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Microalgae-based bioenergy production is a promising field with regard to the wide
variety of algal species and metabolic potential. The use of liquid wastes as nutrient
clearly improves the sustainability of microalgal biofuel production. Microalgae and
bacteria have an ecological inter-kingdom relationship. This microenvironment called
phycosphere has a major role in the ecosystem productivity and can be utilized
both in bioremediation and biomass production. However, knowledge on the effects
of indigenous bacteria on microalgal growth and the characteristics of bacterial
communities associated with microalgae are limited. In this study municipal, industrial
and agricultural liquid waste derivatives were used as cultivation media. Chlorella vulgaris
green microalgae and its bacterial partners efficiently metabolized the carbon, nitrogen
and phosphorous content available in these wastes. The read-based metagenomics
approach revealed a diverse microbial composition at the start point of cultivations
in the different types of liquid wastes. The relative abundance of the observed taxa
significantly changed over the cultivation period. The genome-centric reconstruction
of phycospheric bacteria further explained the observed correlations between the
taxonomic composition and biomass yield of the various waste-based biodegradation
systems. Functional profile investigation of the reconstructed microbes revealed a variety
of relevant biological processes like organic acid oxidation and vitamin B synthesis.
Thus, liquid wastes were shown to serve as valuable resources of nutrients as well as of
growth promoting bacteria enabling increased microalgal biomass production.

Keywords: wastewater, green algae, phycosphere, algal-bacterial interactions, metagenomics

Abbreviations: BMP, biochemical methane potential (test); BOD, biological oxygene demand (test); C/N, carbon to
nitrogen ratio; CMS, chicken manure supernatant (medium); DM and oDM: dry mass and organic dry mass; FE, anaerobe
fermentation effluent (medium); GHG, Green house gas (emission); MAGs, metagenome assembled genomes; MCR, module
completion ratio; MW, municipal wastewater (medium); PCA, principal component analysis; PGPB, plant growth promoting
bacteria; TAP, tris-acetate-phosphate (medium); TC and TN, total carbon and total nitrogen; VOAs, volatile organic acids.
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INTRODUCTION

Biofuels derived from microalgae are alternative second-
generation biofuels having no significant impact on agriculture
(Klassen et al., 2016; Rizwan et al., 2018; Wirth et al., 2018).
Microalgae have a higher biomass productivity than that of
terrestrial crops and can be cultivated on marginal land area
all year round. Additionally, the use of microalgae have the
potential to directly reduce greenhouse gas emissions (GHG)
through the replacement of fossil fuels and by photosynthetic
CO2 fixation in their biomass (Lam and Lee, 2012; Yen
et al., 2013). Water and nutrients are identified as important
limiting resources for microalgae production. The nutrients for
microalgae cultivation are readily available in various types of
wastewater. Using photoheterotrophic microalgae in biological
wastewater treatment represents a dual exploitation of green
algae, removing dissolved organic and inorganic pollutants is
combined with the production of sustainable bioresource for
biofuel production (Mujtaba et al., 2015; Guldhe et al., 2017;
Cheah et al., 2018; Vo Hoang Nhat et al., 2018; Li et al.,
2019; Shetty et al., 2019). Microalgae have an evolutionary
determined ecological relationship with bacteria in natural
aquatic environments representing an important interkingdom
association (Fuentes et al., 2016). These interactions are strongly
influenced by nutrient cycling which regulates the productivity
and stability of natural aquatic food webs. The intimate
relationship between microalgae and bacteria represents the
phycosphere, a key microenvironment ultimately mediating
the ecosystem productivity (Cho et al., 2015; Seymour et al.,
2017). The exchange of micro- and macronutrients defines the
relationship of the interactive partners, which are influenced
by a number of key aspects. Firstly, the pH level and
the available nutrients determine the surrounding chemical
environment, which has a central role in chemotaxis, the
motility of bacteria, which enables microbial colonization
(Medipally et al., 2015). Secondly, the bacterial communities
in the specific ecosystem have important roles in shaping
the phycosphere. The most frequently observed bacteria in
wastewaters are affiliated with the phyla of the Bacteroidetes and
Alpha-, Beta-, and Gammaproteobacteria (with Plant Growth
Promoting Bacteria (PGPB) among them) (Guo and Tong, 2014;
Kouzuma and Watanabe, 2015; Calatrava et al., 2018). Thirdly,
the available microalgae and bacteria synergistically affect each
other’s physiology and metabolism. Microalgae produce O2
through photosynthesis for consumption by the actively respiring
aerobic bacteria, while bacteria release CO2, which improves
the photosynthetic efficiency of green microalgae (Mouget
et al., 1995). Another important interkingdom interaction is
observed between vitamin-synthetizing bacteria and vitamin
auxotrophic microalgae. Most microalgae are auxotrophic for
vitamin B derivatives, which are essential for growth and
provided by bacteria in exchange for organic carbon (Croft
et al., 2005, 2006). Fourthly, the competition for available
nutrients, algicidal activities or related defense mechanisms of
microalgae are important factors in phycosphere development.
Similarly to other natural symbiotic settings, there is only a
thin line separating mutualistic and antagonistic associations

between microalgae and bacteria (Santos and Reis, 2014;
Ramanan et al., 2016).

There are three main sources of wastewater intensively studied
in alternative microalgal cultivation; municipal, industrial and
agricultural wastewater (Chiu et al., 2015; Guldhe et al.,
2017). Utilization of natural microalgal-bacterial communities
is a highly promising recycle solution for liquid wastes. This
inexpensive and environment-friendly system can contribute to
the sustainable management of water resources (Liu J. et al.,
2017; Qi et al., 2018). The green microalgae Chlorella vulgaris
is the most investigated eukaryotic algae species in wastewater
treatment (Chiu et al., 2015; Otondo et al., 2018; Shetty et al.,
2019). C. vulgaris is a common eukaryotic microalgae species
found in various natural and engineered freshwater and soil
habitats. C. vulgaris has a relatively small cell size, thin cell wall,
fast growth rate and short reproduction time. This alga is a robust
strain that can easily accommodate to changing physico-chemical
conditions. Under nutrient limitation and stress C. vulgaris
often accumulate high amount of lipids as store materials.
These features make this microalgae suitable to cultivate in
wastewater, thereby using it for combined wastewater treatment
and bioenergy generation (Mussgnug et al., 2010; Collet et al.,
2011; Mahdy et al., 2014; Klassen et al., 2016, 2017). It was
observed that high nitrogen and phosphorus removal efficiency
can be reached with Chlorella species (Chiu et al., 2015; Guldhe
et al., 2017; Chen et al., 2018).

A number of studies examined municipal wastewater
treatment efficiency using Chlorella-bacteria mixed cultures
(Mujtaba et al., 2015; Otondo et al., 2018). More efficient
nutrient removal was observed from settled domestic wastewater
compared to the commonly used activated sewage process, which
indicated the potential of microalgae in the activated sludge
process potentially as a secondary step for further nutrient
reduction and concomitant biomass production (Otondo et al.,
2018). Besides, CO2 originated from the degradation of
carbonaceous matter in an activated sludge process is released
freely into the atmosphere, thus promoting GHG accumulation.
In contrast, microalgae can assimilate CO2 into cellular
components such as lipid and carbohydrate, thus achieving
pollutant reduction in a more environmental-friendly way
(Santos and Reis, 2014; Gonçalves et al., 2017).

In the bioenergy industry biogas is used as a source for
generation of heat and/or electricity (Mao et al., 2015; Ullah
Khan et al., 2017). Besides biogas, digestate is another important
byproduct of anaerobic degradation of organic wastes. Digestate
processing is a major bottleneck in the development of the
biogas industry. Digestate can be separated into solid (10–20%)
and liquid (80–90%) fractions (Xia and Murphy, 2016). Solid
digestate is easily stored and transported, and can be used as
an agricultural biofertilizer. However, liquid phase processing is
more difficult mostly due to its relatively high ammonia content
(Uggetti et al., 2014). Digestate is continuously produced, while
land application is dependent on the growth stage of the crop
and the period of the year. Therefore, digestate needs to be
stored, which can increase GHG emission and the general costs
as well (Xia and Murphy, 2016; Zhu et al., 2016). Previous studies
reported that Chlorella species can be applied to treat liquid
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digestate (Collet et al., 2011; Skorupskaite et al., 2015; Uggetti
et al., 2016). The performance of treatment is dependent on the
algae access to carbon, nitrogen and phosphorous as well as on
the availability of photosynthetically active light, which indicates
a mixotrophic algae growth (Skorupskaite et al., 2015; Zhu et al.,
2016).

The rapid growth of the poultry industry in agriculture
has raised the need for poultry waste treatment (Sakar et al.,
2009). The runoff coming from the chicken farms is highly
harmful for the environment through altering the nitrogen and
phosphorus balance (Liu Q. et al., 2017). One possible treatment
of chicken manure is the anaerobic degradation (Anjum et al.,
2017). Chicken manure can be used in small quantities in biogas
producing anaerobic fermenters. High dosage of chicken manure
cause ammonia accumulation and process failure (Nie et al., 2015;
Sun et al., 2016). Water extraction is one possible solution for
this problem (Böjti et al., 2017). The supernatant liquid waste
still contains high amount of nitrogen and phosphorus, thereby
represents suitable medium for microalgal biomass production
(Han et al., 2017).

From the biotechnological process point of view the
goal is to strengthen the mutually beneficial algal-bacterial
interactions to achieve higher biomass growth (beside the
bioremediation of liquid wastes). The present study examined
and compared different types of wastewater recycling processes
using microalgae and their specific bacterial partners. This
investigation mainly focused on the interacting bacterial
members in specific liquid wastes. The ubiquitous relationship
between eukaryotic microalgae and bacteria should be taken into
account when designing innovations in microalgal biotechnology
(Cooper and Smith, 2015; Gonçalves et al., 2017; Quijano et al.,
2017; Lian et al., 2018).

MATERIALS AND METHODS

Algal-Bacterial Biomass Cultivation on
Different Types of Wastewaters
The Chlorella vulgaris MACC-360 microalgae was obtained
from the Mosonmagyaróvár Algal Culture Collection (MACC)
of Hungary. C. vulgaris was maintained and cultivated on
TAP (Tris-acetate-phosphate) plates, then TAP liquid medium
(500 mL) was used for the pre-growth of microalgal biomass.
The TAP plates and liquid media were incubated at 50 µmol
m−2 s−1 light intensity at 25◦C for 4 days (OD750: 4.00 ± 0.20).
The microalgal stock solution was equally distributed in 17–
17 mL portions into 50 mL Falcon tubes with a final optical
density (OD750) of 0.70± 0.10. Microalgal biomass was separated
by centrifugation from the medium and used for inoculation
(microalgal dry mass content: ∼100 mg/L). TAP medium was
an internal control during the experiment. Different wastewater
types were prepared as follows:

Chicken Manure Supernatant (CMS):
Chicken manure (CM) was collected from a commercial broiler
poultry farm (Hungerit Corp.) located at Csengele, Hungary.
The free-range poultry houses use wheat straw bedding. Water

extraction comprised of soaking 2,5 g; 5 g; 10 g and 20 g
CM in 100 mL distilled water (v/v %: 2,5; 5; 10 and 20) at
room temperature followed by separation of the liquid (CMS:
chicken manure supernatant) and solid phases by centrifugation
(10,000 rpm for 8 min).

Anaerobic Fermentation Effluent (FE):
Inoculum sludge was obtained from an operating biogas plant
(Zöldforrás Ltd) using pig manure and maize silage mixture
as feedstock. The liquid and solid phases were separated by
centrifugation (10,000 rpm for 8 min). Distilled water was used
to dilute FE (2, 5, 10 and 20 mL effluent in 100 mL distilled water,
respectively), to the final concentrations of 2; 5; 10 and 20% (v/v
%), respectively.

Municipal Wastewater (MW):
The municipal wastewater was originated from the Municipal
Wastewater Plant of Szeged, Hungary and sampled from the
secondary settling tank. The liquid phase was separated from
the solid phase by centrifugation (10,000 rpm 8 min). Final
concentrations were set at 20 and 50 v/v % using distilled water.
Non-diluted (100 v/v %) MW was also used for cultivation.

Cultivation was performed in 250 mL serum bottles (Wheaton
glass serum bottle, WH223950) with liquid volume of 200 mL
and stirred on a magnetic stirrer tray. Cultivation time was
4 days. Bottles were sealed with paper plugs. Different media
were incubated at 50 µmol m−2 s−1 light intensity at 25◦C. The
OD750 values of the different wastewater media were summarized
in Supplementary Information.

Determination of Cultivation Parameters
DM/oDM Measurements
The dry matter (DM) content was quantified by drying the
biomass at 105◦C overnight and weighing the residue. Further
heating of this residue at 550◦C for 1 h provided the organic dry
mass (oDM) content.

C/N Ratio
To determine C/N (both liquid and biomass), an Elementar
Analyzer Vario MAX CN (Elementar Group, Hanau, Germany)
was employed. The approach is based on the principle of
catalytic tube combustion under O2 supply at high temperatures
(combustion temperature: 900◦C, post-combustion temperature:
900◦C, reduction temperature: 830◦C, column temperature:
250◦C). The desired components were separated from each
other using specific adsorption columns (containing Sicapent
(Merck, Billerica, MA, United States), in C/N mode) and were
determined in succession with a thermal conductivity detector.
Helium served as flushing and carrier gas.

NH4
+-N

For the determination of NH4
+ ion content, the Merck

Spectroquant Ammonium test (1.00683.0001) (Merck, Billerica,
MA, United States) was used.

Total Phosphate Measurement
Total phosphate content of the different types of wastewater were
measured by the standard 4500-PE ascorbic acid, molybdenum
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blue method (Standard Methods for the Examination of Water
and Wastewater, SMWW 4000–6000).

VOAs (Volatile Organic Acids)
The VOAs measurement process was carried out using a Pronova
FOS/TAC 2000 Version 812-09.2008 automatic titrator (Pronova,
Berlin, Germany).

Acetate Concentration
The samples were centrifuged (13,000 rpm for 10 min) and
the supernatant was filtered through polyethersulfone (PES)
centrifugal filter (PES 516-0228, VWR) at 16,000 g for 20 min.
The concentrations of volatile organic acids were measured with
HPLC (Hitachi LaChrome Elite) equipped with refractive index
detector L2490. The separation was performed on an ICSep
ICE-COREGEL—64H column. The temperature of the column
and detector was 50 and 41◦C, respectively. 0.01 M H2SO4
(0.8 mL min−1) was used as eluent. Acetate, propionate, and
butyrate were determined in a detection range of 0.01–10 g L−1.
Propionate and butyrate were present in traces relative to acetate
and therefore these are not reported in the results section.

BOD (Biological Oxygen Demand) Test
To measure the biochemical oxygen demand of the wastewater
samples a 5-day BOD test was applied (OxiTop OC 110,
Wissenschaftlich-Technische Werkstätten GmbH). In the parallel
500 mL BOD-sample bottles 43 mL of wastewater solution were
placed. The results were read after 5 days in mg O2/L.

BMP (Biochemical Methane Potential) Test
Experiments were carried out in 160 mL reactor vessels
(Wheaton glass serum bottle, Z114014 Aldrich) containing 60 mL
liquid phase at mesophilic temperature (37 ± 0.50◦C). All
fermentations were done in triplicates. The inoculum sludge
was filtered to remove particles larger than 1 mm and was
used according to the VDI 4630 protocol (Vereins Deutscher
Ingenieure 4630, 2006). Each batch fermentation experiment
lasted for 30 days in triplicates.

Gas Chromatographic Analysis
The CH4 content was determined with an Agilent 6890N GC
(Agilent Technologies) equipped with an HP Molesive 5 Å (30 m×
0.53 mm× 25 µm) column and a TCD detector. The temperature
of the injector was 150◦C and split mode 0.2:1 was applied. The
column temperature was maintained at 60◦C. The carrier gas
was Linde HQ argon 5.0 with the flow rate set at 16.80 mL/min.
The temperature of TCD detectore was set to 150◦C.

In this study data originated from the most effective
cultivations under illumination are summarized and highlighted
(MW: 100 v/v %, FE: 10 v/v % and CMS: 5 v/v %). All data
collected under the various dilution parameters are shown in
Supplementary Information.

Total DNA Isolation for Metagenomics
The composition of the microbial community was investigated
two times during the experimental period from each wastewater
type and control (TAP), i.e., at the starting point (inoculation)
and at the end of cultivation. For total community DNA

isolation 2 mL of samples were used from each cultivation media
type. DNA extraction and quality estimation were performed
according Wirth et al. (2019).

Shotgun Sequencing
The Ion Torrent PGMTM platform was used for shotgun
sequencing, the manufacturer’s recommendations were followed
(Life Technologies, United States). Sample preparation,
quantification and barcoding were described previously (Wirth
et al., 2019). Sequencing was performed with Ion PGM 200
Sequencing kit (4474004) on Ion Torrent PGM 316 chip.
The characteristic fragment parameters are summarized in
Supplementary Table 1. Raw sequences are available on
NCBI Sequence Read Archive (SRA) under the submission
number: PRJNA625695.

Raw Sequence Filtering
Galaxy Europe server was employed to pre-process the raw
sequences (i.e., sequence filtering, mapping, quality checking)
(Afgan et al., 2016). Low-quality reads were filtered by Prinseq
(Schmieder and Edwards, 2011) (min. length: 60; min. score: 15;
quality score threshold to trim positions: 20; sliding window used
to calculated quality score:1). Filtered sequences were checked
with FastQC (Supplementary Table 1).

Read-Based Metagenome Data
Processing and Statistical Analysis
After filtering and checking the passed sequences were further
analized by Kaiju applying default greedy run mode on
Progenomes2 database (Menzel et al., 2016; Mende et al., 2017).
MEGAN6 was used to investigate microbial communities and
export data for statistical calculation (Huson et al., 2016).
Statistical Analysis of Metagenomic Profiles (STAMP) was used
to calculate principal component analysis (PCA) employing
ANOVA statistical test (Parks and Beiko, 2010). The distribution
of abundant microbial classes between cultivation media were
presented with Circos (Krzywinski et al., 2009).

Metagenome Co-assembly, Gene Calling
and Binning
The filtered sequences produced by Prinseq were co-assembled
with Megahit (Li et al., 2015) (min. contig length: 2000; min
k-mer size: 21; max k-mer size: 141). Bowtie 2 was equipped to
mapped back the original sequences to the contigs (Langmead
and Salzberg, 2012). Then Anvi’o V5 was used following the
“metagenomics” workflow (Eren et al., 2015). Briefly, during
contig database generation GC content, k-mer frequencies were
computed, open reading frames were identified by Prodigal
(Hyatt et al., 2010) and Hidden Markov Modell (HMM) of single-
copy genes were aligned by HMMER on each contig (Finn et al.,
2011; Campbell et al., 2013; Rinke et al., 2013; Simão et al., 2015).
InterProScan v5.31-70 was used on Pfam and Kaiju on NCBInr
database for the functional and taxonomic annotation of contigs
(Finn et al., 2014, 2017; Jones et al., 2014; Menzel et al., 2016).
The taxonomic and functional data were imported into the contig
database. BAM files made by Bowtie2 were used to profile contig
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database, in this way sample-specific information was obtained
about the contigs (i.e., mean coverage of contigs) (Langmead
and Salzberg, 2012). Three automated binning programs, namely
CONCOCT, METABAT2 and MAXBIN2 were employed to
reconstruct microbial genomes from the contigs (Alneberg
et al., 2013; Kang et al., 2015; Wu et al., 2015). The Anvi’o
human-guided binning option was used to refine MAGs Anvi’o
interactive interface was employed to visualize and summarize
the data. Binning statistics is summarized in Supplementary
Table 1. Figure finalization was made by open-source vector
graphics editor Gimp 2.10.81. Prokka was employed to translate
and map protein sequences (create protein FASTA file of the
translated protein coding sequences) (Seemann, 2014). For the
calculation of module completion ratio (MCR) MAPLE 2.3.2
(Metabolic And Physiological potentiaL Evaluator) was used
(Arai et al., 2018). This automatic system is mapping genes on an
individual genome and calculating the MCR in each functional
module defined by Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa and Guto, 2000) (Supplementary Table 2).

RESULTS

Bioremediation Efficiency and
Biochemical Methane Potential (BMP) of
the Cultivated Algal-Bacterial Biomass
The bioremediation efficiency of Chlorella vulgaris microalgae
and its phycosphere was characterized through the assessment
of carbon, nitrogen, phosphate and BOD removal capability
of the algal-bacterial biomass (Figure 1). The performance
of microalgal-bacterial dry biomass was monitored in three
liquid waste types i.e., municipal wastewater (MW), fermentation
effluent (FE) and chicken manure supernatant (CMS) over
4 days. The light conditions in the cultivating media are of
key importance for microalgal biomass generation. The applied
wastewater types are typically dark liquids; therefore, different
dilutions with distilled water were prepared in order to increase
light penetration to the cultures. Only the experimental data
of the most effective dilutions (non-diluted MW, 10 v/v %
FE and 5 v/v % CMS) are shown and discussed in the main
text of the article (efficiency was defined by the obtained yield
of microalgal biomass). However, the nutrient composition of
all dilutions for each liquid waste were measured and detailed
in Supplementary Information. TAP medium was used as
control during the experiments. Significant nutrient removal
was observed in all three types of investigated wastewater
indicating an active metabolism of the C. vulgaris microalgae
and its bacterial partners. However, due to the specific features
of the various liquid wastes serving as growth media the
algal-bacterial nutrient removal and bioremediation capability
was strongly varying. There is a clear correlation between the
available nutrients (phosphate, nitrogen and acetate) and the
algal-bacterial biomass yield.

The non-diluted municipal wastewater (MW) originated from
the second settling tank of a wastewater plant contained the

1https://www.gimp.org/Q10

lowest amount of nutrients (acetate and nitrogen) and had the
lowest optical density (OD750: 0.02) compared to the 10 v/v %
fermentation effluent (FE) originated from a production scale
biogas digester (OD750: 0.72) and to the 5 v/v % chicken manure
supernatant (CMS: OD750: 0.25) (Supplementary Information).
The nutrient removal rate of phosphate and total nitrogen
(mostly ammonium) was also shown to be dependent on the light
penetration. The highest phosphate removal rate was observed
in CMS (0.20 mM day−1), while only 0.02 mM day−1 and
0.01 mM day−1 phosphate uptake were monitored in MW
and in FE, respectively, (Figure 1C). The monitored phosphate
consumption in CMS were comparable to that of measured in
TAP medium (0.20 mM day−1). Moreover, in all tested media the
microalgal-bacterial consortia removed nitrogen more effectively
than phosphate. Total nitrogen removal rate was 0.32 mM day−1

in MW, 0.78 mM day−1 in FE and 2.46 mM day−1 in CMS,
respectively, (Figure 1E). Similar values were observed for the
ammonium content (MW: 0.31 mM day−1, FE: 0.77 mM day−1)
and CMS: 2.44 mM day−1) (Figure 1D). Significant organic
carbon utilization was observed in all types of liquid wastes.
The observed total nitrogen (and ammonium) removal rate were
higher in CMS compared to TAP medium (CMS: 2.46 mM day−1

and in TAP: 1.31 mM day−1, respectively). Carbon removal
rate was around 82% in all liquid wastes (CMS: 2.20 mM
day−1, FE: 1.51 mM day−1, MW: 0.38 mM day−1) (Figure 1E).
Likewise, considerable decrease in total VOAs (and acetic acid)
was monitored through the experiment (FE: 2 mM day−1, MW
and CMS: 3 and 108 mg L−1 day−1) (Figure 1F). As expected, the
high C utilization capability of C. vulgaris and its phycosphere is
in strong correlation with the BOD consumption (CMS: 78%, FE:
77% and MW: 88%) (Figure 1B). During cultivation pH increase
was observed (Figure 1A). The increased pH correlated with the
degradation of the organic substrates. The dry mass of the co-
cultivated C. vulgaris biomass was the highest in CMS with 0.70–
0.90 g DM L−1 day−1, while in FE it was 0.30–0.60 g DM L−1

day−1. The lowest microalgal-bacterial biomass was measured in
MW with a value of 0.10–0.20 g DM L−1 day−1. The bacterial
biomass was only ∼10% of the total biomass in MW, while
these values were ∼38 and ∼27% in FE and CMS, respectively,
(Supplementary Information and Figure 1G). Highest biomass
production was observed in CMS followed by TAP, FE and MW
(Figure 1G). The cultivated total algal-bacterial biomass carbon
to nitrogen ratio in MW, FE and CMS was 9:1, 7:1 and 6:1,
respectively. The higher C/N ratio of MW compared to the TAP
control (5:1) might indicate nitrogen limitation in MW. The
biochemical methane potential (BMP) of the cultivated mixed
biomasses show negligible differences compared to the TAP
control (TAP: 249± 15 CH4 mLN g oDM−1; MW:236± 14 CH4
mLN g oDM−1; FE: 238 ± 14 CH4 mLN g oDM−1 and CMS:
241± 15 CH4 mLN g oDM−1) (Figure 1H).

Read-Based Metagenomics Analysis of
the Phycosphere
An average of 271,721 sequence reads were generated for each
sample, with a mean read length of 231 nucleotides using an
Ion Torrent PGM sequencing platform. Sequence reads were
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FIGURE 1 | SummaryQ4 of

Q5

microalgal-bacterial bioremediation and cultivation efficiency on different types of wastewater. (A) Results of pH measurements. (B) Results
of biological oxygen demand calculations. (C) Total phosphate measurements. (D) Ammonium ion measurement data. (E) Total carbon and nitrogen contents.
(F) Volatile organic acid (VOAs) and acetic acid concentrations. (G) Biomass growth dynamics over time (days). (H) Cumulative biological methane potential of
cultivated biomasses.

quality filtered by Prinseq, this resulted in an average of 266,119
reads with a mean length of 232 nucleotides (Supplementary
Table 1). The sequences were analyzed and bacterial partners
of C. vulgaris were identified using the Kaiju software on
Progenomes2 database. The comparison of the prokaryotic
microbes using PCA showed significant community shifts
between the different wastewater samples over cultivation time
(Figure 2A). At the start point (T0) the CMS, FE and MW liquid
wastes have diverse microbial community (Figure 2B). The most

abundant classes in CMS were Actinobacteria (55%), Bacilli
(27%) and Gammaproteobacteria (7%), while in FE Clostridia
(33%), Bacteroidia (27%), Bacilli (8%), and in MW Beta- and
Gammaproteobacteria (23–23%) as well as Actinobacteria
(13%) dominated. The relative abundance of the observed taxa
significantly changed over the cultivation period. The Alpha-,
Beta- and Gammaproteobacteria and Bacilli classes dominated
the prokaryotic community at the end point of the experiments
(CMS: Gammaproteobacteria 74%, Alphaproteobacteria
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11%, Betaproteobacteria 7%; FE: Alphaproteobacteria 60%,
Gammaproteobacteria 17%, Betaproteobacteria 16%; MW:
Alphaproteobacteria 52%, Bacilli 40%, Gammaproteobacteria 4%,
respectively). The control TAP media showed the least microbial
shift between the start and the end of the cultivation, where
representatives of the Gammaproteobacteria class (T0: 100%;
end: 95%, respectively), were the most abundant (Figures 2A,B).

Genome-Centric Analysis of the
Phycosphere
Metagenome assembly was carried out by Megahit. A total
of 6,148 contigs with a minimum length of 2,000 nucleotides
were generated. The contigs were then binned together
using MAXBIN2, METABAT2 and CONCOCT automated
binning programs. The generated bins were further refined by
human guided binning process based on automated binning
results with Anvi’o. The 7 bins accounted for a total of
20,038,573 nucleotides. Bins were checked for completion and
contamination using CheckM.

Seven metagenome assembled genomes (MAGs) were
generated by Anvi’o (Figure 3). Bin 1 contained the C. vulgaris
genome fragments. Beside Bin 1 six bacterial MAGs were
detected. From these six MAGs five belonged to partly
unknown taxa, namely Pseudomonas, Exiguobacterium,
Acinetobacter, Enterobacteriaceae and Bacteroidetes. The
unknown Pseudomonas (Bin 2) showed a high degree of genome
completeness (95%). This MAG included ribosomal maturation
proteins (Supplementary Table 2), however, 16S rRNA
sequences were not found by HMMER (Bowers et al., 2017). One
species level bin (Bin 6) belonged to the Bacteroidetes bacterium
4484_276. By mapping back the original reads to the unknown
Pseudomonas (Bin 2) and unknown Acinetobacter (Bin 3) bins it
was observed, that these microbes were detected in all cultivation
media at each time point. The unknown Enterobacteriaceae
(Bin 5) was found in all liquid waste cultivations (i.e., MW, FE,
CMS), while the unknown Exiguobacterium (Bin 4) occurred
only in MW. The low quality Bacteroidetes bacterium 4484_276
(Bin 6) and the unknown Bacteroidetes (Bin 7) bins were
detected only in FE.

To predict protein pathways, the translated protein coding
sequences created by Prokka were further analyzed to calculate
module completion ratio (MCR) by MAPLE 2.3.2 using
the Kegg database (Kanehisa and Guto, 2000; Seemann,
2014; Arai et al., 2018). The unknown Pseudomonas (Bin 2)
bin genom harbored complete pathways of gluconeogenesis,
Entner-Doudoroff pathway, pyruvate-oxidation, beta-oxidation,
sulphate reduction, pentose phosphate pathway, fatty acid, amino
acid, cofactor and vitamin metabolism (Supplementary Table 2).
The MCR of vitamin B biosynthesis was also found at high
percentage in the unknown Pseudomonas MAG. Among vitamin
B variants, the complete biotin (B7) biosynthesis pathway was
detected (100%) in Bin 2, while the completeness of cobalamin
(B12) and thiamin (B1) biosynthesis pathways were 86% and
60%, respectively. Between the MAGs showing low degree of
genome completeness the unknown Acinetobacter (Bin 3) and
the unknown Enterobacteriaceae bin (Bin 5) had complete MCRs

for acetate kinase pathway, while the unknown Exiguobacterium
(Bin 4) and Bacteroidetes bacterium 4484_276 (bin 6) bins had
complete phospho-ribose-diphosphate pathway. The unknown
Bacteroidetes (Bin 7) had the lowest genome completeness among
the detected MAGs, therefore complete pathways could not be
detected in this bin (Supplementary Table 2).

DISCUSSION

Microalgae and their phycosphere represent powerful natural
associations, which can be exploited in bioremediation and
biofuel production (Gonçalves et al., 2017; Guldhe et al.,
2017). Using liquid wastes for alternative algae cultivation has
emerged as a potential cost effective strategy to make microalgae
biotechnology more sustainable and economically feasible. It
is essential to understand the nature of microalgal-bacterial
relationships in order to develop combined bioremediation and
biofuel production systems. Therefore, the main objective in this
study was the assessment of nutrient removal and microalgal-
bacterial biomass production efficiency using different types
of wastewater sources (i.e., chicken manure supernatant,
fermentation effluent and municipal wastewater). Furthermore,
bioremediation and production efficiency data were supported
by applying read-based and novel genome-centric approach for
the identification of the phycosphere components and their
functional profiles.

Chlorella Vulgaris and Its Phycosphere Is
Effective in Bioremediation of Liquid
Wastes
THE following major bioremediation process parameters
were measured during the experiments: pH, biomass yield,
carbon, nitrogen and phosphorous content. The biomass’
carbon/nitrogen ratio and biochemical methane potential
were also characterized. The experiments were designed for
4 days, since previous literature data indicated that C. vulgaris
entered stationary growth phase by the 4th–5th day, no
significant biomass production could be observed thereafter
(Mujtaba et al., 2015, 2017; Otondo et al., 2018; Qi et al., 2018)
(Supplementary Information).

The total carbon (TC), total nitrogen (TN) and phosphate
(PO4

3−) concentrations of the applied liquid wastes substantially
varied (Figures 1E,C and Supplementary Information). The
major nutrients required for microalgal growth are nitrogen
and phosphorus incorporated to the cells via active transport.
Ammonium is among the most common forms of nitrogen that
can easily be utilized by most microalgal species (Gonçalves et al.,
2017). Thus, liquid wastes represent a cheap source of nitrogen
for microalgal cultivation (Razzak et al., 2013). Previously it
was observed, that the optimal ammonium concentration for
microalgal cultivation was around 8–10 mM (Uggetti et al., 2014;
Chen et al., 2018), higher concentration might inhibit microalgal
growth (Källqvist and Svenson, 2003). Another important
element required for microalgae growth and metabolism is
phosphorus primarily occurring in the form of phosphate
(PO4

3−) in wastewater. Phosphorus is an essential ingredient
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FIGURE 2 | (A) PCA of prokaryotic communities in various cultivation media. The variation represented by the first axis (PC1, 64% of overall variation) and the
second axis (PC2, 19% of overall variation) indicating diverse phylogenetic structures. (B) Relative distribution of abundant microbial classes in different media (left
side: classes, right side: cultivation media).

of ATP and nucleic acids in the cells. Phosphate availability has
a large impact on microalgal photosynthesis as well (Razzak
et al., 2013). Optimal phosphate concentration was found around
∼1 mM (Chiu et al., 2015). The concentration of ammonium
and phosphate were relatively low in the applied non-diluted
MW (NH4

+-N: 1.6 mM; PO4
3−: 0.1 mM) (Figures 1C,D and

Supplementary Information). In the diluted FE (10 v/v%)
the amount phosphate was low (PO4

3−: 0.1 mM), while the
ammonium content was approximately half of the optimum
(NH4

+-N: 4.8 mM). The diluted CMS (5 v/v%) contained
high amount of both nutrients (NH4

+-N: 13.7 mM; PO4
3−:

1.2 mM) (Figures 1C,D and Supplementary Information). The
ammonium and phosphate removal rates were also high in
CMS (NH4

+-N: 2,44 mM day−1; PO4
3−: 0.20 mM day−1),

while lower in FE (NH4
+-N: 0.77 mM day−1; PO4

3−: 0.01 mM
day−1) and MW (NH4

+-N: 0.31 mM day−1; PO4
3−: 0.02 mM

day−1). The experimental data indicated that mostly C. vulgaris
was responsible for the removal of ammonium and phosphate,
and the biomass yield strongly correlated with the removal
efficiencies. The results also implied to the dependency of
microalgae growth on the available nitrogen sources, which is in
good correlation with previous studies (Chiu et al., 2015). The
observed low nitrogen content of the biomass generated on MW
compared to the TAP control might be explained by the nitrogen
limitation (Klassen et al., 2015; Seger et al., 2019).

Microalgae can fix CO2 derived from flue gas emission
through photosynthesis (Sayre, 2010; Pires et al., 2012).
Additionally, microalgae are able to uptake soluble carbonates
as a source of CO2 (Thomas et al., 2016; Sydney et al., 2019).

This uptake depends on the environmental pH. At low pH values
the CO2 uptake occurs through diffusion (pH 7 ± 1), while in
the case of bicarbonate, which is the common form of inorganic
carbon under high pH (10 ± 1), the microalgal cells use active
transport (Gonçalves et al., 2017). Microalgal photosynthesis
raises pH by consumption of CO2 and HCO3

−. It was observed
that microalgal growth rate is affected by the pH as pH affects
the availability of inorganic carbon. When pH is around or
over 10, CO2 is limiting and bicarbonate is used as a carbon
source (Otondo et al., 2018). The pH is slightly increased during
the microalgal-bacterial biomass generation in all type of liquid
wastes indicating effective photosynthetic activity of microalgae.
At the end point of the biomass production in MW the pH was
high, this might have been an inhibitory on microalgal biomass
growth beside the limited nutrient source (Figure 1).

Although microalgae are mainly autotrophic, C. vulgaris is
able to grow in a mixotrophic/photoheterotrophic way using
organic carbon source (e.g., acetate, glucose) in addition to
CO2 (Skorupskaite et al., 2015; Zuñiga et al., 2016). Typically
both respiratory and photosynthetic processes occur in darkish
wastewater (Morales-Sánchez et al., 2015; Skorupskaite et al.,
2015; Zuñiga et al., 2016). Microalgae also consume the CO2
released from bacterial respiration, in turn the algae provide the
O2 necessary for the phycospheric bacteria to degrade organic
carbon sources (Fuentes et al., 2016; Liu J. et al., 2017). Therefore,
organic carbon source of liquid wastes is readily reduced by
both microalgal and bacterial metabolic activities. Furthermore,
it was observed earlier that microalgae could improve the energy
efficiency of BOD removal (Mujtaba and Lee, 2016). These
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FIGURE 3 | Visualization of the genome-centric metagenomics data. The hierarchical dendrogram of the contigs based on its tetra-nucleotide frequency is in the
center of the picture. The taxonomy of the individual contigs is color-coded. The length, GC content, and the presence of ribosomal RNAs of contigs is displayed at
the next level. The inner circles show the frequency of the contigs in each wastewater type (CMS: chicken manure supernatant, FE: fermentation effluent, MW:
municipal wastewater) in time (T0: start point, End: end point). The outer layer shows the CONCOCT, MAXBIN2, METABAT2 and manual binning results (color-code:
upper right corner).

observations were confirmed, significant carbon loss was detected
in all type of applied wastewaters (over 80%), which was in clear
correlation with the BOD removal rate.

Using microalgae and its phycosphere to utilize nutrients from
wastewater for biomass production and the combined use of
the generated biomass for biofuel generation is a promising and
promoted way to build circular economy (Chiu et al., 2015;
Zhu et al., 2016). The advantage of the algal biomass-based
biogas production is that the microalgal-bacterial biomass can
be directly applied in the biogas reactor, the total biomass is
degraded and converted to methane and CO2 by a complex
microbial community in a well-controlled manner (Guldhe et al.,
2017). Microalgal dry biomass productivity was found to be the
most effective in CMS (18% higher compared to TAP) followed
by FE (CMS: 0.70–0.90 g DM/L/day; FE: 0.30–0.60 g DM/L/day),

while the lowest biomass was detected when using MW (0.10–
0.20 g DM/L/day) (Supplementary Information and Figure 1G).
Similarly, bacterial content was found to be higher in biomass
generated in CMS and FE (27 and 38%), while only 10% in
MW. The high nutrient content (including acetate, phosphate
and ammonium) of CMS explains its effectiveness in biomass
production. The biochemical methane potential (BMP) of the
biomass generated in the alternative media were comparable to
the methane potential of the biomass produced on TAP control
(ranging from 236 to 241 CH4 mLN/g oDM in CMS, FE, and
MW, while 249 ± 15 CH4 mLN/g oDM in TAP). Differences in
BMP might be caused by the biomass carbon to nitrogen ratio
and by bacterial content of the biomass (Arcila and Buitrón,
2016; Molinuevo-Salces et al., 2016; Jankowska et al., 2017).
The presence of bacteria also explains the relatively higher C/N
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ratio of biomass cultivated in FE and CMS compared to that of
TAP. However, in the aspect of anaerobic digestion this ratios
are far from the optimal range (C/N: 20–30:1) (Ward et al.,
2014). Thus, the long-term effects of the low C/N ratio and the
bacterial content of the biomass on the anaerobic digestion and
on the decomposing microbial community need to be further
investigated (Wirth et al., 2015a,b, 2018).

Revealing the Phycosphere of
Microalgae Cultivated on Liquid Wastes
by Read-Based and Genome-Centric
Approach
The read-based metagenomics approach revealed a diverse
microbial composition at the start point of cultivations in
different type of liquid wastes (Supplementary Information).
The PCA of the prokaryotic communities showed significant
alterations during the cultivation period (Figure 2A). At the
starting point the highest diversity was observed in FE, where
Clostridia, Bacteroidia and Bacilli were the most abundant
classes. Beta,- Gammaproteobacteria and Bacilli dominated the
microbial communities in MW. Actinobacteria, Bacilli and
Gammaproteobacteria were the most abundant classes in CMS
(Figure 2B). The observed microbial classes are typical for
chicken manure, municipal wastewater and anaerobic digesters
(Lu et al., 2007; Ju et al., 2014; Campanaro et al., 2020). The
starting communities were significantly altered by the end of the
cultivation period. Mainly Alpha-, Beta-, Gammaproteobacteria
and Bacilli became the most dominant classes (Figure 2B). In
previous studies similar changes were observed in the prokaryotic
microbial community composition in microalgal-seeded systems
(Krustok et al., 2015; Chen et al., 2019; Paquette et al., 2020). The
TAP medium (control) showed the lowest composition change,
in this medium the representatives of Gammaproteobacteria class
were the dominant bacterial partners of C. vulgaris microalgae
throughout the cultivation. Two further interesting aspects were
observed in the microbial communities. On one hand the
prokaryotic community of CMS at the end point was the most
similar to that of the TAP medium (Figure 2A). On the other
hand the dominance of the class Gammaproteobacteria is in close
correlation with the biomass yield (Figures 1, 2B).

The genome-centric metagenomics results further explain
these interesting observations. The human-guided binning
approach resulted one medium (Bin 2) and six low quality
(Bin 1, 3–7) Metagenome-Assembled Genomes (MAGs) (Bowers
et al., 2017). These bins are identified as one eukaryotic
algae MAG (Bin 1) and six bacterial MAGs (Bin 2–7). The
unknown Pseudomonas (Bin 2), unknown Acinetobacter (Bin 3)
and unknown Enterobacteriaceae (Bin 5) belong to the class
Gammaproteobacteria within the phylum Proteobacteria. Two
bins were found as representatives of the phylum Bacteroidetes,
these are the Bacteroidetes bacterium 4484-246 MAG (Bin
6) and an unknown Bacteroidetes MAG (Bin 7), while the
unknown Exiguobacterium MAG (Bin 4) belongs to the phylum
Firmicutes (Figure 3).

Multiple members of the class Gammaproteobacteria and
the phylum Bacteroidetes are considered as Plant Growth

Promoting Bacteria (PGPB) interacting with microalgae trough
metabolite exchange and by enhancing the microalgal biomass
yield and lipid production (Seymour et al., 2017; Calatrava
et al., 2018; Cho et al., 2019). The representatives of class
Gammaproteobacteria, the phylum Bacteroidetes and the genus
Exiguobacterium are commonly found in the phycosphere
of C. vulgaris cultivated on liquid wastes strengthening the
hypothesis, that there are a specific interactions between
microalgae and bacteria (Guo and Tong, 2014; Kouzuma and
Watanabe, 2015; Mujtaba et al., 2017; Cheah et al., 2018;
Qi et al., 2018). It was reported that the representatives of
the genus Pseudomonas are capable of increasing the growth
rate of Chlorella microalgae species through the reduction of
photosynthetic oxygen tension (Berthold et al., 2019) beside their
decomposing activities (Mujtaba et al., 2017; Cheah et al., 2018).
The presence of Pseudomonas sp. resulted higher Chlorella cell
concentrations in a given period compared to that observed
in axenic microalgae culture (Guo and Tong, 2014; Mujtaba
and Lee, 2016). Certain Pseudomonas and Acinetobacter sp.
also promoted the Chlorella microalgae growth when cultivated
on palm oil mill effluent (Cheah et al., 2018). A symbiotic
relationship between Chlorella and Bacteroidetes species was
described recently, the abundance of Bacteroidetes specifically
increased during pre-treatment of dairy-derived liquid digestate
(Zhu et al., 2019). In another study Proteobacteria and
Bacteroidetes induced growth promotion of three microalgae,
Chlamydomonas reinhardtii, C. vulgaris and Euglena gracilis in
wastewater and swine manure effluent (Toyama et al., 2018).
The genus Exiguobacterium was previously described among
the dominant bacteria during domestic wastewater treatment,
this specific bacterium was shown to promote Chlorella biomass
accumulation and chlorophyll synthesis (Qi et al., 2018; Ren et al.,
2019).

The read coverage of bins indicated that the unknown
Pseudomonas (Bin 2) and unknown Acinetobacter (Bin 3) were
presented in all types of wastewater media. The unknown
Enterobacteriaceae (Bin 5) was detected in CMS, FE and MW,
while Bacteroidetes bacterium 4484_276 (Bin 6) and the unknown
Bacteroidetes (Bin 7) were present only in FE. These data
indicated that some of the bacteria were in strong interaction with
the Chlorella algae while the others were specific to the applied
wastewater type. It was reported that many bacteria are able to
survive together with microalgae in algae culture collections for
long term (Krohn-Molt et al., 2017). The unknown Pseudomonas
(Bin 2) and the unknown Acinetobacter (Bin 3) seem to belong
this category, they had a strong interaction with Chlorella and
might have been inoculated together into the examined waste
liquids. The unknown Enterobacteriaceae and Exiguobacterium,
furthermore the representatives of Bacteroidetes are likely to be
wastewater-specific bacterial strains (Toyama et al., 2018).

Multiple factors influence the presence of bacterial partners
of eukaryotic microalgae. A highly important factor is the
algal photosynthesis, through which microalgae can increase
the dissolved oxygen concentration and the pH of the medium
(Seymour et al., 2017). Also the microalgal products having
bactericidal effect are important in shaping the phycosphere. The
C. vulgaris are able to produce a mixture of polyunsaturated
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fatty acids exhibiting antibiotic activity, i.e., chlorellin (Fergola
et al., 2007). Chlorellin is produced in small amount in
stationary growth phase, and it exerts different inhibitory
effects on different bacteria (DellaGreca et al., 2010; Alwathnani
and Perveen, 2017). The effect of chlorellin might have been
limited on the development of the phycosphere due to the
applied short cultivation time (4 days). Nevertheless, bacteria
are also able to influence microalgal growth through nutrient
competition (Guldhe et al., 2017). Based on the measurement
of the key nutrients and binning results, microalgae and
bacteria are competing for VOAs (i.e., acetate). C. vulgaris
is able to use acetate in photoheterotrophic cultivation mode
via active transport (Zuñiga et al., 2016; Huang et al., 2017;
Cecchin et al., 2018). The functional profiling of the unknown
Pseudomonas (Bin 2), unknown Acinetobacter (Bin 3) and
unknown Enterobacteriaceae (Bin 5) resulted in pathways with
complete module completion ratio (MCR). These pathways
are linked to fatty acid metabolism (Supplementary Table 2).
Therefore, it is assumed that these bacteria were mainly
responsible for the fatty acid consumption, while the microalgae
had only minor role in this metabolic activity. They degrade
the fatty acids and release CO2 during their metabolic activity,
this CO2 is consumed by microalgae which in turn produce
photosynthetic oxygen essential for the bacteria for fatty
acid oxidation. According to MCR calculations the unknown
Exiguobacterium (Bin 4) and the Bacteroidetes bacterium
4484-246 (Bin 6) have complete phospho-ribo-biphosphate
biosynthesis pathway indicating their carbohydrate metabolic
activity. It is not clear, whether these bacteria use the microalgal
carbohydrate by-products or possibly degrade algal cell wall
components. However, it is very likely that these bacteria also
produce CO2, thereby increase microalgal photosynthetic activity
and growth. Since the genome completeness of these bacteria
is low, similarly to the unknown Acinetobacter (Bin 3) and the
unknown Enterobacteriaceae (Bin 5), the knowledge on their
detailed roles in the phycosphere is limited.

Vitamins like cobalamin, thiamin, biotin are needed in the
lipid biosynthesis pathway in microalgae and higher plants
(Croft et al., 2006; Smith et al., 2007). Although C. vulgaris is
not auxotroph for vitamin B derivatives, the addition of these
ingredients still have a positive effect for Chlorella growth (Croft
et al., 2005). Previous studies involving 306 microalgal species
showed that more than half of the examined species (51%)
required exogenous cobalamin (vitamin B12), 22% required
thiamin (vitamin B1) and 5% required biotin (vitamin B7)
for better growth (Croft et al., 2006). It was reported that
vitamin supplementation increased the lipid production and
intracellular vitamin concentration of the Chlorella species,
which ultimately resulted in increased growth rate and biomass
yield (Fazeli Danesh et al., 2018). It is possible to supply
these vitamins by the addition of bacterial partners. It is
especially beneficial at industrial scale algae farms to increase
sustainability and economic feasibilty. The genome-centric
binning results showed that the unknown Pseudomonas (Bin
2) showed high MCR for biotin (100%), cobalamin (80%) and
thiamin (60%) biosynthesis. The capability of this specific MAG
to synthesize these important vitamin B derivatives further

supports the close relationship between this bacterium and the
C. vulgaris microalgae.

CONCLUSION

The applied microalgae and its phycosphere effectively reduced
the carbon, nitrogen and phosphorus content as well as
decreased the BOD of the applied liquid wastes. The nitrogen
and phosphorus losses were predominantly caused by the
microalgal activity. Nitrogen had the greatest effect on the
growth of microalgae, however, the algal consumption of this
nutrient depended on the transparency of the medium (light
penetration) implying to the significance of the photosynthetic
algae growth. The fatty acid content of the liquid wastes
was used by both the microalgae and the bacterial partners,
however, microalgae had limited importance in this activity. The
CO2 produced by the phycospheric bacteria was consumed by
microalgae and in exchange the photosynthetically produced
oxygen was respired by the phycospheric bacteria during the
oxidation of organic acids. CMS proved to be the most
efficient for microalgal dry mass production, while FE and
MW had medium and low efficiency in this term, respectively.
However, the lowest bacterial content was detected in the
dry biomass grown in MW. Diverse prokaryotic microbial
community featured the used liquid wastes at the start
point of cultivation, which compositions are typical to the
given wastewater type. These were significantly changed at
the endpoint. The genom-centric approach revealed that the
unknown Pseudomonas (Bin 2) and the unknown Acinetobacter
(Bin 3) strongly interacted with Chlorella. Such genome-level
investigations may reveal bacterial indicators of culture status,
which could be useful for monitoring the health of microalgae
in complex bioremediating communities (Seger et al., 2019). The
explorations on microalgae-bacteria associations in wastewater
contribute to the better understanding of phycosphere activities
and help their applications in bioremediation and combined
next-generation biofuel production.
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