism an overall 16% and 21% decrease of wall times could

be achieved for the CCSD iteration and the (T) correction, respectively, for these single-node

16-core calculations.

In Figure 7 the scalings of CCSD and (T) are illustrated as the function of the basis

set size for a (H2O)6 cluster. While the speedup measured for the (T) correction is nearly

independent of the applied basis set within the range of cc-pVDZ to cc-pVQZ, the CCSD

iteration scales better with larger basis sets. The speedup of CCSD with the cc-pVDZ basis

is somewhat lower because the small number of basis functions make the sequential O(N4)-

scaling terms, e.g., the unpacking of the doubles amplitudes, noticeable compared to the

most expensive but well-scaling O(N6) terms.

31

 0

 5

 10

 15

 20

 2 4 8 16

%
 d

e
c

re
a

s
e

 i
n

 w
a
ll

 t
im

e

Number of threads

2MPI−2OMP
1MPI−2OMP
2MPI−1OMP

 0

 0.5

 1

 1.5

 2

 2 4 8 16

D
if

fe
re

n
c

e
 i

n
 s

p
e

e
d

u
p

Number of threads

2MPI−2OMP
1MPI−2OMP
2MPI−1OMP

Figure 5: Performance of a CCSD iteration as the function of the number of MPI tasks and
level 1 OpenMP threads for the (H2O)10 cluster. The left panel shows the decrease of wall
times as the percentage of the measurement with 1 MPI task and without nested OpenMP
parallelism. The right panel depicts the relative speedup values with the same reference.

 0

 5

 10

 15

 20

 25

 2 4 8 16

%
 d

e
c
re

a
s
e
 i
n

 w
a
ll
 t

im
e

Number of threads

2MPI−2OMP
1MPI−2OMP
2MPI−1OMP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 8 16

D
if

fe
re

n
c
e

 i
n

 s
p

e
e

d
u

p

Number of threads

2MPI−2OMP
1MPI−2OMP
2MPI−1OMP

Figure 6: Performance of the (T) correction as the function of the number of MPI tasks and
level 1 OpenMP threads for the (H2O)10 cluster. The left panel shows the decrease of wall
times as the percentage of the measurement with 1 MPI task and without nested OpenMP
parallelism. The right panel depicts the relative speedup values with the same reference.

 1

 2

 4

 8

 16

 1 2 4 8 16

C
C

S
D

 s
p

e
e
d

u
p

Number of threads

cc−pVDZ
cc−pVTZ
cc−pVQZ

 1

 2

 4

 8

 16

 1 2 4 8 16

(T
)

s
p

e
e
d

u
p

Number of threads

cc−pVDZ
cc−pVTZ
cc−pVQZ

Figure 7: Speedup of the CCSD iteration (left panel) and the (T) correction (right panel)
relative to the measurement with 1 thread as the function of the basis set size for the (H2O)6
cluster.

5.2 Multi-node performance of CCSD(T)

The multi-node performance was determined on the example of the uracil trimer for CCSD

and for the (H2O)14 cluster for (T), both with the cc-pVDZ basis set. The multi-node scaling
32

of the CCSD and (T) parts are shown in Figures 8 and 9, respectively.

 64

 128

 256

 512

 1 2 4 8

W
a

ll
 t

im
e

 [
s

]

Number of nodes

 1

 2

 4

 8

 1 2 4 8

S
p

e
e

d
u

p

Number of nodes

MPQC
MRCC

 0

 20

 40

 60

 80

 100

 1 2 4 8

%
 o

f
p

e
a

k
 p

e
rf

o
rm

a
n

c
e

Number of nodes

Figure 8: Multi-node performance of a CCSD iteration for the uracil trimer with the cc-
pVDZ basis set. The speedup values obtained with the MPQC package are taken from ref
19. See the caption of Figure 1 for further details.

 16

 32

 64

 128

 256

 1 2 4 8

W
a
ll
 t

im
e
 [

m
in

]

Number of nodes

 1

 2

 4

 8

 1 2 4 8

S
p

e
e
d

u
p

Number of nodes

MPQC
MRCC

 0

 20

 40

 60

 80

 100

 1 2 4 8

%
 o

f
p

e
a
k
 p

e
rf

o
rm

a
n

c
e

Number of threads

Figure 9: Multi-node performance of the (T) correction for a (H2O)14 cluster with the cc-
pVDZ basis. See the caption of Figure 1 and 8 for further details.

Both the CCSD calculation and the (T) correction show an excellent speedup that is

comparable to the performance of the recent MPQC implementation. The parallel efficiency

of the CCSD iteration and the (T) correction is 66% and 88% on 8 nodes, respectively. The

relative performance of CCSD and (T) is still at least about 50% and 65% of the combined

theoretical peak performance of the 8 compute nodes (see right panels of Figures 8 and 9).

The individual terms exhibit behavior analogous to the case of the single node mea-

surements. The steepest scaling contributions [O(N6) for CCSD and O(N7) for the (T)

correction] scale well with the number of nodes. Compared to that the scaling of the less ex-

pensive [O(N5) for CCSD and O(N6) for the (T) correction], more bandwidth-bound terms

start to deteriorate from the ideal scaling when the number of nodes increases above 8-16.

33

That is, however, satisfactory from the perspective of the planned applications since a few

hundred compute cores can still be efficiently exploited by using up to a few tens of nodes

equipped with many-core CPUs.

Further performance benchmarks are given in Section 6.2 where various MPI/OpenMP

strategies are compared for large-scale examples.

6 Applications

In this section, we illustrate the capabilities of the presented CCSD(T) code on chemical prob-

lems, which would be out of the scope of conventional implementations. The performance

and efficiency of the program is also analyzed for these large-scale calculations executed with

a few hundred cores.

6.1 Expansion of the CEMS26 test set of CCSD(T) references

According to the first goal of providing valuable reference data for the assessment of reduced-

scaling methods, we expand our previous CCSD(T) reference compilation21 with correlation

energies, reaction energies, and barrier heights obtained for real-life catalytic reactions.81–83

The first version of the correlation energies of medium-sized systems list contains 26 entries,

hence the abbreviation of CEMS26.21 First, in order to consider realistic test systems which

are also capable to assess the accuracy of various local approximations, each molecule of

CEMS26 contains at least 30 atoms. Second, all correlation energies are obtained with

at least triple-ζ quality basis sets to provide some flexibility in the one-particle basis set.

Third, high reproducibility is required for these benchmarks, thus, for example, reduced-cost

NO-based calculations were excluded. Together these three criteria represent a very strong

set of limitations. After an extensive literature search we were only able to find a handful

of suitable calculations to add to the test set. Aiming at a more representative data set

size we also performed a number of extensive CCSD(T) calculations, but a large portion of

34

those had to exploit spatial symmetry to have an affordable computation cost. The higher

than average portion of spatially symmetric molecules is thus not representative, which is

corrected here by adding 12 asymmetrical molecules of 31 − 43 atoms to the list. Another

unfavorable feature of the test set is the relatively low number of results calculated with basis

sets other than Dunning’s correlation-consistent basis sets91 or with ones including diffuse

functions. To improve upon this aspect at least triple-ζ, and for one entry a quadruple-ζ,

basis set were employed including both polarization and diffuse functions (def2-TZVPPD

and def2-QZVPPD).93,94 The previous entries were added using their ground state global

minimum structures. The current selections thus include also local minima and transition

state structures along the previously explored reaction paths.81–83

Three reactions are considered: an organocatalytic Michael-addition reaction,81 the hy-

drogen activation by a frustrated Lewis pair (FLP),82 and a palladium catalyzed C–H ac-

tivation reaction,83 as shown in Figures 10-12. The size of the molecules, the applied basis

sets, and the corresponding orbital dimensions, as well as the calculated CCSD(T) correla-

tion energies are collected in Table 2. These correlation energies are also useful to expand

the CEMS26 set with 8 new reaction energies and 4 barrier heights, which are collected in

Table 3. The complete list of species, HF, MP2, CCSD, and CCSD(T) energies and the

employed Cartesian coordinates are available in the Supporting Information (SI).

Having a closer look at the investigated species and reactions the first example is an

organocatalytic Michael-addition reaction81 in which propanal and β-nitrostyrene (NS) react

in a diphenylprolinol silyl ether catalyzed reaction with a p-nitrophenol cocatalyst. Besides

the main enamine (en-trans) and iminium intermediates a stable cyclobutane (CB) and a

dihydrooxazine N -oxide (OO) intermediate also have important roles in the reaction mecha-

nism.81 The enamine intermediate and β-nitrostyrene react through a transition state (TS)

denoted as TS1. The intermediates, OO and CB, are separated by another TS labeled by

TS2 (see Figure 10). The overall stereochemistry and the reaction rate of these reactions are

governed by delicate interactions between the reactants and the catalyst. Moreover, various

35

Table 2: The species, the utilized basis sets, and the CCSD(T) correlation energies added to
the CEMS26 test set.

Species Atoms Basis set no. of AOs no
a nv Na ECCSD(T) [Eh]

OO 40 def2-TZVPPD 1089 54 1015 2620 −3.854401

CB 40 def2-TZVPPD 1089 54 1015 2620 −3.858204

TS1 40 def2-TZVPPD 1089 54 1015 2620 −3.878783

TS2 40 def2-TZVPPD 1089 54 1015 2620 −3.861682

FLPD 41 def2-TZVPPD 1037 46 974 2500 −3.122023

FLPO 41 def2-TZVPPD 1037 46 974 2500 −3.096183

TSadd 43 def2-TZVPPD 1071 47 1007 2578 −3.146588

FLPA 43 def2-TZVPPD 1071 47 1007 2578 −3.162500

S1 34 def2-TZVPPD 992 54 916 2417 −3.929478

S2 34 def2-TZVPPD 992 54 916 2417 −3.926367

TSPd 34 def2-TZVPPD 992 54 916 2417 −3.937428

ABP 31 def2-TZVPPD 893 45 830 2163 −3.238854

ABPb 31 def2-QZVPPD 1569 45 1506 3671 −3.405137

a Number of correlated occupied orbitals.
b The CCSD(T) correlation energy of ABP extrapolated from the def2-TZVPPD
and def2-QZVPPD energies is −3.528309 Eh.

paths are found in a fairly narrow energy range. Thus, highly accurate calculations are re-

quired for the reliable characterization of the reaction mechanism.81 The species added to the

CEMS26 test set are the OO and the CB intermediates as well as the TS1 and TS2 transition

states (Table 2). All 4 structures contain 40 atoms. Due to the extended def2-TZVPPD

basis set choice a rather large number of basis functions (1089) are involved.

The second example is the first step of a hydrogenation reaction catalyzed by an FLP,

namely the addition of H2 to the FLP catalyst.82 In FLP catalysis the system contains both

a Lewis acid and a Lewis base but the formation of a classical Lewis adduct is prohibited,

usually because of steric effects. In the example of ref 82 the heterolytic bond breaking of

H2 is catalyzed (see Figure 11). The species added to the CEMS26 list are the datively

bound FLP catalyst (FLPD), its open form isomer (FLPO), the transition state TSadd and

36

Table 3: CCSD(T) reaction energies and barrier heights for the reactions of Section 6.1.

Reaction Basis set ∆ECCSD(T) [kcal mol−1]
en-trans + NS → TS1 def2-TZVPPD 4.89

en-trans + NS → OO def2-TZVPPD −23.75

en-trans + NS → TS2 def2-TZVPPD 5.06

en-trans + NS → CB def2-TZVPPD −26.39

FLPD → FLPO def2-TZVPPD 7.92

FLPD + H2 → TSadd def2-TZVPPD 12.89

FLPD + H2 → FLPA def2-TZVPPD −6.19

AA + Pd(OAc)2 → S1 def2-TZVPPD 2.92

AA + Pd(OAc)2 → S2 def2-TZVPPD −14.05

AA + Pd(OAc)2 → TSPd def2-TZVPPD 8.51

Reaction 3a def2-TZVPPD −74.42

Reaction 3b def2-QZVPPD −73.82

a AA + BA + TBHP → ABP + TBA + H2O.
b The reaction energy extrapolated using the def2-TZVPPD and def2-
QZVPPD results is -73.50 kcal/mol.

Figure 10: Schematic representation of the diphenylprolinol silyl ether catalyzed Michael-
addition reaction.81

37

the product of the FLP-mediated H2 activation reaction (FLPA). The catalyst contains 41

atoms, whereas the TS and the adduct consist of 43 atoms. The utilized def2-TZVPPD basis

set contains 1037 and 1071 functions for the FLP and the TS/adduct species, respectively.

Figure 11: Addition of dihydrogen to the frustrated Lewis pair catalyst.82

Finally, we consider a palladium catalyzed C–H bond activation reaction (see Figure 12).83

In the reaction, palladium catalyzes the cross-dehydrogenative coupling between anilides, like

acetanilide (AA), and aromatic aldehydes, like benzaldehyde (BA), in the presence of tert-

butyl hydroperoxide (TBHP) forming tert-butyl alcohol (TBA) and 2-aminobenzophenon

(ABP). The product, 2-acetaminobenzophenon, containing 31 atoms, the transition state

(TSPd), and two intermediates (S1 and S2), containing 34 atoms fall within the size range

of the molecules in the CEMS26 test set. For TSPd and the intermediates S1 and S2 the

def2-TZVPPD basis set was utilized, which consists of 992 AOs. The somewhat smaller size

of ABP also enabled a CCSD(T) calculation to be carried out with the def2-TZVPPD as well

as the def2-QZVPPD basis sets, which contained 893 and 1569 basis functions, respectively.

The energies calculated for ABP with the def2-TZVPPD and the def2-QZVPPD bases were

also extrapolated to the basis set limit. The extrapolation was carried out utilizing the two-

point expression of Karton and Martin96 for the HF energies using the parameters suggested

by Neese and Valeev.97 Correlation energies was extrapolated using the formula introduced

by Helgaker et al.98 As shown in Table 3, at least for this particular example, the reaction en-

ergy converges relatively rapidly with respect to the basis set size. Namely, -74.4, -73.8, and

-73.5 kcal/mol were obtained, respectively, with the def2-TZVPPD and the def2-QZVPPD

38

basis sets, and as the result of the extrapolation.

Figure 12: Schematic representation of the palladium catalyzed C–H activation reaction.83

With the above computations the CEMS26 set has been extended with the 12 structures

and the 13 corresponding CCSD(T) correlation energies of Table 2 leading to the new,

39-element compilation called CEMS39. The new list contains results for local minima

and transition states together with commonly utilized basis sets including diffuse functions

offering a greater variety of systems. Besides the already present C, H, N, O, P, Cl, S, Si,

Na, Mg, Li elements now B and Pd are also represented. The systems of the new CEMS39

set contain 38.5 atoms and 999 atomic orbitals on the average, and with that CEMS39 is

currently the most realistic test set aimed at the representative assessment of local correlation

methods. We will employ CEMS39 for that purpose in a forthcoming publication in the

context of our LNO-CCSD(T) method.21,57

6.2 Performance for large-scale examples

To characterize the efficiency of the program also for large examples, we employed various

settings for the number of MPI processes and OpenMP threads as well as for the parallelism

of the inner parallel region (threaded or sequential BLAS library). We measured the effi-

ciency for these calculations relative to the theoretical peak performance of the 4 Intel Xeon

Platinum 8180M processors utilized in these numerical experiments. For this particular CPU

the theoretical peak performance can be calculated with 1.7 GHz base frequency, which is

the limit when the AVX-512 instruction set and all cores are employed. The measurements

39

are summarized in Table 4.

Table 4: Performance values in percentage of the theoretical maximum obtained with various
settings for the species of the Michael-addition reaction81 and the hydrogen addition to
FLP.82

Species No. of
AOs Na

MPI
tasksa

Outer OpenMP
threadsa BLASb Wall

time [h]
% performancec

CCSD (T)
OO 1089 2620 4 4 sequential 31.8 56 64

CB 1089 2620 8 2 threaded 31.0 58 65

TS1 1089 2620 4 4 threaded 30.5 56 69

TS2 1089 2620 4 2 sequential 32.0 62 65

FLPD 1037 2500 4 2 threaded 21.1 47 50

FLPO 1037 2500 8 2 sequential 24.1 40 46

TSadd 1071 2578 4 1 threaded 21.3 61 62

FLPA 1071 2578 8 1 threaded 21.8 63 58

a The total number of threads (i.e., MPI × outer OpenMP × inner OpenMP) is 112.
b Parallelism of the BLAS library.
c Percentage of the theoretical peak performance.

Note that these large-scale computations were performed primarily for the purpose of

producing reference CCSD(T) correlation energies. Since the number of MOs, and hence the

total number of operations required for the computations, are fairly close for the systems

of Table 4, the comparison of these relative parformances is informative even if they were

measured with slightly different orbital dimensions. It is apparent that for these systems

and this particular CPU choice the performance of CCSD and the (T) correction is to a

large extent independent of the above settings within the investigated range of MPI tasks

and OpenMP threads. While keeping the total number of CPUs and cores fixed at 4 and

112, respectively, there is freedom to vary the number of MPI tasks and the number of outer

OpenMP threads. For most of the inspected setting combinations (i.e., 4-8 MPI tasks and

1-4 outer OpenMP threads) the performances of the CCSD and (T) steps were found highly

stable in the very satisfactory range of 56-63% and 58-69%, respectively. As explained in

Section 5, it is advisable to set the number of the MPI tasks to the number of NUMA nodes.

Based on the values of Table 4, if the total number of employed cores is kept fixed (112 in

40

this case), the further increase of the number of MPI processes form 4 to 8 does not increase

the performance, at least for systems of this size and with modern many-core CPUs. The

optimal number of inner and outer OpenMP threads is not as obvious to determine. In the

case of the above calculations, the number of outer threads does noticeably not affect the

performance in the range of 1-4. Similarly, switching from threaded to sequential BLAS

routines in combination with hand-coded inner layer OpenMP instructions for the latter has

a negligible impact on the performance. The almost uniformly good performance with a

relatively wide range of settings is certainly beneficial from the perspective of applications.

Considering the measured wall times, for the systems with 1037-1089 AOs the CCSD

calculation took about 4-7 hours, while the (T) part required 17-25 hours, both with 112

cores. Compared to that our largest CCSD(T) calculation performed with 1569 AOs required

68 hours using 224 cores. In terms of the number of AOs or in terms of the number of atoms,

in combination with quadruple-ζ basis sets, to our knowledge, that is the largest CCSD(T)

calculation ever carried out. Considering that a few days of compute time on a few hundred

cores, or in other words about 15,000 core hours, is easily accessible in many computer

centers, such large-scale calculations can now be considered relatively routine for a much

wider audience. Alternatively, smaller number of cores can be traded for longer execution

time. Since the implementation is frequently checkpointed and effectively restartable, this is

also a viable option even if strict wall times limits are implemented.

7 Summary and outlook

A completely integral-direct, operation-count and storage economic, well-parallelized DF-

CCSD(T) algorithm and implementation have been presented. The on-the-fly and blocked

assembly of all four-center ERIs allows us to minimize the O(N4)-scaling storage requirement

to the symmetry-packed doubles amplitudes and residuals and avoid potentially limiting disk

I/O or network communication both during a CCSD iteration and for the (T) correction up

41

to the range of 1000-2000 orbitals. We also improved upon a previous t1-transformed CCSD

algorithm,28 for instance, by optimizing and parallelizing all contractions besides the usually

emphasized particle-particle ladder term. As the highest possible permutational symmetry

and lowest operation count are ensured for the PPL term, some of which is sacrificed in al-

ternative parallel CCSD implementations,10,11,19,20 the remaining four O(N6)-scaling terms

are found to be comparably time-consuming in some of our target applications. Thus, hand-

optimized and well-scaling algorithms are presented also for those terms appearing in the

t1-transformed CCSD equations to which limited attention has been payed in the literature

previously. Our recent, OpenMP-parallel (T) algorithm56 has also been improved by mak-

ing it completely integral-direct, I/O-free, and MPI/OpenMP parallel, while decreasing its

minimal memory requirement to match that of the CCSD program and retaining the full

permutational symmetry of the contractions.

Detailed wall time measurements performed with the presented CCSD and (T) codes

demonstrate excellent strong scaling comparable to the performance of state-of-the-art im-

plementations11,19,20,28,80 for a wide range of systems including 100 to 1600 orbitals. At

multi-threaded use on a single node about 65 and 80%, while for hybrid MPI/OpenMP use

on up to a few hundred cores about 60 and 70% of the theoretical peak performance is utilized

by the CCSD and (T) codes, respectively. The combination of the optimal operation count

algorithms and the outstanding efficiency allowed us to perform 13 large-scale DF-CCSD(T)

calculations at the applicability limit of the CCSD(T) method in a relatively routine manner

using only 4-8 many-core CPUs. With those results we have extended our recent CCSD(T)

benchmark set21 with 13 new correlation energies and 12 new reaction energies and barrier

heights characterizing three reaction mechanisms taken from contemporary chemistry.81–83

Each calculation, involving 1037-1089 AOs, took only about one day with 112 cores, while the

largest example of 1569 orbitals ran for about three days with 224 cores. To our knowledge

the latter is one of the largest CCSD(T) application ever presented.

Due to the balanced performance obtained also for relatively small systems appearing

42

also in popular data sets used for parametrizing DFT functionals59,60 or machine-learning

models61–69 and to the minimal memory and disk footprint, we believe that the present code

is well suited to produce such large-scale benchmark CCSD(T) data. These properties are

especially useful if only a network file system and limited per-core memory is available, as in

many current computer clusters, allowing for the almost independent evaluation of hundreds

of medium-sized CCSD(T) calculations without introducing restrictive amount of network

use. The disk-, memory-, and communication-economic algorithms and the good portability

of the implementation also allowed us to perform CCSD(T) calculations both on various

supercomputer centers and in a cloud environment.

Future directions of development could benefit from promising tensor factorization ap-

proaches to further reduce the memory and operation count requirements.30–36 Additionally,

the presented MPI/OpenMP parallel DF-CCSD(T) represents a significant step towards the

development of a massively parallel LNO-CCSD(T) implementation. The LNO strategy,

while drastically reducing the computational cost of CCSD(T) via local, natural orbital, and

other approximations, estimates the correlation energy using orbital-specific contributions

obtained via independent CCSD(T) calculations.21,53–57 In rare cases when exceptionally

high accuracy is required for systems of complicated, moderately truncatable wavefunctions,

a potentially large number of LNOs has to be handled in some of the independent CCSD(T)

runs. The new DF-CCSD(T) algorithm is an excellent tool to accelerate such extensive do-

main calculations. As LNO-CCSD(T) calculations were already feasible for entire proteins

in the range of 1023-2380 atoms and up to 45,000 basis functions21,57 using a single CPU, the

extension with the present high-performance CCSD(T) algorithm could lead to accurate and

efficient CCSD(T) calculations for systems of previously unreachable size and complexity.

Acknowledgement

The authors are grateful for the financial support from the National Research, Development,

and Innovation Office (NKFIH, Grant No. KKP126451). This work was also supported

43

by the BME-Biotechnology FIKP grant of EMMI (BME FIKP-BIO). The work of PRN

is supported by the ÚNKP-18-4-BME-257 and ÚNKP-19-4-BME-418 New National Excel-

lence Program of the Ministry for Innovation and Technology and the János Bolyai Research

Scholarship of the Hungarian Academy of Sciences. We acknowledge that the results of

this research have been achieved using the DECI resource Saga based in Norway at Trond-

heim with support from the PRACE aisbl, and the Hungarian HPC Infrastructure at NIIF

Institute, Hungary.

Supporting Information Available

See supporting information for the complete list of Cartesian coordinates employed for the

CEMS39 set; and for the computed HF, MP2, CCSD, and CCSD(T) energies.

This material is available free of charge via the Internet at http://pubs.acs.org/.

Appendix

The t1-transformed Hamiltonian can be expressed via the transformed Fock matrix (̂f),

the one electron Hamiltonian (ĥ), and the three-center Coulomb integrals (Ĵ) if the DF

approximation is employed. Performing the transformation leads to the following matrix

elements:28,76

f̂pq = ĥpq +
∑
iQ

(
2 ĴQ

pq ĴQ
ii − ĴQ

pi Ĵ
Q
iq

)
(29)

ĥpq =
∑
rs

(1− tT1)rp hrs (1+ tT1)sq (30)

ĴQ
pq =

∑
rs

(1− tT1)rp JQ
rs (1+ tT1)sq. (31)

Here, t1 denotes a matrix of dimension no +nv, with (t1)pq = tpq for p > no and q < nv; and

with (t1)pq = 0 otherwise.28 It is worth noting that, after the transformation defined by eq 6,

f̂ and Ĵ do not retain the permutational symmetry28,76 of f and J, that is, ĴP
pq 6= ĴP

qp and f̂pq 6=

44

f̂qp. Furthermore, the occupied-virtual block of J is invariant to the t1-transformation,76 i.e.,

ĴP
ia = JP

ia. The transformation of the individual blocks of J and f can be carried out according

to the following equations:

ĴP
ia =JP

ia (32)

ĴP
ij =JP

ij +
∑
c

JP
ic t

c
j (33)

ĴP
ab =JP

ab −
∑
k

JP
kbt

a
k (34)

ĴP
ai =JP

ai +
∑
c

JP
act

c
i −
∑
k

JP
kit

a
k −

∑
kc

JP
kct

a
kt

c
i (35)

f̂ia =fia +
∑
kc

[
2
∑
P

JP
ai J

P
kc −

∑
P

JP
ic J

P
ka

]
tck (36)

f̂ij =fij +
∑
c

f̂ict
c
j +
∑
kc

[
2
∑
P

JP
ij J

P
kc −

∑
P

JP
ic J

P
kj

]
tck (37)

f̂ab =fab −
∑
l

f̂lbt
a
l +

∑
kc

[
2
∑
P

JP
ab J

P
kc −

∑
P

JP
ac J

P
kb

]
tck (38)

f̂ai =fai +
∑
c

f̂act
c
i −
∑
l

f̂lit
a
l +

∑
kc

[
2
∑
P

JP
ai J

P
kc −

∑
P

JP
ac J

P
ki

]
tck . (39)

In contrast to the approach of ref 28, here the t1-transformation is performed in the MO

basis because in this case the three-center AO integrals do not have to be stored during the

CCSD iteration. Let us also note that the auxiliary basis required for the correlated calcu-

lation is employed for the three-center integrals, thus our t1-transformed expressions yield

exactly the same numerical results as a DF-CC implementation without t1-transformation.

In that respect we also deviate from the algorithm of ref 28, where, to our understanding, the

auxiliary basis of the SCF calculation is employed to form the t1-transformed Fock-matrix.

In order to save memory space during the CCSD iterations, we do not store the original MO

integrals because they can be recovered from the t1-transformed integrals via the inverse

transformation. This can be achieved by inverting the transformation defined by eqs 32-35.

45

For example, the ĴP
ij integrals can be calculated as

Ĵ
P (n)
ij =JP

ij +
∑
c

JP
ic t

c(n)
j

=Ĵ
P (n−1)
ij −

∑
c

JP
ic t

c(n−1)
j +

∑
c

JP
ic t

c(n)
j , (40)

where ĴP (n)
ij and tc(n)j stand for the t1-transformed three-center integrals and singles ampli-

tudes of the nth iteration. Note that only the original occupied-virtual integral block, Jia

is needed for the inverse transformation. This block is readily available in every iteration

since it is unaffected by the t1-transformation in accordance with eq 32. Alternatively, the

original integrals Jic can be pulled out from the last two terms of eq 40. This way the

back-transformation can be avoided by performing the transformation on the t1-transformed

integrals of the previous iteration, ĴP (n−1)
ij , using tc(n)j −tc(n−1)j = R

c(n−1)
j /(fjj−fcc). However,

the inverse transformation is preferable because the original integrals are also necessary for

the t1-transformation of the Fock matrix according to eqs 36-39. The transformation of the

remaining three-center integrals can be carried out analogously.

References

(1) Crawford, T. D.; Schaefer III, H. F. Rev. Comp. Chem. 1999, 14, 33.

(2) Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic Structure Theory ; Wiley:

Chichester, 2000.

(3) Shavitt, I.; Bartlett, R. Many-Body Methods in Chemistry and Physics: MBPT and

Coupled-Cluster Theory ; Cambridge Molecular Science; Cambridge University Press,

2009.

(4) Bartlett, R. J.; Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod.

Phys. 2007, 79, 291.

46

(5) Kállay, M.; Gauss, J. Analytic second derivatives for general coupled-cluster and con-

figuration interaction models. J. Chem. Phys. 2004, 120, 6841.

(6) Kállay, M.; Gauss, J. Calculation of excited-state properties using general coupled-

cluster and configuration-interaction models. J. Chem. Phys. 2004, 121, 9257.

(7) Helgaker, T.; Coriani, S.; Jørgensen, P.; Kristensen, K.; Olsen, J.; Ruud, K. Recent

Advances in Wave Function-Based Methods of Molecular-Property Calculations. Chem.

Rev. 2012, 112, 543–631.

(8) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A fifth-order per-

turbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157,

479.

(9) Deegan, M. J. O.; Knowles, P. J. Perturbative corrections to account for triple excita-

tions in closed and open shell coupled cluster theories. Chem. Phys. Lett. 1994, 227,

321.

(10) Kobayashi, R.; Rendell, A. P. A direct coupled cluster algorithm for massively parallel

computers. Chem. Phys. Lett. 1997, 265, 1–11.

(11) Anisimov, V. M.; Bauer, G. H.; Chadalavada, K.; Olson, R. M.; Glenski, J. W.;

Kramer, W. T. C.; Aprà, E.; Kowalski, K. Optimization of the Coupled Cluster Imple-

mentation in NWChem on Petascale Parallel Architectures. J. Chem. Theory Comput.

2014, 10, 4307–4316.

(12) Pitoňák, M.; Aquilante, F.; Hobza, P.; Neogrády, P.; Noga, J.; Urban, M. Parallelized

implementation of the CCSD(T) method in MOLCAS using optimized virtual orbitals

space and Cholesky decomposed two-electron integrals. Collect. Czech. Chem. Com-

mun. 2011, 76, 713–742.

47

(13) Asadchev, A.; Gordon, M. S. Fast and Flexible Coupled Cluster Implementation. J.

Chem. Theory Comput. 2013, 9, 3385–3392.

(14) Deumens, E.; Lotrich, V. F.; Perera, A.; Ponton, M. J.; Sanders, B. A.; Bartlett, R. J.

Software design of ACES III with the super instruction architecture. Wiley Interdiscip.

Rev. Comput. Mol. Sci. 2011, 1, 895–901.

(15) Kaliman, I. A.; Krylov, A. I. New algorithm for tensor contractions on multi-core

CPUs, GPUs, and accelerators enables CCSD and EOM-CCSD calculations with over

1000 basis functions on a single compute node. J. Comput. Chem. 2017, 38, 842–853.

(16) Janowski, T.; Pulay, P. Efficient Parallel Implementation of the CCSD External Ex-

change Operator and the Perturbative Triples (T) Energy Calculation. J. Chem. Theory

Comput. 2008, 4, 1585–1592.

(17) Peng, C.; Calvin, J. A.; Pavošević, F.; Zhang, J.; Valeev, E. F. Massively Parallel

Implementation of Explicitly Correlated Coupled-Cluster Singles and Doubles Using

TiledArray Framework. J. Phys. Chem. A 2016, 120, 10231–10244.

(18) Solomonik, E.; Matthews, D.; Hammond, J. R.; Stanton, J. F.; Demmel, J. A mas-

sively parallel tensor contraction framework for coupled-cluster computations. J. Par-

allel Distr. Com. 2014, 74, 3176.

(19) Peng, C.; Calvin, J. A.; Valeev, E. F. Coupled-cluster singles, doubles and pertur-

bative triples with density fitting approximation for massively parallel heterogeneous

platforms. Int. J. Quantum Chem. 2019, 119, e25894.

(20) Shen, T.; Zhu, Z.; Zhang, I. Y.; Scheffler, M. Massive-parallel Implementation of the

Resolution-of-Identity Coupled-cluster Approaches in the Numeric Atom-centered Or-

bital Framework for Molecular Systems. J. Chem. Theory Comput. 2019, 15, 4721.

48

(21) Nagy, P. R.; Samu, G.; Kállay, M. Optimization of the linear-scaling local natural

orbital CCSD(T) method: Improved algorithm and benchmark applications. J. Chem.

Theory Comput. 2018, 14, 4193.

(22) Yoo, S.; Aprà, E.; Zeng, X. C.; Xantheas, S. S. High-Level Ab Initio Electronic Structure

Calculations of Water Clusters (H2O)16 and (H2O)17: A New Global Minimum for

(H2O)16. J. Phys. Chem. Lett. 2010, 1, 3122–3127.

(23) Eriksen, J. J. Efficient and portable acceleration of quantum chemical many-body meth-

ods in mixed floating point precision using OpenACC compiler directives. Mol. Phys.

2017, 115, 2086.

(24) DePrince, A. E.; Kennedy, M. R.; Sumpter, B. G.; Sherrill, C. D. Density-fitted singles

and doubles coupled cluster on graphics processing units. Mol. Phys. 2014, 112, 844.

(25) Aprà, E.; Kowalski, K. Implementation of High-Order Multireference Coupled-Cluster

Methods on Intel Many Integrated Core Architecture. J. Chem. Theory Comput. 2016,

12, 1129.

(26) Epifanovsky, E.; Zuev, D.; Feng, X.; Khistyaev, K.; Shao, Y.; Krylov, A. I. General im-

plementation of the resolution-of-the-identity and Cholesky representations of electron

repulsion integrals within coupled-cluster and equation-of-motion methods: Theory and

benchmarks. J. Chem. Phys. 2013, 139, 134105.

(27) Bozkaya, U.; Sherrill, C. D. Analytic energy gradients for the coupled-cluster singles

and doubles with perturbative triples method with the density-fitting approximation.

J. Chem. Phys. 2017, 147, 044104.

(28) DePrince, A. E.; Sherrill, C. D. Accuracy and Efficiency of Coupled-Cluster Theory

Using Density Fitting/Cholesky Decomposition, Frozen Natural Orbitals, and a t1-

Transformed Hamiltonian. J. Chem. Theory Comput. 2013, 9, 2687.

49

(29) Boström, J.; Pitoňák, M.; Aquilante, F.; Neogrády, P.; Pedersen, T. B.; Lindh, R. Cou-

pled Cluster and Møller–Plesset Perturbation Theory Calculations of Noncovalent In-

termolecular Interactions using Density Fitting with Auxiliary Basis Sets from Cholesky

Decompositions. J. Chem. Theory Comput. 2012, 8, 1921.

(30) Kinoshita, T.; Hino, O.; Bartlett, R. J. Singular value decomposition approach for the

approximate coupled-cluster method. J. Chem. Phys. 2003, 119, 7756.

(31) Hummel, F.; Tsatsoulis, T.; Grüneis, A. Low rank factorization of the Coulomb integrals

for periodic coupled cluster theory. J. Chem. Phys. 2017, 146, 124105.

(32) Schutski, R.; Zhao, J.; Henderson, T. M.; Scuseria, G. E. Tensor-structured coupled

cluster theory. J. Chem. Phys. 2017, 147, 184113.

(33) Peng, B.; Kowalski, K. Highly Efficient and Scalable Compound Decomposition of Two-

Electron Integral Tensor and Its Application in Coupled Cluster Calculations. J. Chem.

Theory Comput. 2017, 13, 4179.

(34) Parrish, R. M.; Sherrill, C. D.; Hohenstein, E. G.; Kokkila, S. I. L.; Martínez, T. J. Com-

munication: Acceleration of coupled cluster singles and doubles via orbital-weighted

least-squares tensor hypercontraction. J. Chem. Phys. 2014, 140, 181102.

(35) Parrish, R. M.; Zhao, Y.; Hohenstein, E. G.; Martínez, T. J. Rank reduced coupled

cluster theory. I. Ground state energies and wavefunctions. J. Chem. Phys. 2019, 150,

164118.

(36) Benedikt, U.; Böhm, K.-H.; Auer, A. A. Tensor decomposition in post-Hartree–Fock

methods. II. CCD implementation. J. Chem. Phys. 2013, 139, 224101.

(37) Christiansen, O.; Koch, H.; Jørgensen, P. The second-order approximate coupled cluster

singles and doubles model CC2. Chem. Phys. Lett. 1995, 243, 409.

50

(38) Christiansen, O.; Koch, H.; Jørgensen, P.; Helgaker, T. Integral direct calculation of

CC2 excitation energies: singlet excited states of benzene. Chem. Phys. Lett. 1996,

263, 530.

(39) Hättig, C.; Weigend, F. CC2 excitation energy calculations on large molecules using

the resolution of the identity approximation. J. Chem. Phys. 2000, 113, 5154.

(40) Mester, D.; Nagy, P. R.; Kállay, M. Reduced-cost linear-response CC2 method based

on natural orbitals and natural auxiliary functions. J. Chem. Phys. 2017, 146, 194102.

(41) Koch, H.; Christiansen, O.; Jørgensen, P.; Sánchez de Merás, A. M.; Helgaker, T. The

CC3 model: An iterative coupled cluster approach including connected triples. J. Chem.

Phys. 1997, 106, 1808.

(42) Taube, A. G.; Bartlett, R. J. Fozen Natural Orbital Coupled-Cluster Theory: Forces

and Application to Decomposition of Nitroethane. J. Chem. Phys. 2008, 128, 164101.

(43) DePrince, A. E.; Sherrill, C. D. Accurate Noncovalent Interaction Energies Using Trun-

cated Basis Sets Based on Frozen Natural Orbitals. J. Chem. Theory Comput. 2013,

9, 293.

(44) Rolik, Z.; Kállay, M. Cost-reduction of high-order coupled-cluster methods via active-

space and orbital transformation techniques. J. Chem. Phys. 2011, 134, 124111.

(45) Brabec, J.; Yang, C.; Epifanovsky, E.; Krylov, A. I.; Ng, E. Reduced-cost sparsity-

exploiting algorithm for solving coupled-cluster equations. J. Comput. Chem. 2016,

37, 1059.

(46) Pokhilko, P.; Epifanovsky, E.; Krylov, A. I. Double Precision Is Not Needed for Many-

Body Calculations: Emergent Conventional Wisdom. J. Chem. Theory Comput. 2018,

14, 4088.

51

(47) Spencer, J. S.; Neufeld, V. A.; Vigor, W. A.; Franklin, R. S. T.; Thom, A. J. W. Large

scale parallelization in stochastic coupled cluster. J. Chem. Phys. 2018, 149, 204103.

(48) Scott, C. J. C.; Di Remigio, R.; Crawford, T. D.; Thom, A. J. W. Diagrammatic

Coupled Cluster Monte Carlo. J. Phys. Chem. Lett. 2019, 10, 925.

(49) Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. Sparse maps—A system-

atic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling

domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016, 144,

024109.

(50) Ma, Q.; Werner, H.-J. Explicitly correlated local coupled-cluster methods using pair

natural orbitals. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1371.

(51) Schmitz, G.; Hattig, C.; Tew, D. P. Explicitly correlated PNO-MP2 and PNO-CCSD

and their application to the S66 set and large molecular systems. Phys. Chem. Chem.

Phys. 2014, 16, 22167–22178.

(52) Rolik, Z.; Kállay, M. A general-order local coupled-cluster method based on the cluster-

in-molecule approach. J. Chem. Phys. 2011, 135, 104111.

(53) Rolik, Z.; Szegedy, L.; Ladjánszki, I.; Ladóczki, B.; Kállay, M. An efficient linear-scaling

CCSD(T) method based on local natural orbitals. J. Chem. Phys. 2013, 139, 094105.

(54) Kállay, M. Linear-scaling implementation of the direct random-phase approximation.

J. Chem. Phys. 2015, 142, 204105.

(55) Nagy, P. R.; Samu, G.; Kállay, M. An integral-direct linear-scaling second-order Møller–

Plesset approach. J. Chem. Theory Comput. 2016, 12, 4897.

(56) Nagy, P. R.; Kállay, M. Optimization of the linear-scaling local natural orbital CCSD(T)

method: Redundancy-free triples correction using Laplace transform. J. Chem. Phys.

2017, 146, 214106.

52

(57) Nagy, P. R.; Kállay, M. Approaching the basis set limit of CCSD(T) energies for large

molecules with local natural orbital coupled-cluster methods. J. Chem. Theory Comput.

2019, 15, 5275.

(58) Gordon, M., Ed. Fragmentation: Toward Accurate Calculations on Complex Molecular

Systems ; Wiley: New York, 2017.

(59) Mardirossian, N.; Head-Gordon, M. Thirty years of density functional theory in com-

putational chemistry: an overview and extensive assessment of 200 density functionals.

Mol. Phys. 2017, 115, 2315.

(60) Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A look at

the density functional theory zoo with the advanced GMTKN55 database for gen-

eral main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem.

Chem. Phys. 2017, 19, 32184.

(61) Cheng, L.; Welborn, M.; Christensen, A. S.; Miller, T. F. A universal density ma-

trix functional from molecular orbital-based machine learning: Transferability across

organic molecules. J. Chem. Phys. 2019, 150, 131103.

(62) McGibbon, R. T.; Taube, A. G.; Donchev, A. G.; Siva, K.; Hernández, F.; Hargus, C.;

Law, K.-H.; Klepeis, J. L.; Shaw, D. E. Improving the accuracy of Møller–Plesset

perturbation theory with neural networks. J. Chem. Phys. 2017, 147, 161725.

(63) Bartók, A. P.; De, S.; Poelking, C.; Bernstein, N.; Kermode, J. R.; Csányi, G.; Ceri-

otti, M. Machine learning unifies the modeling of materials and molecules. Sci. Adv.

2017, 3, e1701816.

(64) Nudejima, T.; Ikabata, Y.; Seino, J.; Yoshikawa, T.; Nakai, H. Machine-learned electron

correlation model based on correlation energy density at complete basis set limit. J.

Chem. Phys. 2019, 151, 024104.

53

(65) Chmiela, S.; Sauceda, H. E.; Müller, K.-R.; Tkatchenko, A. Towards exact molecular

dynamics simulations with machine-learned force fields. Nat. Commun. 2018, 9, 3887.

(66) Mezei, P. D.; von Lilienfeld, A. O. Non-covalent quantum machine learning corrections

to density functionals. arXiv e-prints 2019, arXiv:1903.09010.

(67) Montavon, G.; Rupp, M.; Gobre, V.; Vazquez-Mayagoitia, A.; Hansen, K.;

Tkatchenko, A.; Klaus-Robert, M.; von Lilienfeld, O. A. Machine learning of molec-

ular electronic properties in chemical compound space. New J. Phys. 2013, 15, 095003.

(68) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Big Data Meets Quan-

tum Chemistry Approximations: The ∆-Machine Learning Approach. J. Chem. Theory

Comput. 2015, 11, 2087.

(69) Smith, J. S.; Nebgen, B. T.; Zubatyuk, R.; Lubbers, N.; Devereux, C.; Barros, K.;

Tretiak, S.; Isayev, O.; Roitberg, A. E. Approaching coupled cluster accuracy with

a general-purpose neural network potential through transfer learning. Nat. Commun.

2019, 10, 2903.

(70) Eriksen, J. J.; Baudin, P.; Ettenhuber, P.; Kristensen, K.; Kjærgaard, T.; Jørgensen, P.

Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide–

Expand–Consolidate CCSD(T) Model. J. Chem. Theory Comput. 2015, 11, 2984.

(71) Li, W.; Ni, Z.; Li, S. Cluster-in-molecule local correlation method for post-Hartree–Fock

calculations of large systems. Mol. Phys. 2016, 114, 1447.

(72) Friedrich, J.; Dolg, M. Fully Automated Incremental Evaluation of MP2 and CCSD(T)

Energies: Application to Water Clusters. J. Chem. Theory Comput. 2009, 5, 287.

(73) Mochizuki, Y.; Yamashita, K.; Nakano, T.; Okiyama, Y.; Fukuzawa, K.; Taguchi, N.;

Tanaka, S. Higher-order correlated calculations based on fragment molecular orbital

scheme. Theor. Chem. Acc. 2011, 130, 515–530.

54

(74) Kobayashi, M.; Nakai, H. Divide-and-conquer-based linear-scaling approach for tradi-

tional and renormalized coupled cluster methods with single, double, and noniterative

triple excitations. J. Chem. Phys. 2009, 131, 114108.

(75) Yuan, D.; Li, Y.; Ni, Z.; Pulay, P.; Li, W.; Li, S. Benchmark Relative Energies for Large

Water Clusters with the Generalized Energy-Based Fragmentation Method. J. Chem.

Theory Comput. 2017, 13, 2696–2704.

(76) Koch, H.; Christiansen, O.; Kobayashi, R.; Jørgensen, P.; Helgaker, T. A direct atomic

orbital driven implementation of the coupled cluster singles and doubles (CCSD) model.

Chem. Phys. Lett. 1994, 228, 233.

(77) Lee, T. J.; Rendell, A. P.; Taylor, P. R. Comparison of the quadratic configuration

interaction and coupled-cluster approaches to electron correlation including the effect

of triple excitations. J. Phys. Chem. 1990, 94, 5463.

(78) Rendell, A. P.; Lee, T. J.; Komornicki, A.; Wilson, S. Evaluation of the contribution

from triply excited intermediates to the fourth-order perturbation theory energy on

Intel distributed memory supercomputers. Theor. Chem. Acc. 1993, 84, 271.

(79) Rendell, A. P.; Lee, T. J.; Komornicki, A. A parallel vectorized implementation of triple

excitations in CCSD(T): application to the binding energies of the AlH3, AlH2F, AlHF2

and AlF3 dimers. Chem. Phys. Lett. 1991, 178, 462.

(80) Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdiscip.

Rev. Comput. Mol. Sci. 2018, 8, e1327.

(81) Földes, T.; Madarász, Á.; Révész, Á.; Dobi, Z.; Varga, S.; Hamza, A.; Nagy, P. R.;

Pihko, P. M.; Pápai, I. Stereocontrol in Diphenylprolinol Silyl Ether Catalyzed Michael

Additions: Steric Shielding or Curtin–Hammett Scenario? J. Am. Chem. Soc. 2017,

139, 17052.

55

(82) Chernichenko, K.; Kótai, B.; Pápai, I.; Zhivonitko, V.; Nieger, M.; Leskelä, M.; Repo, T.

Intramolecular Frustrated Lewis Pair with the Smallest Boryl Site: Reversible H2 Ad-

dition and Kinetic Analysis. Angew. Chem. Int. Ed. 2015, 54, 1749.

(83) Szabó, F.; Daru, J.; Simkó, D.; Nagy, T. Z.; Stirling, A.; Novák, Z. Mild Palladium-

Catalyzed Oxidative Direct ortho-C-H Acylation of Anilides under Aqueous Conditions.

Adv. Synth. Catal. 2013, 355, 685.

(84) Boys, S. F.; Cook, G. B.; Reeves, C. M.; Shavitt, I. Automatic Fundamental Calcula-

tions of Molecular Structure. Nature 1956, 178, 1207.

(85) Whitten, J. L. Coulombic potential energy integrals and approximations. J. Chem.

Phys. 1973, 58, 4496.

(86) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. On some approximations in applications

of Xα theory. J. Chem. Phys. 1979, 71, 3396.

(87) Lee, Y. S.; Kucharski, S. A.; Bartlett, R. J. A coupled cluster approach with triple

excitations. J. Chem. Phys. 1984, 81, 5906.

(88) Pulay, P.; Saebø, S.; Meyer, W. An efficient reformulation of the closed-shell self-

consistent electron pair theory. J. Chem. Phys. 1984, 81, 1901.

(89) Scuseria, G. E.; Janssen, C. L.; Schaefer III, H. F. An efficient reformulation of the

closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem.

Phys. 1988, 89, 7382.

(90) Mrcc, a quantum chemical program suite written by M. Kállay, Z. Rolik, J. Cson-

tos, P. Nagy, G. Samu, D. Mester, J. Csóka, B. Szabó, I. Ladjánszki, L. Szegedy, B.

Ladóczki, K. Petrov, M. Farkas, P. D. Mezei, and B. Hégely. See also Ref. 53 as well

as http://www.mrcc.hu/ (Accessed June 15, 2018).

56

(91) Dunning Jr., T. H. Gaussian basis sets for use in correlated molecular calculations. I.

The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007.

(92) Weigend, F.; Köhn, A.; Hättig, C. Efficient use of the correlation consistent basis sets

in resolution of the identity MP2 calculations. J. Chem. Phys. 2002, 116, 3175.

(93) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and

quadruple zeta valence quality for H to Rn: Design and assessment of accuracy integrals

over Gaussian functions. Phys. Chem. Chem. Phys. 2005, 7, 3297.

(94) Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular re-

sponse calculations. J. Chem. Phys. 2010, 133, 134105.

(95) Hellweg, A.; Rappoport, D. Development of new auxiliary basis functions of the Karl-

sruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD,

def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. Phys. Chem.

Chem. Phys. 2015, 17, 1010.

(96) Karton, A.; Martin, J. M. L. Comment on: “Estimating the Hartree–Fock limit from

finite basis set calculations”. Theor. Chem. Acc. 2006, 115, 330.

(97) Neese, F.; Valeev, E. F. Revisiting the Atomic Natural Orbital Approach for Basis Sets:

Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab

initio Methods? J. Chem. Theory Comput. 2011, 7, 33.

(98) Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. Basis-set convergence of correlated

calculations on water. J. Chem. Phys. 1997, 106, 9639.

57

Graphical TOC Entry

58

