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Abstract

Reliability of molecular mechanics (MM) simulations in describing biomolecular

ion-driven processes depends on their ability to accurately model interactions of ions

simultaneously with water and other biochemical groups. In these models, ion de-

scriptors are calibrated against reference data on ion-water interactions, and it is then

assumed that these descriptors will also satisfactorily describe interactions of ions with

other biochemical ligands. Comparison against experiment and high-level quantum me-

chanical data show that this transferability assumption can break down severely. One

approach to improve transferability is to assign cross-terms or separate sets of non-

bonded descriptors for every distinct pair of ion type and its coordinating ligand. Here

we propose an alternative solution that targets an error-source directly and corrects

misrepresented physics. In standard model development, ligand descriptors are never

calibrated or benchmarked in the high electric fields present near ions. We demonstrate

for a representative MM model that when the polarization descriptors of its ligands

are improved to respond to both low and high fields, ligand interactions with ions also

improve, and transferability errors reduce substantially. In our case, the overall trans-

ferability error reduces from 3.3 to 1.8 kcal/mol. These improvements are observed

without compromising on accuracy of low-field interactions of ligands in gas and con-

densed phases. Reference data for calibration and performance evaluation is taken

from experiment and also obtained systematically from “gold-standard” CCSD(T) in

the complete basis set limit, followed by benchmarked vdW-inclusive DFT.

Introduction

Ions are vital to all biological processes.1 They participate by either interacting directly with

biomolecules and modulating their activities, or serving as charge carriers in electrical re-

sponses of cells and tissues. Mechanistic understanding of these processes requires molecular

details of how ions bind and dissociate from biomolecules. Consequently, understanding of

such processes requires an understanding of the differences between an ion’s hydrated and
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biomolecule-bound states.

Molecular mechanics (MM) simulations can potentially provide such detailed atomistic

insight. This has prompted systematic improvements to force field models of ionic inter-

actions.2–20 However, the majority of the effort has been directed toward improving inter-

actions of ions with water, which does not, by itself, guarantee meaningful predictions of

interactions of ions with other biochemical groups. In fact, a compilation of recent studies

shows that it is this transferability assumption that breaks down for many fundamental test

cases.10,13,17,19,21–24 This is not surprising for non-polarizable models that do not utilize ex-

plicit functions for describing induced effects, and rely on the assumption that mean field

approximations of induced effects in water are transferable. Certainly, inclusion of explicit

polarization improves performance,13,18–20 even in water,2–9 however, large transferability

errors still remain.13,17–19,21–24

One approach to improve transferability in MM models is to define cross-terms or sepa-

rate sets of non-bonded (NB) descriptors for every distinct pair of ion and its coordinating

chemical group (ligand).11,14–20 This “NB-fix” approach is straightforward to implement and

does not sacrifice computational efficiency. However, in most applications,11,14–19 all error

corrections are assigned to the Lennard-Jones (LJ) term, although there is no supporting

information of this term being the source of error.

In a recent study,25 we analyzed a polarizable MM model,4,26 and reported that its

polarization term was a source for transferability errors. Specifically, we noted that its po-

larization contribution was erroneous at the kind of high electric fields present near ions,

which resulted in underestimated ion-ligand binding energies. At the same time, it did per-

form well in low dipolar electric fields where all MM models are calibrated and benchmarked.

We proposed a solution in which different polarization cross-terms could be assigned to each

distinct ion-ligand pair. Although this was also a NB-fix style approach, error corrections

were not assigned to the LJ term, but directly to the error-source of transferability. This

approach improved transferability, however, the question of whether a ligand’s polarization
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model could itself be recalibrated such that it performs well at both low and high fields re-

mained unexplored. Here we explore this general approach, and test specifically whether the

functional form of the polarization model is sufficiently versatile to perform well in both low

and high fields. Additionally, we examine if its recalibration improves transferability while,

at the same time, retain the model’s existing accuracy in describing dipolar ligand-water and

ligand-ligand interactions in the gas and condensed phases.

We focus on a set of six small polar molecules, including aldehydes (formaldehyde), alco-

hols (methanol and ethanol) and amides (acetamide, formamide and N-methylacetamide).

These are representative of key chemical groups in proteins that interact with monovalent

cations,27,28 and so getting transferability right across these ligands is important for studying

ion-driven processes in proteins. We continue to use the polarizable AMOEBA model4,29 as

our representative MM model, and, as we note in the results section, this representative MM

model yields moderate transferability errors for Na+ and K+ ions – the RMS error is 3.8

kcal/mol and the maximum error exceeds 10 kcal/mol. Similar errors in water→ethanol and

water→formamide transferability have also been reported for another widely used polariz-

able model,18 even after NB-fix corrections. For calibration and performance evaluation, we

use experimental data and also obtain additional reference data from coupled cluster theory

with single, double, and perturbative triple excitations (CCSD(T)),30 and systematically

benchmarked vdW-corrected density functional theory (DFT).

Methods

Molecular dynamics

All MD simulations are carried out using TINKER version 7.1.26 The following control

functions and parameters are chosen to be different from defaults. Integration is carried out

using the RESPA algorithm with an outer time step of 1 fs.31 Temperature is regulated using

an extended ensemble approach32 and with a coupling constant of 0.1 ps, and pressure is
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regulated using a Monte Carlo approach33,34 with a coupling constant of 0.1 ps. Electrostatic

interactions are computed using particle mesh Ewald with a direct space cutoff of 9 Å. van

der Waals interactions are computed explicitly for inter-atomic distances smaller than 9 Å.

The convergence cutoff for induced dipoles is set at 0.01 Debye.

Reference energies

For selected ion-ligand combinations, we first compute interaction energies using complete

basis set (CBS) extrapolated35,36 and counterpoise corrected (CP)37 CCSD(T) energies.

Dunning’s correlation-consistent basis sets augmented with diffuse functions (aug-cc-pVXZ,

X=Q, 5) are employed for first row elements, while the corresponding weighted core-valence

basis sets38,39 are used for the alkali metal ions. Sub-valence electrons of Na+ and K+ are cor-

related in the CCSD(T) calculations, while deep-core electrons of all atoms are kept frozen.

The basis set incompleteness error (BSIE) of the CBS(Q,5) interaction energies is estimated

as the difference of the CP corrected and uncorrected CCSD(T) energies. The local natural

orbital (LNO) scheme40,41 is employed to accelerate the CCSD(T) calculations as imple-

mented in the Mrcc package.42,43 Approximation-free CCSD(T) energy and corresponding

local error estimates are evaluated using the Tight and very Tight LNO-CCSD(T) threshold

sets41,44 according to the extrapolation scheme of Ref. 44. The cumulative BSIE and local

error estimates indicate that the LNO-CCSD(T)/CBS(Q,5) interaction energies are within

±0.2 kcal/mol of the approximation-free CCSD(T)/CBS ones for all studied complexes.

Since CCSD(T) is significantly more expensive than DFT, we use the reference informa-

tion from CCSD(T) and DMC to benchmark a vdW-corrected DFT exchange-correlation

functional, namely PBE0+vdW.45,46 The PBE0 hybrid functional contains 25% exact ex-

change and is supplemented by Tkatchenko-Scheffler corrections for dispersion (vdW). Exact

exchange is particularly important in hydrogen bonded and charge transfer systems since

it alleviates the delocalization error in DFT based approximations. All PBE0+vdW calcu-

lations are performed using the FHI-AIMS package47 with ’really tight’ basis sets. Total
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energies are converged to within 10−6 eV and electron densities are converged to within 10−5

electrons. Geometry optimizations are carried out with force criterion of 10−3 ev/Å and

the PBE0+vdW functional. The starting configurations for optimizations are taken from

our previous studies,24,48 where they were optimized using the B3LYP density functional.

The ion-ligand cluster geometries used in CCSD(T) are those obtained from PBE0+vdW

optimizations.

Results

We first recalibrate ligand descriptors to satisfy reference data for local interactions and then

evaluate the effects of these changes on predicting their electric field responses, condensed

phase properties and interactions with ions. We note that the recommended strategy to cali-

brate force fields is to include certain condensed phase properties as optimization targets.49,50

Here, we are not including them as targets because we want to examine how improving local

interactions affects predictions of condensed phase properties.

Recalibrating dipole polarizabilities

In the original AMOEBA model,29 each atom is assigned an isotropic polarizability (α), and

apart from atoms belonging to aromatic groups, their values are similar to those proposed

by Thole51 (Table S1 of the supporting information). However, as also noted by the authors

of the original model,29 these α produce molecular polarizabilities that are generally smaller

than reference values obtained from experiment (Table 1). Perhaps that is why the induced

dipole moments computed using the original model are underestimated (see next subsection).

Atomic polarizabilities can be recalibrated against experimental values, but experimental

tensor components are not available for all molecules. We obtain these from Møller-Plesset

second order perturbation (MP2) theory52 implemented in Gaussian09.53 These values are

provided in Table 1. We use Dunning’s correlation-consistent basis sets augmented with
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diffuse functions, and note that differences between values computed using aug-cc-pVTZ and

aug-cc-pVQZ basis sets are marginal. We note that the computed molecular polarizabilities

quantitatively agree with experiment, expect those of Formaldehyde and Acetamide that are

overestimated by a little over 5%. To maintain a consistent parameterization protocol, we

chose to recalibrate polarizabilities against MP2 values.

Table 1: Comparison of original (Orig) and recalibrated (Pol) molecular polarizabilities (in
Å3) against reference values taken from experiment and computed using MP2 theory. ataken
from Ref. 54; btaken from Ref. 29; ctaken from Ref. 55.

Ligand Method αavg αxx αyy αzz

Formaldehyde Expt.a 2.45 2.76 2.76 1.83
MP2 2.64 3.31 2.67 1.94
Origb 2.45 2.78 2.56 2.01
Pol 2.66 3.14 2.71 2.14

Formamide Expt.a 4.08 (4.22c) 5.24 αyy + αzz = 7.01

MP2 4.22 5.58 4.09 3.00
Origb 3.65 4.32 3.87 2.74
Pol 4.29 5.16 4.43 3.27

Acetamide Expt.a 5.67 6.70 αyy + αzz = 10.3

MP2 6.06 7.09 6.45 4.62
Origb 5.43 6.27 5.71 4.30
Pol 6.12 7.04 6.50 4.81

NMA Expt.c 7.85
MP2 7.81 9.25 8.11 6.08
Origb 7.28 8.84 7.14 5.85
Pol 7.74 9.41 7.69 6.12

Methanol Expt.a 3.32 (3.26c) 4.09 3.23 2.65
MP2 3.22 3.52 3.09 3.05
Origb 3.20 3.62 3.03 2.93
Pol 3.21 3.58 3.08 2.96

Ethanol Expt.a 5.26 (5.13c) 6.39 4.82 4.55
MP2 5.07 5.52 4.98 4.72
Origb 4.95 5.38 4.94 4.53
Pol 5.08 5.52 5.01 4.71

We use enumeration to optimize α, and also optimize atomic α of each molecular chem-

istry, that is, aldehyde, alcohol and amide, separately. The latter is to implicitly incorporate

bonding chemistries into α. The new set of atomic α are provided in Table S1 of the

supporting information, and the new set of molecular polarizabilties are listed in Table 1.
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Optimization does improve polarizabilties of all molecules, however, that of formamide still

remains somewhat lower compared to reference values. In fact, we find no combinations of

atomic α that reproduce reference values for formamide (Fig. S1 of supporting information).

At the same time, we do note that Thole damping coefficients in the polarizable model can

be modified to potentially further improve correspondence with reference data.

Electric field response

To evaluate the field response of a molecule, we determine its induced dipole in the pres-

ence of a unit point charge (+1) placed at incrementally increasing distances (|r|) from

its coordinating oxygen. Fig. 1a shows the results of these calculations for two represen-

tative molecules, NMA and ethanol, for which polarizability recalibration produces one of

the largest and smallest improvements, respectively. In the original model, we note that

the induced dipoles of all molecules are consistently underestimated at short distances from

the point charge, but the absolute error decreases with increasing distance from the point

charge. In other words, while the original model performs well at low electric fields (|r| > 3.5

Å), its error increases at stronger fields that are present in an ion’s first coordination shell

(|r| < 3.5 Å). Recalibration of polarizability improves their field responses in both the low

and field regions, although the performance gain is observed to be much greater in the high

field region, as shown in Fig. 1b. Indeed, errors do remain at very high fields, except for

formalydehyde. This may perhaps be due to limitations in the Thole polarization model,

and variations to the model used in the original force field have, in fact, shown improvements

in describing many-body interactions.56

Condensed phase properties

Since we modify atomic α, the Lennard-Jones (LJ) parameters of small molecules also need

to be recalibrated. Following protocol of the original model, we recalibrate them to re-

produce homo- and hetero-dimer binding energies and geometries. Here, instead of using
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Figure 1: Effect of recalibrating ligand polarizabilities on their predicted induced dipole
moments µind. (a) Induced dipoles of NMA and ethanol are estimated for different distances
(|r|) from a positive point charge, and compared against corresponding values from MP2/aug-
cc-pVTZ theory. The subscript r in µind

r is the component of the induced dipole along the
vector r which is parallel to an interaction axis. For Formamide, Acetamide, and NMA, µind

is estimated along multiple axes, and their full sets of calculations are provided in Figure S2
of the Supporting Information. (b) Root mean square errors (RMSE) are determined with
respect to MP2 values, but separately for molecule-charge distances less than and greater
than 3.5 Å, which we refer to as high and low field regions, respectively.
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MP2 theory to obtain reference data, we use the vdW-corrected PBE0 density functional

(PBE0+vdW)45,46 that has been demonstrated to produce a wide range of intermolecu-

lar interactions in molecular dimers with an accuracy of 0.3 kcal/mol against S22 and S66

datasets.57 Nevertheless, we further benchmark its performance by comparing reference data

for formamide dimers against CCSD(T) (Figure S3 of Supporting Information). All of the

dimer reference data used for LJ recalibration is provided in Figure S3 of the Supporting

Information.

To evaluate the performance of the recalibrated model, we determine four condensed

phase properties:49,50 density (ρ), heat of vaporization (∆Hv), lattice energy (∆El) and self

diffusion constant (Dself).

We compute densities and heats of vaporization from the final 1 ns of 5 ns long MD

trajectories of N = 512 solvent molecules contained in cubic boxes and simulated under

isothermal (T=298 K) and isobaric (P=1 bar) conditions. Statistical errors are obtained

from block averaging using progressively smaller time windows of 0.8, 0.6, 0.4 and 0.2 ns.

The heat of vaporization is computed as

∆Hv = (〈Ugas〉 − 〈Uliquid〉)/N +RT (1)

where Ugas and Uliquid are the total potential energies of molecules in the gas and liquid

phases, and R is the gas constant. Uliquid are computed from the same trajectory data from

which densities are calculated above. Ugas are computed from separate MD trajectories of

isolated molecules under isochoric and isothermal conditions with a ligand number density

of 0.024 nm−3. Lattice energies are determined as ∆El = Ul/n, where Ul is the potential

energy a single unit cell under periodic conditions computed after energy minimization, and

n is the number molecules in the unit cell. Coordinates of the formamide unit cell are taken

from Ref. 58 and those of the remaining molecules are taken from the Crystallography Open

Database.59
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Finally, self diffusion constants are computed using Einstein’s equation, and also corrected

for periodic cell size using the relationship,

Dself = lim
∆t→∞

〈r2(∆t)〉/6∆t+ kbTα/6πηL, (2)

obtained from the thermodynamic theory of diffusion.60–62 In the expression above, r(∆t)

is the center of mass displacement, L is the unit length of the cubic box, η is the viscosity,

and α = 2.837 is a constant. Data for computing the first term is taken from separate 5.5 ns

long MD simulations conducted under NVT conditions and at volumes fixed at their average

values found in NPT simulations. For the average value of Dself , statistics are obtained from

the final 5 ns of each trajectory, and the slope 〈r2(∆t)〉/∆t is determined from ∆t = 0.5 to

∆t = 4.5 ns. Statistical error is computed by block averaging where progressively smaller

amounts of simulation data are taken and slopes are re-computed with correspondingly

smaller ∆t windows.62

Table 2 shows the results of these calculations, and also compares them to reference

data. We note that the values predicted from the recalibrated model are very similar to

those obtained using the original model, with the exception of perhaps ethanol where the

percentage change is higher. Note that in the calibration of the original model, condensed

phase properties, like density, were included as part of the optimization target, which we

did not include in our recalibration. Since recalibration improves ligand induced dipoles

even at low dipolar fields, it also improves the relative balance between contributions from

polarization and LJ forces.

Transferability of ionic interactions

We evaluate transferability of ionic interactions by determining substitution energies

∆E = EAXn − nEX − EAWn + nEW (3)
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Table 2: Effect of recalibrating ligands on predictions of their condensed phase properties.
Note that the statistical errors for ρ are not listed, but for all systems, they are smaller than
0.005 g/cc. ataken from Ref. 63; btaken from Ref. 64; ctaken from Ref. 58; dtaken from
Ref. 65;etaken from Ref. 66; f taken from Ref. 67; gtaken from Ref. 29; htaken from Ref. 68;
itaken from Ref. 69; jtaken from Ref. 70;ktaken from Ref. 71; ltaken from Ref. 72; mtaken
from Ref. 73; ntaken from Ref. 74.

Ligand Method ρ (g/cc) ∆Hv (kcal/mol) ∆El (kcal/mol) Dself (10−5 cm2/s)
Formamide Expt. 1.13a 14.3b -18.9c 0.55d

CCSD(T) - - -21.5e

PBE0+vdW - - -20.1f

Origg 1.12 14.1± 0.4 -18.2 0.53± 0.03
Pol 1.10 13.8± 0.3 -17.6 0.67± 0.03

NMA Expt. 0.95a 13.3–14.3h,i 0.41j

Orig 0.95 14.2± 0.2 0.34± 0.01
Pol 0.92 13.7± 0.2 0.35± 0.02

Methanol Expt. 0.78a 9.0i -11.8k 2.41d

CCSD(T) - - -12.9d

Orig 0.77 9.1± 0.3 -12.9 2.12± 0.02
Pol 0.73 9.6± 0.2 -13.5 2.93± 0.09

Ethanol Expt. 0.79l 10.1m -12.5n 1.07d

CCSD(T) - - -9.3e

Orig 0.77 10.4± 0.30 -14.0 0.91± 0.04
Pol 0.82 12.2± 0.33 -16.2 0.53± 0.01
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for the reactions below

AWn + nX ⇀↽ AXn + nW, (4)

where A refers to either a Na+ or K+ ion, W refers to water and X refers to a small molecule

other than water.

Reference energies needed for evaluating performance are obtained from PBE0+vdW.45,46

Table 3 shows that predictions from PBE0+vdW for six different types of ion-ligand clus-

ters agree with higher-level quantum methods, including Monte Carlo (QMC)25 and LNO-

CCSD(T). Additionally, the LNO scheme40,41 employed to accelerate the CCSD(T) does

not compromise accuracy in relation to values obtained using QMC,25 and also previous

estimates of ion-water interaction energies obtained without the LNO scheme.75 We also

note agreement of PBE0+vdW with QMC and LNO-CCSD(T) in terms of both interaction

energies per ligand, and also the trend with respect to cluster-size. We had also noted in our

earlier study24 that under a harmonic approximation, PBE0+vdW also predicts gas phase

ion-water cluster enthalpies and free energies consistent with experiment.

Table 3: Cluster binding energies (in kcal/mol), normalized by the number of ligands in
clusters, from first principles methods: QMC, LNO-CCSD(T) and PBE0+TS. aTaken from
our earlier work.25

H2O CH3OH NH2CHO
Na+/#ligands QMCa LNO-CCSD(T) PBE0+vdWa QMCa LNO-CCSD(T) PBE0+vdWa LNO-CCSD(T) PBE0+vdW
1 -24.5 ± 0.2 -24.4 -24.7 -26.5 ± 0.3 -26.1 -26.3 -36.9 -37.2
2 -23.0 ± 0.3 -23.1 -23.5 -24.4 ± 0.6 -24.5 -25.0 -33.3 -34.1
3 -21.6 ± 0.4 -21.6 -22.0 -22.9 ± 0.6 -22.7 -23.4 -29.4 -30.2
4 – -20.0 -20.4 -21.1 ± 1.2 -20.9 -21.7 -26.0 -26.7
K+/#ligands QMCa LNO-CCSD(T) PBE0+vdWa QMCa LNO-CCSD(T) PBE0+vdWa LNO-CCSD(T) PBE0+vdW
1 -17.9 ± 0.3 -18.2 -18.2 -19.0 ± 0.3 -19.4 -19.3 -28.3 -28.6
2 -17.1 ± 0.3 -17.1 -17.2 -18.1 ± 0.4 -18.2 -18.1 -25.8 -26.0
3 -15.9 ± 0.5 -16.2 -16.3 -16.8 ± 0.5 -17.1 -17.2 -23.3 -23.5
4 -15.3 ± 0.4 -15.3 -15.4 -16.6 ± 0.6 -15.9 -16.3 -20.5 -21.1

Fig. 2 shows the effect of ligand parameter recalibration on substitution energies. In

calculations using the original model, we employ the original LJ descriptors of Na+ or K+

ions,4 and in the recalibrated model, we use our new ion LJ descriptors.25 The original

vdW descriptors of Na+ and K+ were (ε = 0.26 kcal/mol, r0 = 3.02 Å) and (0.35, 3.71),

respectively, and our new descriptors are (0.48, 2.50) for Na+ and (0.59, 3.51) for K+.
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Overall, we find that the RMSE with respect to reference data reduces from 3.3 kcal/mol

to 1.8 kcal/mol, and the maximum error drops from 9.8 kcal/mol to 6.3 kcal/mol. The

extent of improvement in water→alcohol substitution energies is similar to what we have

noted previously when we had employed a NB-fix style approach to modify the polarization

term.25 Note that the improvement in transferability is not due to recalibration of ion LJ

parameters, as we demonstrated previously.25
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Figure 2: Effect of recalibrating ligands on ion-ligand substitution energies, ∆E. RMSE is
obtained with respect to PBE0+vdW values, and all of the data used for computing RMSE’s
is shown in Figure S4 of the Supporting Information.

Finally, we examine how ligand recalibration affects their structures around ions in the

condensed phase. To examine this, we simulate both ions in all four solvents under NPT

conditions (P=1 atm. and T=298 K) for 5 ns, and use the final nanosecond of each trajectory

to compute the radial distribution functions (RDFs) of solvent oxygens around ions. We find

that ligand recalibration has little effect on RDFs (Fig. S5 of the Supporting Information),

suggesting that their parameter-sensitivity is less compared to substitution energy. Note

that, as expected,76 the coordination structures of solvents around ions vary with solvent

chemistry.

Overall, we find that for all, but one, small molecules recalibration of their polarizabil-

ities substantially improves their interactions with ions, and with minimal affects on their
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condensed phase properties. The only exception is ethanol whose recalibration leads to

slightly larger errors in its predicted condensed phase properties (Table 2), with almost no

effect on its interactions with ions (Fig. 2). In fact, recalibration of its polarizability also

had little effect on its predicted field response (Fig. 1a). Therefore, we consider the original

ethanol parameters, which were tuned numerically to simultaneously reproduce a subset of

condensed phase properties, to be superior to those obtained here that were not calibrated

specifically to reproduce condensed phase properties.

Conclusions

In standard MM model development, ligand descriptors are calibrated against low electric

field reference data, which does not guarantee performance at the much higher electric fields

present near ions. In fact, even in our representative model, ligands perform well at low

fields, but errors get progressively larger with increasing field strengths. Here we demon-

strate that when the polarization descriptors of ligands are calibrated and benchmarked to

satisfy reference data at not only low, but also high fields, their interactions also improve

with ions. Performance gain at high fields does not have to be the expense of accuracy

at low fields, as long as the underlying functional form is sufficiently flexible. Therefore,

as an alternative to patching ion-ligand interactions in a posteriori manner,11,14–20,25 this

work recommends future development of MM models to also consider ligand calibration

and performance evaluation at high fields. This would make MM models intrinsically more

compatible with modeling ionic interactions.
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(41) Nagy, P. R.; Samu, G.; Kállay, M. Optimization of the linear-scaling local natural

orbital CCSD(T) method: Improved algorithm and benchmark applications. J. Chem.

Theory Comput. 2018, 14, 4193.
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