
Discordant voting protocols for cyclically linked

agents

András Pongrácz∗

Department of Algebra and Number Theory
University of Debrecen

Egyetem suare 1, Debrecen, Hungary 4032

pongracz.andras@science.unideb.hu

Abstract

Voting protocols, such as the push and the pull protocol, model the behavior
of people during an election. These processes have been studied in distributed
computing in peer-to-peer networks, and to describe how viruses or rumors spread
in a community. We determine the asymptotic behavior of the runtime of discordant
linear protocols on the cycle graph, and the probability for each consensus to win.

Mathematics Subject Classifications: 91A22, 60J10, 60G50

1 Introduction

Models of voting in finite graphs have been studied intensively for decades, see e.g.,
[7, 15, 13, 1, 14, 8]. Throughout this paper, a discrete time voting protocol is defined by
specifying a graph and a set of nondeterministic rules. Then the process is divided into
rounds. In each round, the participants, i.e., vertices of the graph, can affect the vote of
their neighbors according to the given rules.

We note that many alternative definitions were investigated in the literature. Contin-
uous time voting processes were studied in [7, 10]. Somewhat surprisingly, the thorough
mathematical investigation of the continuous version preceded that of the discrete ana-
logue of the protocols [15, 10]. In [12] the graph evolves together with the opinions of
the vertices. This models the behavior of people who in each round try to convince one
another and succeed with a given probability. Whenever they fail, they cease to com-
municate with each other, that is, we delete the edge linking them from the graph. In
such a model there are many potential final results, as the graph can disconnect, and in

∗This work is supported by the EFOP-3.6.2-16-2017-00015 project, which has been supported by the
European Union, co-financed by the European Social Fund. The paper was also supported by the National
Research, Development and Innovation Fund of Hungary, financed under the FK 124814 and PD 125160
funding schemes, the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, and by
the ÚNKP-18-4 New National Excellence Program of the Ministry of Human Capacities.

1



fact we may end up with many connected components. For more details, see [8, 2]. The
application of these randomized protocols in studying how rumor spreads in a society
goes back to decades, and it is still an active area [11, 13, 1]. The same can be said about
peer-to-peer networks, see e.g., [18, 14, 3]. In this application, opinion is replaced by a
piece of information that each computer has at a given time, and they share the data in
a randomized way. Connections of voting processes and coalescing random walks were
investigated in [10, 16], and for other recent applications see [17, 5].

However, we consider discrete time voting models where the graph is fixed, and the
vote is a binary decision. The two options to choose from are 0 and 1, but we usually refer
to vertices with opinion 0 as blue vertices, and red vertices are the ones with opinion 1.
Such a protocol can be synchronous (see [6] for examples), i.e., it is allowed that several
vertices of the graph change their opinion in one round; otherwise it is asynchronous. The
so-called linear voting model was introduced in [6] as a common generalization of many
well-studied voting protocols. Three of the most common special cases of asynchronous
linear voting are the

• Oblivious protocol: in each round an edge uv is chosen uniformly at random, and
then either u adopts the opinion of v or the other way around, with equal probability.

• Push protocol: in each round a vertex u is chosen uniformly at random, and that
vertex forces a randomly chosen neighbor to adopt the opinion of u.

• Pull protocol: in each round a vertex u is chosen uniformly at random, and that
vertex is forced by a randomly chosen neighbor v to adopt the opinion of v.

From a practical viewpoint, all linear voting models have a common weakness: it is typical
that nothing changes in many steps of the process, as it is possible that every participant
keeps his own opinion for the next round. E.g., consider push, pull or oblivious voting on
the complete graph Kn; in this particular case, the three protocols coincide. If one opinion
is significantly more popular than the other, then with very high probability, both chosen
vertices have the more popular opinion. So usually many idle rounds go by before the
opinion of some vertex is altered. This example demonstrates the advantage of discordant
(oblivious, push, pull) voting protocols, defined in [4]. An edge uv is discordant if u and
v have different opinion, and a vertex is discordant if it is in a discordant edge. To define
discordant oblivious, push and pull voting, the above three definitions are modified so
that whenever a random choice is made, we only allow discordant edges or vertices to
be picked (always uniformly at random). Note that in our restricted framework when
there are only two opinions, the definition of discordant pull voting simplifies to picking
a discordant vertex in each round randomly and switching its opinion.

The goal of every voting scheme that we study now is to reach consensus, that is,
a state where all participants have the same opinion. The topic of the present paper
is the expected time T to reach consensus with the discordant push, pull and oblivious
processes on the n-cycle. It was proven in [4] that all three processes have a quadratic
runtime at worst. In particular, push voting is expected to terminate in at most 33n2

steps regardless of the initial state, and from some initial state it is indeed expected to

2



take at least n2/4 +O(n) time to reach a unanimous vote [4, Section 4]. We improve the
bounds and obtain the precise asymptotical behavior of the expected runtime of the three
discordant protocols on the n-cycle. It is shown that the expected time T for all three
asynchronous protocols to reach consensus on the cycle graph with n vertices satisfies
|T − β%| = O(n3/2), where β and % are the number of blue and red vertices in the initial
state, respectively. In other words, on the n-cycle Toblivious, Tpush and Tpull differ in an
O(n3/2) term, which is negligible compared to the typically quadratic runtime. The result
combined with the lower estimation shows that the worst case is β ∼ ρ ∼ n/2, where the
expected time is asymptotically T ∼ n2/4.

The other vital problem in case of a random protocol is to compute the probability of
each possible outcome to win. We show that in case of the cycle graph the probability of
each opinion to win with the discordant push, pull or oblivious protocol is asymptotically
proportionate to the number of vertices with that opinion in the initial state, provided
that the initial state be tame. More precisely, if k denotes the number of runs, i.e.,
maximal sets of consecutive vertices of the same color, we prove that the blue vertices
have winning probability β/n+O(k/n). By using some probability theory, it can be shown
that there must be a state for arbitrarily large n such that the estimation β/n has error
0.1 or more. However, computer simulations suggest that in highly symmetrical initial
states (such as the one with alternating runs of lengths one and two), the estimation β/n
is quite accurate, a phenomenon we cannot explain yet.

Although some parts of the proof of the positive results require elaborate combinatorial
and probabilistic arguments, the core is an elementary linear algebraic lemma (Lemma 1).
This paper is a demonstration of how the iterative application of that elementary lemma
can yield asymptotically sharp results to basic questions about evolutionary processes,
where the transition matrix is typically large but sparse and easy to describe.

2 Preliminaries

2.1 General tools

Throughout this section, P is an absorbing Markov chain with transient states Tran. We
denote by Pen the set of potential penultimate states in Tran, that is, the states t ∈ Tran
such that the probability of moving from t to an absorbing state in one step is positive.

As usual, we denote by Q the upper left minor of the canonical form of P =

(
Q R
0 I

)
. So

Q is the transition matrix restricted to the transient states. Following standard notations,
N = (I−Q)−1 denotes the fundamental matrix of the Markov chain. In this paper, vectors
are column vectors of length |Tran |, usually denoted by u, v, ε, etc. The coordinates are
identified with the transient states, so precisely speaking, these are vectors in RTran. We
denote by 1 the column vector of length |Tran | all of whose entries equal to 1. The entry
corresponding to the coordinate t in the vector u is denoted by u[t]. It is well-known that
if we sum up the entries u[t] while randomly walking on the coordinates starting from
t0 ∈ Tran, then the expected value of this sum before the walk is absorbed is (Nu)[t0]. In

3



particular, the expected times to absorption from each transient state as initial state are
the coordinates of the vector N1.

The following lemma is the basic observation of the elementary method we use to
improve the upper estimations for the expected time to absorption presented in [4]. We
can think about x[t] as a “guesstimate” of the expected value of the sum of the entries
of u during a random walk with initial state t before reaching an absorbing state. In
particular, if u = 1, then x is the guesstimate vector for the time to absorption starting
from each transient state.

Lemma 1. Let u, x, ε ∈ RTran be vectors such that Qx = x− u+ ε. Then Nu = x+Nε.
In particular, if Qx 6 x− u, then Nu 6 x (coordinate-wise).

Proof. By rearranging the equation we obtain u = (I −Q)x + ε. Multiplying both sides
by N = (I −Q)−1 yields Nu = x+Nε.

Moreover, N = (I−Q)−1 = I+Q+Q2 + · · · is a non-negative matrix. Hence, if ε 6 0
coordinate-wise, then Nε 6 N0 = 0, thus Nu 6 x.

As we mentioned earlier, the vectors Nu and Nε are the expected value vectors of
the sum of the entries of u and ε during a random walk (on the coordinates) starting
from each transient state. The above elementary lemma is particularly useful when the
transition matrix is large but sparse, and the fundamental matrix cannot be computed
or represented in a transparent way. This is often the case with evolutionary processes.
Note that Qx is easy to compute if the matrix is sparse. Furthermore, because of the
probabilistic interpretation of Nε and the possibility of applying Lemma 1 iteratively, it
is possible to estimate this vector without computing N , as we see later. By successive
application of this method, the error can shrink to such a small vector that it is very easy
to estimate it, providing us with an efficient estimation of the expected value vector. We
spell out an immediate application.

Lemma 2. Let u ∈ RTran be such that u[t] = 0 for all t ∈ Tran \Pen. Define p ∈ RTran

where p[t] is the probability of immediate absorption in state t. Let M := max
t∈Pen

u[t]/p[t].

Then the expected sum of the entries of u during a random walk from any initial state is
at most M .

Proof. Apply Lemma 1 with the guesstimate vector x = M · 1. Note that u 6M · p, thus
x− u >M · (1− p) = M ·Q1 = Qx. Hence, Nu 6 x coordinate-wise by Lemma 1.

This observation is very advantageous when we are able to cut a process to several
phases, and we want to estimate the expected sum of an expression between two phase
transitions. In our case, the phases are those parts of the process where the number of
runs, i.e., maximal sets of consecutive vertices with the same opinion in the cycle, is con-
stant. Note that the number of runs cannot increase during the process, and it decreases
by two whenever the opinion of a singleton vertex is switched. The only exception is when
we reach consensus in the last step: in that case, the number of runs drops down from
two to one.

4



2.2 Further terminology

We now turn to the problems under consideration, defined in the introduction. Note that
the proof is presented for discordant push voting on the n-cycle: the case of pull voting
can be done in a similar fashion, and the case of oblivious voting is trivial. Clearly, the
voting process is an absorbing Markov chain with 2n states, whose absorbing states are
exactly those two where all the vertices agree.

As in the introduction, the number of blue and red vertices are denoted by β and
%, respectively. A vertex is a singleton if its color differs from both its neighbors’ color.
The number of singleton blue and red vertices are sβ and s%, respectively. The number
of non-singleton blue vertices with (exactly) one red neighbor is mβ; the number m% is
defined analogously for red vertices.

Note that the number of runs is even in every state, except for the two absorbing
states where the whole cycle is one run. Furthermore, the number of red runs equals to
the number of blue runs in the transient states, as red and blue runs alternate in the
cycle. A maximal set of consecutive singleton vertices is called an arc, and the number of
arcs is denoted by `.

3 Expected time to absorption on the cycle

It turns out to be advantageous in the calculation to cut the process into two parts. We
fix a number K = 8

√
5
√
n, and then the first part of the process consists of the steps

before we first reach a state with K runs.

3.1 The first part: down to K runs

In this subsection, we show an estimation of the expected length of the first part. The
following bound can be extracted from [4, Section 4]. In that paper, a quadratic upper
estimation was given to the runtime of the discordant push protocol using some results
about stopped martingales. They obtained that it takes at most 33n2 steps to reach
consensus from any initial state, that is, to reach a state with one run. However, by
carefully modifying their calculations, a more general result can be shown.

Proposition 3. The expected time to reach a state with k runs is at most 80n2/k from
any initial state. In particular, putting k = K = 8

√
5
√
n, the first part is expected to

terminate in at most 2
√

5 · n3/2 steps.

Proof. In [4, Lemma 8] and the argument before that, it was shown that the expected
time to reach a state with k = 2r1 runs from one with 2r0 runs is at most T ∗, where T ∗

5



is the optimal solution of the following linear program:

T ∗ = max 10
√

2n3/2

r0∑
r=r1

xr
r3/2

such that
r∑

j=r1

xj 6
√

2rn for all r1 6 r 6 r0

and xr > 0 for all r1 6 r 6 r0

Moreover, it can be shown that such a linear program attains its optimal solution at
xr1 =

√
2r1n and xr =

√
2rn −

√
2(r − 1)n for all r1 + 1 6 j 6 r0. Hence, by using the

standard estimations
√

2rn−
√

2(r − 1)n 6
√

2n
r

and 1
r2

6 1
r(r−1) = 1

r−1 −
1
r

we obtain

T ∗ 6 10
√

2n3/2

(√
2r1n

r
3/2
1

+

r0∑
r=r1+1

√
2rn−

√
2(r − 1)n

r3/2

)
6

10
√

2n3/2

(√
2n

r1
+

r0∑
r=r1+1

√
2n

r2

)
= 20n2

(
1

r1
+

r0∑
r=r1+1

1

r2

)
6

20n2

(
1

r1
+

r0∑
r=r1+1

(
1

r − 1
− 1

r

))
= 20n2

(
1

r1
+

1

r1
− 1

r0

)
6

40n2

r1

Substituting r1 = k
2

finishes the proof.

3.2 The second part: from K runs to consensus

We begin with a technical lemma.

Lemma 4. The expected value of the sum of | sβ+mβ−s%−m%
sβ+mβ+s%+m%

| during a random walk until

the number of runs decreases is at most 1/2. In particular, the expected sum of the above
expression during the second part of the voting process is at most 2

√
5
√
n.

Proof. We use Lemma 2. In order to do that, the Markov chain is restricted to those
states that have k runs, and extended by an absorbing state where we move exactly when
in the original Markov chain the number of runs decreases. The penultimate states of
this chain are exactly those states with k runs in our problem where there is a singleton
vertex. Of course, the number p[t] (the probability of immediate absorption from t) is the
probability that we lose runs, which is the probability that in the original Markov chain
a singleton is pushed. Our next goal is to calculate the probability of this event.

We call the states with alternating red and blue vertices special states. Such states
exist iff n is even, and then there are two of them. Now assume that the state is not
special. Let a1, . . . , ah be an arc, surrounded by the non-singleton vertices b (a neighbor
of a1) and c (a neighbor of ah). As we are not in the special states, the arc is not the full
set of vertices, and b and c are indeed not singletons. We show that the probability that

6



a singleton be pushed in this arc is h+1
d

, where d = sβ + s% + mβ + m% is the number of
discordant vertices. If h = 1, then the vertex a1 is indeed pushed with probability 2

d
: this

happens exactly when b or c is chosen out of the d discordant vertices for pushing their
opinion. If h > 2, then a vertex in the arc is pushed iff

• a vertex is chosen out of b, a1, . . . , ah, c for pushing, and

• if that vertex is a1 or ah, then the singleton neighbor is chosen.

Hence, the desired probability is h+2
d
− 2

d
· 1
2

= h+1
d

. Adding the expression h+1
d

for all
arcs, we obtain that the probability that a singleton vertex be pushed in the state t is
p[t] =

sβ+s%+`

sβ+s%+mβ+m%
, if t is not a special state.

Let the vector u have entries | sβ+mβ−s%−m%
sβ+s%+mβ+m%

| for each transient state. Note that this is

0 for non-penultimate transient states, since red and blue runs alternate, so sβ = s% = 0
and mβ = m%. It is also 0 for the two special states.

So the expression u[t]
p[t]

(cf. Lemma 2) equals to | sβ+mβ−s%−m%
sβ+s%+`

| for all penultimate states.

By Lemma 2 it suffices to show that 1
2

is an upper bound for this expression. Observe that
the expression does not decrease if we double two singleton vertices of opposite color. That
is, we replace the two vertices by inserting two edges at the same positions in the cycle,
obtaining a new cycle of length n+2, and coloring the endpoints of the edge replacing the
red and the blue vertex red and blue, respectively. Indeed, the numerator is not modified
by this operation, and the denominator cannot increase, as sβ + s% decreases by 2, and `
increases by at most 2. After a finite number of applications of this operation, we reach
a state where all singleton vertices have the same color, say blue. In particular, there are
no consecutive singleton vertices in the cycle. Thus sβ = `, s% = 0 and m% = mβ + 2sβ,
so the expression simplifies to |−sβ

2sβ
| = 1

2
. If all singletons disappear after a finite number

of applications of the above operation, then the numerator of the expression is 0, thus it
has been 0 when we started eliminating singletons, as well.

The second assertion of the lemma follows easily, as the number of positive even
numbers below 8

√
5
√
n is at most 4

√
5
√
n .

As we suggested earlier, it seems impossible to compute the fundamental matrix of
our Markov chain. However, the upper-left minor Q of the transition matrix is sparse,
so Lemmas 1 and 2 can be applied. The way we phrased the result in the introduction
provides the right heuristics for the guesstimate vector. The expected runtime of the
oblivious protocol is clearly β%: it is simply the runtime of a drunkard walk with parameter
n = β + % and initial state β (see [4] for details). Computer simulations (in SAGE)
suggested that the runtime of the three discordant protocols should be close to each
other. The intuitive reason is that the transition matrix of the three protocols on the
cycle graph coincide in almost all entries. Of course, such an observation can lead to very
badly wrong conjectures in general, as the computation of the fundamental matrix involves
the calculation of an inverse matrix, which is very sensitive to even small alterations of a
few entries of the matrix. Hence, in order to turn this intuition into a precise proof, we
use Lemma 1 with guesstimate vector x whose entries are β% for each transient state.

7



Theorem 5. Given any initial state on an n-cycle with β blue and % red vertices. Let T
be the expected number of steps for the discordant push voting to reach consensus. Then
|T − β%| 6 4

√
5n3/2. In particular, the worst expected runtime is asymptotically n2/4,

obtained when β ∼ n/2.

Proof. Let us assume that the first half of the process has terminated. By Proporsition 3
this is expected to take T1 6 2

√
5n3/2 steps.

Let x be the column vector of length 2n − 2 with coordinates β% for each transient
state. Then the probability of the number of blue vertices to increase by 1, i.e., a blue
vertex is pushing, is

sβ+mβ
sβ+mβ+s%+m%

. Similarly, the probability of the number of red vertices

to increase by 1 is s%+m%
sβ+mβ+s%+m%

. If we multiply the value of the vector x with the corre-

sponding transition probabilities, and add them up, i.e., we calculate Qx (cf. Lemma 1),
we obtain:

sβ +mβ

sβ +mβ + s% +m%

(β + 1)(%− 1) +
s% +m%

sβ +mβ + s% +m%

(β − 1)(%+ 1) =

β%− 1 +
(%− β)(sβ +mβ − s% −m%)

sβ +mβ + s% +m%

for all non-penultimate transient states. Using the notations of Lemma 1 with u = 1,

the entry of the error vector ε = Qx−x+1 at the given state is
(%−β)(sβ+mβ−s%−m%)

sβ+mβ+s%+m%
, whose

absolute value is at most n| sβ+mβ−s%−m%
sβ+mβ+s%+m%

|. To obtain the error for penultimate transient

states, we calculate it when there is exactly one red vertex, i.e., s% = 1,m% = 0, sβ =
0,mβ = 2, ρ = 1, β = n − 1. (The situation when there is exactly one blue vertex is
analogous.) In that state Qx = s%+m%

sβ+mβ+s%+m%
(β − 1)(% + 1) = 2n−4

3
, thus ε = Qx− x + 1

has entry 2n−4
3
− (n − 1) + 1 = −n−2

3
. The absolute value of this number is at most

n
3

= n| sβ+mβ−s%−m%
sβ+mβ+s%+m%

| again. Hence, n| sβ+mβ−s%−m%
sβ+mβ+s%+m%

| estimates the absolute value of the

error at all transient states from above, and the expected sum of this expression during a
random walk is at most 2

√
5n3/2 by Lemma 4.

If T2 denotes the expected runtime of the second part of the process, then |T2−β%| 6
2
√

5n3/2 by Lemma 1. As T = T1 +T2, |T − β%| = |T1 +T2− β%| 6 |T1|+ |T2− β%| yields
the desired estimation.

Remark 6. In a similar fashion, it can be shown that the expected time for the discordant
pull voting to reach consensus on the cycle is also βρ+O(n3/2). It is clear that switching
the cycle to a path makes very little difference in the calculation, and estimations of the
same order of magnitude are obtained in case of the discordant push, pull and oblivious
protocols on paths, too.

4 Winning probabilities on the cycle

It is enough to estimate the winning probability p of the color blue, the other color then
wins with probability 1 − p. Again, we know from standard theory that the matrix NR

8



consists of the probabilities of reaching from transient state i the absorbing state j in the
process. So we are only interested in the first column of this (2n−2)×2 matrix. Lemma 1
can be applied, as the problem is to estimate the vector Nu where u is the first column
of R.

Theorem 7. Given any initial state on an n-cycle with β blue and % red vertices, and
with k runs. Let p be the probability that the blue consensus is reached with the discordant
push protocol. Then |p− β/n| 6 k/4n.

Proof. Let x be the column vector of length 2n − 2 with coordinates β
n

for each tran-
sient state. If we multiply the value of the vector x with the corresponding transition
probabilities (cf. the proof of Theorem 5), and add them up, i.e., we calculate Qx, we
obtain:

sβ +mβ

sβ +mβ + s% +m%

· β + 1

n
+

s% +m%

sβ +mβ + s% +m%

· β − 1

n
=

β

n
+

1

n
· sβ +mβ − s% −m%

sβ +mβ + s% +m%

for all non-penultimate transient states. We use the notations of Lemma 1 with u
being the all 0 vector, except for the entries corresponding to the states with exactly one
red vertex which are all 2

3
. In particular, for non-penultimate states the error, i.e., the

corresponding entry of ε = Qx− x+ u is 1
n
· sβ+mβ−s%−m%
sβ+mβ+s%+m%

.

For penultimate states with exactly one red vertex, the entry of the vector Qx is
s%+m%

sβ+mβ+s%+m%
· β−1

n
= n−2

3n
. Thus the error is n−2

3n
− n−1

n
+ 2

3
= 1

3n
which is precisely

1
n
· sβ+mβ−s%−m%
sβ+mβ+s%+m%

.

Finally, for penultimate states with exactly one blue vertex, the entry of the vector
Qx is

sβ+mβ
sβ+mβ+s%+m%

· β+1
n

= 2
3n

. Thus the error is 2
3n
− 1

n
+ 0 = − 1

3n
= 1

n
· sβ+mβ−s%−m%
sβ+mβ+s%+m%

.

Hence, the vector with entries 1
n
· sβ+mβ−s%−m%
sβ+mβ+s%+m%

is exactly the error vector ε. As the

number of runs decreases k
2

times before a consensus is reached, the assertion follows by
Lemma 1 and Lemma 4.

Theorem 7 shows that if k = o(n), then the probability to reach the blue consensus
with the linear push voting and the discordant push voting protocols have the same
asymptotics as n→∞. However, the same result cannot hold when k is large. To show
a reasonably large gap between the probabilities arising from the linear and discordant
push protocols, we recall a technical tool.

Theorem 8 (Chernoff bound). Let X1, . . . , Xn be random variables such that a 6 Xi 6 b

for some a, b ∈ R. Let Y =
n∑
i=1

Xi, µ = E(Y ), and let δ > 0. Then P (Y 6 (1 − δ)µ) 6

exp(− δ2µ2

n(b−a)2 ).

Lemma 9. Let n be divisible by 6. If we run the discordant push protocol on the n-cycle
from the state where all red runs have length 1 and all blue runs have length 2, then the

9



ratio of blue and red vertices after i 6 n/6 steps is at least 2n/3−i
n/3+i

. Moreover, we have
n/6∑
i=1

2n/3−i
n/3+i

> 0.238 · n if n > 2000.

Proof. In any asynchronous protocol (i.e., when in one step only one vertex alters its
opinion), the following analysis applies.

Case 1: If the number of runs does not change in a step. If color c is spreading,
then the number of discordant vertices of color c changes by 0 or +1, and the number of
discordant vertices of the other color changes by 0 or −1. The worst such case in terms
of the discordant blue-red ratio is thus if the number of discordant blue vertices decreases
by 1 and the number of discordant red vertices increases by 1. Note that this is in fact
possible if a singleton red vertex pushes an endpoint of a blue run of length 2.

Case 2: If the number of runs decreases in a step. If color c is spreading, then the
number of discordant vertices of color c changes by −2,−1 or 0 , and the number of
discordant vertices of the other color changes by −1. The worst such case in terms of the
discordant blue-red ratio is thus if the number of discordant blue vertices decreases by 2
and the the number of discordant red vertices decreases by 1. Note that this is in fact
possible if a singleton red vertex is pushed.

Let a be the number of steps as in Case 1, and b as in Case 2 out of the first i
steps. Then the discordant blue-red ratio after i steps is at least 2n/3−a−2b

n/3+a−b = 2n/3−i−b
n/3+i−2b =

1
2
+ n/2−3i/2
n/3+i−2b which as a function of b with domain 0, 1, . . . , n

6
is strictly monotone increasing.

Hence, the lowest possible ratio is attained after i steps if a = i, b = 0, that is, the worst
case described in Case 1 occurs i times, and then the ratio is 2n/3−i

n/3+i
.

To estimate the sum, we denote by H(k) the sum of the harmonic series
k∑
i=1

1
i
. We use

the bounds log k+ γ 6 H(k) 6 log k+ γ + 1
2k

if k > 100, which follows easily from (9.88)
in [9]. Thus

n/6∑
i=1

2n/3− i
n/3 + i

=

n/6∑
i=1

−(n/3 + i) + n

n/3 + i
= −n

6
+ n ·

n/6∑
i=1

1

n/3 + i
=

= −n
6

+ n · (H(
n

2
)−H(

n

3
)) > −n

6
+ n · (log 3− log 2)− 3

2
> 0.238n

if n > 2000.

Theorem 10. For any n > 20000 there exists a state on the n-cycle with β blue vertices
and probability p of reaching the blue consensus with the discordant push protocol such
that |p− β/n| > 0.1.

Proof. The proof is indirect; so assume that |p − β
n
| 6 0.1 for all states for some fixed

n > 20000. We assume that n is divisible by 6, and show that |p − β
n
| 6 0.1005 cannot

hold for all states. Consider the initial state with all red runs of length 1 and all blue
runs of length 2. Hence, by the indirect assumption the probability of reaching the blue
consensus from this initial state is between 2

3
− 0.1005 and 2

3
+ 0.1005.

10



Now we let the process run for n
6

steps. By Lemma 9 the probability pi that a blue

vertex is pushing in the i-th step is at least 2n/3−i
n/3+i

. Let Xi be the increment of blue

vertices in the i-th step for i 6 n
6
, and let Y =

n/6∑
i=1

Xi. Then µ = E(Y ) > 0.238n by

Lemma 9. Put δ = 0.138, a = −1, b = 1. Then (1−δ)µ > 0.2052n, thus Theorem 8 yields

P (Y 6 0.2052n) 6 exp(− δ2µ2

n(b−a)2 ) 6 0.0045 if n > 20000.

Hence, by the law of total probability and the indirect assumption (by estimating
the probability with 0 whenever Y 6 0.2052n) we obtain a contradiction as follows:
2
3

+ 0.1005 > 0.9955 · (2
3

+ 0.2052− 0.1005) > 2
3

+ 0.1012.

Due to Proposition 3 and Theorem 7 it is however possible to estimate the desired
probability up to an error term O(1/

√
n) by running the process for O(n3/2) steps. This

is a good trade-off as the expected time to reach consensus from the worst initial case
is n2/4 + O(n3/2), and it is quadratic in general (cf. Theorem 5). In fact, using this
observation, it is possible to write a relatively fast program that runs the experiment
on the cycle with 5000 vertices 5000 times from the initial state described in the proof
of Theorem 10. The result suggests that in that very symmetrical state, the estimate
2/3 for the probability that the blue consensus be reached is highly accurate. It would
be interesting to give a precise proof to this phenomenon (provided it is true), and to
explain why the formula works in that particular situation. The proof of Theorem 10
might suggest that such a result is somewhat counter-intuitive. If this empirical result is
correct, then there must be a more complicated formula that takes into consideration the
position of blue vertices around the cycle as well as their number, and coincidentally this
formula should assign a value close to 2/3 to the above mentioned initial state.

5 Further results and future work

It is also possible to obtain asymptotically sharp estimates for the corresponding problems
in the star graph with n vertices. This is a typical network, when one server is connected
to several clients. It was already pointed out in [4] that, quite counter-intuitively, the
discordant pull protocol is faster than the discordant push protocol on such graphs if n is
large enough. The author of the present paper together with coauthors were able to refine
this result, and obtain asymptotically sharp estimations for both expected runtimes.

References

[1] Acan, H., Collevecchio, A., Mehrabian, A., and Wormald, N. On the
push&pull protocol for rumour spreading. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (2015), pp. 405–412.

[2] Basu, R., and Sly, A. Evolving voter model on dense random graphs. Annals of
Applied Probability 27, 2 (2017), 1235–1288.

11



[3] Carra, D., Cigno, R. L., and Russo, A. On some fundamental properties of
p2p push/pull protocols. In Proceedings of the Second International Conference on
Communications and Electronics (2008), p. 7 pp.

[4] Cooper, C., Dyer, M., Frieze, A., and Rivera, N. Discordant voting pro-
cesses on finite graphs. In 43rd International Colloquium on Automata, Languages,
and Programming (ICALP 2016), pp. 2033–2045.

[5] Cooper, C., Elsasser, R., Ono, H., and Radzik, T. Coalescing random
walks and voting on connected graphs. SIAM Journal on Discrete Mathematics 27,
4 (2013), 1748–1758.

[6] Cooper, C., and Rivera, N. The linear voting model. In 43rd International
Colloquium on Automata, Languages, and Programming (ICALP 2016), pp. 2021–
2032.

[7] Donnelly, P., and Welsh, D. Finite particle systems and infection models.
Mathematical Proceedings of the Cambridge Philosophical Society 94, 1 (1983), 167–
182.

[8] Durrett, R., Gleeson, J. P., Lloyd, A. L., Mucha, P. J., Shi, F., and
Sivakoff, D. Graph fission in an evolving voter model. Proceedings of the National
Academy of Sciences 109, 10 (2012), 3682–3687.

[9] Graham, R. L., Knuth, D. E., and Patashnik, O. Concrete mathematics: a
foundation for computer science, 2 ed. Addison-Wesley, 1994.

[10] Hassin, Y., and Peleg, D. Distributed probabilistic polling and applications to
proportionate agreement. Information and Computation 171, 2 (2001), 248–268.

[11] Hedetniemi, S. M., Hedetniemi, S. T., and Liestman, A. L. A survey of
gossiping and broadcasting in communication networks. Networks 18, 4 (1988), 319–
349.

[12] Holme, P., and Newman, M. E. J. Nonequilibrium phase transition in the
coevolution of networks and opinions. Physical Review E 74, 5 (2006), 5 pp.

[13] Karp, R., Schindelhauer, C., Shenke, S., and Vocking, B. Randomized
rumor spreading. In FOCS ’00 Proceedings of the 41st Annual Symposium on Foun-
dations of Computer Science (2000), pp. 565–574.

[14] Locher, T., Meier, R., Schmid, S., and Wattenhofer, R. Push-to-pull peer-
to-peer live streaming. In Proceedings of the International Symposium on Distributed
Computing (2007), pp. 388–402.

[15] Nakata, T., Imahayashi, H., and Yamashita, M. Probabilistic local majority
voting for the agreement problem on finite graphs. Springer, 1999.

[16] Oliveira, R. On the coalescence time of reversible random walks. Transactions of
the American Mathematical Society 364, 4 (2012), 2109–2128.

[17] Oliveira, R. Mean field conditions for coalescing random walks. The Annals of
Probability 41, 5 (2013), 3420–3461.

12



[18] Tran, D. A., Hua, K. A., and Do, T. T. A peer-to-peer architecture for media
streaming. IEEE Journal on Selected Areas in Communications 22, 1 (2004), 121–
133.

13


	Introduction
	Preliminaries
	General tools
	Further terminology

	Expected time to absorption on the cycle
	The first part: down to K runs
	The second part: from K runs to consensus

	Winning probabilities on the cycle
	Further results and future work

