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Abstract: Pancreatic adenocarcinoma is one of the most lethal cancers in both men and women, with a
median five-year survival of around 5%. Therefore, pancreatic adenocarcinoma represents an unmet
medical need. Neoplastic diseases, such as pancreatic adenocarcinoma, often are associated with
microbiome dysbiosis, termed oncobiosis. In pancreatic adenocarcinoma, the oral, duodenal, ductal,
and fecal microbiome become dysbiotic. Furthermore, the pancreas frequently becomes colonized (by
Helicobacter pylori and Malassezia, among others). The oncobiomes from long- and short-term survivors
of pancreatic adenocarcinoma are different and transplantation of the microbiome from long-term
survivors into animal models of pancreatic adenocarcinoma prolongs survival. The oncobiome
in pancreatic adenocarcinoma modulates the inflammatory processes that drive carcinogenesis.
In this review, we point out that bacterial metabolites (short chain fatty acids, secondary bile acids,
polyamines, indole-derivatives, etc.) also have a role in the microbiome-driven pathogenesis of
pancreatic adenocarcinoma. Finally, we show that bacterial metabolism and the bacterial metabolome
is largely dysregulated in pancreatic adenocarcinoma. The pathogenic role of additional metabolites
and metabolic pathways will be identified in the near future, widening the scope of this therapeutically
and diagnostically exploitable pathogenic pathway in pancreatic adenocarcinoma.

Keywords: pancreatic adenocarcinoma; oncobiome; microbiome; bile acids; bacterial metabolite;
amino acid metabolites; polyamines; LPS; short chain fatty acid

1. Pancreatic Adenocarcinoma, an Unmet Medical Need

Pancreatic adenocarcinoma stems from the exocrine glands and ducts of the pancreas and usually
appears in the head of the pancreas (2/3 of cases). Pancreatic adenocarcinoma is the fourth most
prevalent cancer with the highest mortality in both men and women [1]. Worldwide, in 2018, 458,918
cases were reported, and 432,242 deaths were estimated to be linked to pancreatic adenocarcinoma [2].
The number of pancreatic adenocarcinoma cases has continued to rise [3] and is predicted to rise even
more sharply in the future [4]. The five-year survival for pancreatic adenocarcinoma is around 5%,
as the disease progresses asymptomatically to the locally advanced or metastatic stages, reducing
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therapeutic effectiveness [1]. Thus, late diagnosis and a low five-year survival rate represent an unmet
medical need in pancreatic adenocarcinoma.

Curative surgical treatment can only be achieved in 15–20% of patients with pancreatic
adenocarcinoma, due to the spreading of the disease around blood vessels, rendering
patients inoperable. Neoadjuvant therapy can reduce tumor size and enable surgical excision.
The chemotherapy regimen to combat pancreatic adenocarcinoma includes nucleoside analogs
(gemcitabine, capecitabine), antimetabolites (5-fluorouracil), topoisomerase inhibitors (irinotecan),
taxanes (Nanoparticle albumin-bound (NAB)-paclitaxel), and platinum compounds (oxaliplatin) [5].
Combinatorial chemotherapies are organized into regimens known as FOLFIRINOX (Folinic
Acid-Fluorouracil-Irinotecan-Oxaliplatin) and FOLFOX (Folinic acid-Fluorouracil–Oxaliplatin) [5].
There are also new chemotherapy modalities on the way (e.g., Poly(ADP-ribose) polymerase (PARP)
inhibitors [6]). Chemotherapy can be complemented by radiotherapy; however, evidence supporting
the use of radiotherapy is very scarce. The treatment of pancreatic adenocarcinoma calls for a
multidisciplinary approach especially in patients undergoing neoadjuvant therapy [7].

Environmental risk factors for pancreatic adenocarcinoma include smoking, alcoholism, chronic
or recurrent pancreatitis, obesity, and diabetes mellitus [8]. Genetic mutations are also associated with
pancreatic adenocarcinoma [9]. Mutations in KRAS were identified in approximately 80% of pancreatic
adenocarcinoma cases [10]. Recent studies associated other mutations with pancreatic adenocarcinoma,
including BRCA1, TP53, and a set of other DNA repair factors [9].

2. The Oncobiotic Transformation of the Microbiome

The microbiome shows characteristic changes in neoplastic diseases; the transformed microbiome,
a characteristic of neoplasia, is termed the oncobiome [11–18]. Recent advances demonstrate that
the oncobiome has a pathogenic role in neoplasia. An intricate relationship develops between the
microbiome and the host, where the host can influence the composition and biomass of the microbiome
through its behavior, feeding, and immune system, while the microbiome impacts on the host through
secreting microbial metabolites, as well as serving as bait for the immune system [19–30].

Hanahan and Weinberg [31,32] coined the term “cancer hallmark”, which refers to a collection
of biological processes that drive oncogenesis and support the unlimited proliferation of cancer cells.
The oncobiome plays either a direct or tangential role in regulating all cancer hallmarks. The oncobiome
is definitively involved in avoiding immune destruction, enhancing tumor promoting inflammation,
activating movement, invasion, and metastasis, inducing angiogenesis, inducing genome instability
and mutations, and deregulating cellular energetics [21–24,26–30,33–35].

Sustained inflammation and the consequent oxidative stress can lead to DNA damage and genomic
instability, which are risk factors for accumulating mutations and, subsequently, for carcinogenic
transformation [36–38]. A dysbiotic microbiome can drive local inflammation and, therefore, can be a
driver of carcinogenesis, including pancreatic adenocarcinoma [39–43]. In contrast, increased oxidative
stress can be cytostatic in certain malignancies, such as breast cancer [34,38]. In other words, oxidative
stress, induced by oncobiosis, can induce malignancies, but in later stages can have cytostatic properties.

The oncobiome usually has a different immunogenic character than the normal microbiome
(eubiome), as oncobiosis alters the immune system [21]. The tolerogenic character of the immune
system inhibits the early elimination of cancer cells [21]. A more immunogenic microbiome supports
immunotherapy/targeted therapy [27,44], while sustained, high-level inflammation can promote
carcinogenesis [24,39–43]. In this process, the actual physical presence of the bacteria seems to be a key
factor, but immunomodulatory bacterial metabolites are also important [23].

Several studies have shown that oncobiotic transformation supports cellular proliferation, invasion,
and metastasis [22–25]. In addition, oncobiosis changes the expression of vascular-endothelial growth
factor (VEGF) [23], implying that oncobiosis is involved in the regulation of tumor vascularization.
To date, published studies show that these processes are the main targets of oncobiosis and oncobiotic
bacterial metabolites.
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What are the elementary steps behind these processes? Bacterial metabolites modulate the redox
balance of cancer cells [24,34], as well as cancer cell metabolism [22,23]. These processes culminate
in cytostasis, a reprogramming of the epithelial-mesenchymal transition leading to decreased cancer
stem cells [22–25,29,34,35,45]. These basic events are the pillars for the inhibition of cancer cell growth,
movement, and metastasis formation [46–48].

What can cause oncobiotic transformation or, in general, changes to the microbiome? Among
the factors inducing oncobiosis, lifestyle plays a key role, including activities such as smoking [49],
diet, obesity [50], changes to the diurnal rhythm [51–53], aging [54–56], underlying diseases such
as diabetes [57], and exercise [58]. In fact, these factors are all individual risk factors for pancreatic
adenocarcinoma. In cancers, other than pancreatic adenocarcinoma, antibiotic [59] and probiotic
use [60,61] are also associated with carcinogenesis.

3. The Oncobiome in Pancreatic Adenocarcinoma

The relationship between the microbiome and pancreatic adenocarcinoma was first suggested
by the discovery that Helicobacter pylori colonization was associated with pancreatitis [62]. This was
followed by the discovery of associations between the oral [63], gut [64], pancreas [41,65,66],
and fecal [43,67] microbiomes, the mycobiome [68], and pancreatic cancer. Since then, there has
been an immense expansion of oncobiome studies focused on pancreatic adenocarcinoma.

According to our current understanding, elements of the oral, gastric, and intestinal microbiome
can drive inflammation, which is a risk factor for carcinogenesis in the pancreas. In brief, the oral, gastric,
and duodenal flora can colonize the common duct, the bile duct, and the pancreatic duct and, finally, the
pancreas itself, as shown in a series of animal and human studies [39,64,66,69–80]. Characteristic changes
occur to the oral [63,81–88] and duodenal microbiome [64] in pancreatic adenocarcinoma. Enterobacter,
Enterococcus, and E. coli bactibilia [78] or the colonization of the pancreas [41,65,68,89–94] are risk factors
for pancreatic adenocarcinoma. Of note, an oncogenic role of hepatotropic viruses (Hepatitis B and C
virus and Transfusion Transmitted/Torque Teno virus) in pancreatic adenocarcinoma has been observed
in a clinical setting, although the exact molecular mechanisms are yet unknown [78]. Similarly, changes to
the mycobiome were also reported in pancreatic adenocarcinoma [68]. In a murine genetic model (Kras−/−

Tp53−/− model), the food microbiome can also invade the pancreas [41]. The pathogenic role of bacterial
invasion in the pancreas was demonstrated by the decreased incidence of pancreatic adenocarcinoma
in gnotobiotic or antibiotic-treated mice [65]. Similar issues were raised in conjunction with human
premedication before surgery in pancreatic carcinoma patients [92]. There seems to be a specificity
among the antibiotics. For instance, penicillin increased the risk for pancreatic adenocarcinoma [95],
while broad range antibiotic cocktails (streptomycin, gentamicin, bacitracin, and ciprofloxacin [65] or
ampicillin, vancomycin, neomycin, and metronidazole [96]) were protective in murine models [97].
Furthermore, fecal microbiome transplantation modulates susceptibility to the disease [41,91].

The main findings concerning the oncobiome in pancreatic adenocarcinoma are summarized
in Table 1. There is no consensus on how the diversity of the microbiome changes in pancreatic
adenocarcinoma. The alpha diversity (Shannon index) of the tongue microbiome increases [86].
In contrast, the saliva microbiome showed no change in alpha diversity, while beta diversity was different
between cases and controls [88]. There was a tendency towards a lower alpha index (Operational
taxonomic unit (OTU) diversity) in the duodenum of pancreatic adenocarcinoma patients [64]. The alpha
diversity (Chao1, Shannon) of the pancreatic microbiome differed between cases and controls, but the
change was not consequent in the study of Pushalkar et al. [41] (also similar to the findings of [87]
and [65]). The pancreatic mycobiome alpha diversity (OTU, Shannon) decreased [68] in pancreatic
adenocarcinoma patients. Nevertheless, alpha diversity indices in patients with long-term survival
were higher than short-term survival [91]. The alpha diversity of the stool microbiome in patients with
adenocarcinoma was lower in two studies [43,94]. (For the explanation of the diversity indices we
refer the reader to the following references [98,99]).



Cancers 2020, 12, 1068 4 of 27

Table 1. The main findings of the human oncobiome studies in pancreatic adenocarcinoma.

Sample Type and Sample Size Method Changes to Microbiome Other Observations Ref.

Changes to the oral microbiome

11,328 individuals in a prospective study. Dental
health was monitored between 1971–1992

Periodontitis increases the risk for pancreatic
adenocarcinoma. [81]

10 resectable patients with pancreatic cancer and
10 matched healthy controls for oral microbiome
assay, 28 resectable pancreatic cancer, 28 matched

healthy controls, and 27 chronic pancreatitis
samples for validation

HOMIM hybridization array
Streptococci, Veilonella, Actinobacteria,

Campylobacter, and Prevotella increased in
pancreatic adenocarcinoma patients.

Neisseria elongata and Streptococcus mitis were
validated as biomarkers for pancreatic

adenocarcinoma.
[63]

Pre-diagnosis blood samples from 405 pancreatic
cancer cases and 416 matched controls, collected as
part of the European Prospective Investigation into

Cancer and Nutrition study

High serum antibodies against Porphyromonas
gingivalis ATTC 53978 showed a two fold increase

in risk for pancreatic adenocarcinoma. Those
individuals who had high antibody titer against

the commensal flora had a lower risk for
pancreatic adenocarcinoma as compared to those

with low titer.

[82]

8 pancreatic adenocarcinoma patients and 22
healthy controls

16S rDNA was amplified and
sequenced

The pancreatic cancer group had higher levels
of Leptotrichia, and lower levels of

Porphyromonas, and Neisseria. No difference in
diversity. Leptotrichia to Porphyromonas ratio

was significantly higher in pancreatic
adenocarcinoma patients.

[83]

Among 149 orodigestive cancers 6 pancreatic
adenocarcinoma cases

Treponema denticola chymotrypsin-like proteinase
that can induce matrix metalloproteinases, was

found in pancreatic adenocarcinoma using
immunohistochemistry.

[84]

361 incident pancreatic adenocarcinoma patients
and 371 matched controls from two prospective

cohort studies, the American Cancer Society
Cancer Prevention Study II and the National

Cancer Institute Prostate, Lung, Colorectal and
Ovarian Cancer Screening Trial.

DNA was isolated from oral
wash samples; 16S rRNA gene

V3-V4 was amplified and
sequenced using Roche 454 FLX

Titanium Pyrosequencing
system

Carriage of Porphyromonas gingivalis and
Aggregatibacter actinomycetemcomitans were
associated with a higher risk for pancreatic
adenocarcinoma. Fusobacteria and its genus,
Leptotrichia decreased the risk of pancreatic
adenocarcinoma. The genus Alloprevotella

increased the risk for pancreatic
adenocarcinoma.

[85]

30 stage I pancreas head adenocarcinoma patients
and 25 healthy controls

Tongue scrapes were collected
and the V3-V4 16S rDNA was

amplified and sequenced

Leptotrichia, Fusobacterium, Rothia, Actinomyces,
Corynebacterium, Atopobium, Peptostreptococcus,
Catonella, Oribacterium, Filifactor, Campylobacter,
Moraxella, and Tannerella were overrepresented,

while Haemophilus, Porphyromonas, and
Paraprevotella were underrepresented in

pancreatic adenocarcinoma patients.

Haemophilus, Porphyromonas, Leptotrichia, and
Fusobacterium distinguished pancreatic

adenocarcinoma patients from healthy subjects.
[86]
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Table 1. Cont.

Sample Type and Sample Size Method Changes to Microbiome Other Observations Ref.

Saliva samples from 280 pancreatic
adenocarcinoma cases (29 stage I, 160 stage II, 37
stage III, and 54 stage IV pancreatic tumors) of

which 273 was used in the study and 285 controls

V4 region of the 16S rRNA gene
was PCR amplified and

sequencing was performed on
the Illumina MiSeq.

Haemophilus genus showed a marginal
association with pancreatic cancer risk.

Enterobacteriaceae, Lachnospiraceae,
Bacteroidaceae, and Staphylococcaceae showed a
positive correlation with pancreatic cancer risk.

[88]

Helicobacter pylori colonization (seropositivity)

Cases with pancreatic cancer (n = 87) were
matched to controls (n = 263) using age, sex and

time for baseline investigation as
matching variables

H. pylori serology was analyzed
in stored serum samples using

an enzyme-linked
immunosorbent assay

H. pylori seropositivity was not associated with
pancreatic cancer in the total cohort (adjusted OR

1.25 (0.75–2.09)). However, a statistically
significant association was found in never smokers

(OR 3.81 (1.06–13.63) adjusted for alcohol
consumption) and a borderline statistically

significant association was found in subjects with
low alcohol consumption (OR 2.13 (0.97–4.69)

adjusted for smoking).

[62]

110 patients with pancreatic cancer

A polypeptide antibody against
the plasminogen-binding

protein (PBP) of Helicobacter
pylori and with the

ubiquitin-protein ligase E3
component, n-recognin 2

(UBR2), an enzyme highly
expressed in acinar cells of the

pancreas

The antibody was positive in 5 of 110 patients with
pancreatic cancer (5%). [69]

Venipuncture specimens were obtained from a
representative sample of 761 case patients and 794

randomly selected control subjects matched by
category of age and gender

Antibody seropositivity for H.
pylori and its virulence protein

CagA were determined by
commercial enzyme-linked
immunosorbent IgG assays

Compared with individuals seronegative for both
H. pylori and CagA, decreased pancreas-cancer risk

was seen for CagA seropositivity [adjusted OR,
0.68; 95% confidence interval (CI), 0.54–0.84],

whereas some increased risk was suggested for
CagA-negative H. pylori seropositivity (OR, 1.28;

95% CI, 0.76–2.13).

[70]

Changes to the duodenal microbiome

14 patients with pancreatic head cancer and 14
healthy controls.

Endoscopic duodenal mucosal biopsies

16S rRNA gene pyrosequencing
after the PCR amplification of

the V3-V4 region. The
rarefaction curves did not

approach a plateau.

Acinetobacter, Aquabacterium, Oceanobacillus,
Rahnella, Massilia, Delftia, Deinococcus, and
Sphingobium were more abundant in the

duodenal mucosa of pancreatic cancer patients,
whereas the duodenal microbiomes of healthy

controls were enriched with Porphyromonas,
Paenibacillus, Enhydrobacter, Escherichia, Shigella,

and Pseudomonas. Alpha and beta diversity
were not different between the two groups.

Pancreatic adenocarcinoma patients have a higher
incidence of H. pylori colonization. [64]
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Table 1. Cont.

Sample Type and Sample Size Method Changes to Microbiome Other Observations Ref.

Changes to the pancreatic microbiome

283 patients with pancreatic ductal
adenocarcinoma (PDAC)

Genomic DNA extracted from
FFPE tissue specimens assessed
using TaqMan primer/probe sets
to detect Fusobacterium species

8.8% detection rate of Fusobacterium species in
pancreatic cancers; however, tumor Fusobacterium

status was not associated with any clinical and
molecular features. In multivariate Cox regression

analysis, compared with the Fusobacterium
species-negative group, higher cancer-specific

mortality rates were observed in the Fusobacterium
positive group.

[89]

Human FFPE pancreatic adenocarcinoma samples
(n = 27)

Illumina sequencing of V1-V3
hypervariable regions of 16S

RNA gene.

Differential presence of Acinetobacter, Afipia,
Corynebacterium, Deltia, Enterobacter,
Enterococcus, Escherichia, Klebsiella,

Propionibacterium, Pseudomonas, Rastoria,
Sphingomonas, Staphylococcus, and Streptococcus
between healthy, pancreatitis, and pancreatic

adenocarcinoma tissues.

In the pancreas, the microbiome could not
discriminate between healthy, pancreatitis, and

pancreatic adenocarcinoma states.
Culturable bacteria are present in the human

pancreas with a mean of ~1 × 105 (aerobic) and
~1 × 105 (anaerobic) cfu/g of tissue after 48 h

of culture.

[65]

Pancreatic juice from pancreatic cancer (n = 20) and
duodenal cancer/bile duct cancer (n = 16) patients

PCR identification of bacterial
species by 16S ribosomal

RNA gene.

Enterococcus faecalis may be involved in
pancreas carcinogenesis.

E. faecalis is present in pancreas tissue in cancer
patients. Antibodies against E. faecalis capsular

polysaccharide is elevated in chronic
pancreatitis patients.

[90]

Patients with pancreatic adenocarcinoma (n = 32),
matched healthy individuals (n = 31).

stool and pancreas tissue were assessed

Sequencing of the V3-V4
hypervariable region of the 16S

RNA gene after PCR
amplification

Proteobacteria are more abundant in patients
with pancreatic adenocarcinoma as compared

to gut cancer patients.
[41]

105 subjects were enrolled of which 27 had
pancreatic adenocarcinoma, 57 had intraductal

papillary mucinous neoplasms and 21 had
benign lesions

Pancreas cyst fluid was
collected, total bacterial 16S

copy number was assessed, and
16S DNA was sequenced

Fusobacterium nucleatum and Granulicatella
adiacens were associated with high-grade

dysplasia. In network analysis, the network’s
nodes were Actinobacteria (Cutibacterium acnes),
Bacteroidetes, Firmicutes (Streptococcus anginous,

Granulicatella adiacens), and Proteobacteria
(Klebsiella aerogenes).

The number of 16S reads increases in precancerous
and cancer cases. [87]

Human fecal samples and specimens of pancreatic
tissue were collected under sterile conditions from

healthy volunteers and patients undergoing
surgery for PDA or pancreatic endocrine tumors

(benign disease)

PCR amplification and
sequencing of the ITS1 region of

the 18S rRNA gene using
Illumina sequencing

Pancreatic adenocarcinoma tumors with fungal
infiltration were enriched for Malassezia spp.

Ligation of mannose-binding lectin (MBL), which
binds to glycans of the fungal wall to activate the

complement cascade, was required for
oncogenic progression.

[68]

Long-term surviving (n = 22) and short-term
surviving (n = 21) pancreatic

adenocarcinoma patients.

From the tumor and feces 16S
rDNA V4 region was amplified
by PCR and sequenced in the

MiSeq platform (Illumina).

Intratumoral microbiome signature
(Pseudoxanthomonas-Streptomyces-

Saccharopolyspora-Bacillus clausii) is highly
predictive of long-term survivorship.

The microbiome that provides long-term survival
can be transplanted. [91]
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Table 1. Cont.

Sample Type and Sample Size Method Changes to Microbiome Other Observations Ref.

50 patients with pancreatic adenocarcinoma were
enrolled. In cases where a biliary stent was

inserted prior to surgery, the stent was removed
and cultured. In other cases, swabs of bile or

pancreatic fluid and tissue from the bile duct or
pancreas were obtained and cultured.

Classical culture

96% of the specimens demonstrated the
presence of microbes, 90% of all cases were
polymicrobial. The most frequent species
found were Enterobacteriaceae, Enterococcus

species, Candida species, and
Streptococcus milleri

[92]

152 Italian patients of which 72 had pancreas head
adenocarcinoma patients were present Classical culture

The most common bacteria among pancreas
head adenocarcinoma patients were E. coli, K.

pneumoniae, and P. aeruginosa, and less
frequently, Alcaligenes spp., Serratia spp., and

Enterococcus spp.

Although pancreas head carcinoma patients were
not assessed separately, only such patients were

present in the shortest survival cohort enabling the
assessment of that patient population. E. coli, K.

pneumoniae, and P. aeruginosa showed a high
percentage of resistance to third-generation

cephalosporins (3GCs), aminoglycosides class, and
quinolone group, especially to levofloxacin, but

the same bacteria were sensitive to carbapenems.

[93]

50 patients with pancreatic adenocarcinoma, 34
other organs (i.e., controls). In total, 189 tissue

samples (pancreatic duct, duodenum, pancreas),
57 swabs (bile duct, jejunum, stomach), and 12

stool samples.

The 16S rRNA V3–V4
hypervariable regions were

amplified using Illumina MiSeq

Lactobacillus ssp. was significantly higher in
noncancer subjects compared with cancer

subjects and the relative abundance of
Fusobacterium spp was higher in cancer subjects

compared with noncancer subjects.

[94]

Changes to stool microbiome

Prospective study, 85 pancreatic cancer (PC) and 57
matched healthy controls (HC) MiSeq sequencing

Phylum Bacteroidetes was significantly
increased, while Firmicutes and Proteobacteria

were decreased in PC patients versus
healthy controls.

Gut microbial diversity decreased in pancreatic
adenocarcinoma. Alpha diversity decreased. The

abundance of certain pathogens and
lipopolysaccharides-producing bacteria increased.

Probiotics and butyrate-producing bacteria
decreased. Changes to the microbiome can be used
as markers to detect pancreatic adenocarcinoma
and the obstructive and non-obstructive forms.

[43]

Patients with pancreatic adenocarcinoma (n = 32),
and matched healthy individuals (n = 31).
stool and pancreatic tissue were assessed

Sequencing of the V3-V4
hypervariable region of the 16S

RNA gene after PCR
amplification

Proteobacteria are more abundant in patients
with pancreatic adenocarcinoma as compared

to healthy controls.
[41]

Long-term surviving (n = 22) and short-term
surviving (n = 21) patients. Sequencing of

intratumor and stool microbiomes.

16S rDNA V4 region was
amplified by PCR and

sequenced in the MiSeq
platform (Illumina).

Intra-tumoral microbiome signature occurs in
pancreatic adenocarcinoma patients

(Pseudoxanthomonas-Streptomyces-
Saccharopolyspora-Bacillus clausii) that is highly

predictive of long-term survivorship.

The microbiome that provides long-term survival
can be transplanted. [91]

30 patients with pancreatic adenocarcinoma, 6
patients with pre-cancerous lesions, 13 healthy

subjects, and 16 with non-alcoholic fatty
liver disease

16S RNA was PCR amplified
and was sequenced using the
Illumina MiSeq platform and

LEfSe linear discriminant
analysis (LDA) was performed

Patterns of the microbiome can separate pancreatic
adenocarcinoma patients from healthy subjects
and patients with comorbidities (NAFLD, etc.)
and can discriminate between the etiology of

pancreatic adenocarcinoma.

[100]
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Some bacterial species showed a strong association with pancreatic adenocarcinoma. In the
oral microbiome, Porphyromonas gingivalis increased in pancreatic adenocarcinoma [64,82,83,85,101].
Helicobacter pylori [62,69,70], Enterobacter, Enterococcus [64,90,92,93], Fusobacteria [89,94,102],
and E. coli [64,93] were also shown to increase in pancreatic adenocarcinoma patients in multiple
studies. In a study assessing intratumor DNA and serum cell-free DNA (1000+ patients), Fusobacteria
count in tumors was higher compared to the healthy, untransformed tissues [102]. Fungal species, like
Malassezia, also increased in pancreatic adenocarcinoma patients [68]. The oral microbiome can be
used for diagnosis [63]. In fact, different risk factors of pancreatic adenocarcinoma are associated with
changes to the microbiome, including smoking [103], poor oral health or tooth loss [78], or recurrent
pancreatitis. There is a lower bacterial load in pancreatitis than in pancreatic adenocarcinoma.

Pancreatic bacterial invasion predominantly induces persistent inflammation. Both the innate and
adaptive immunity participate in recognizing pancreatic bacteria and orchestrating the subsequent
inflammatory reaction [39,40]. The involvement of Th1, Th2, and Th17 responses have all been
demonstrated [41,42]. In pancreatic adenocarcinoma, the proportions of LPS-producing bacteria
(e.g., Prevotella, Hallella, and Enterobacter [43]) increase. Lipopolysaccharide (LPS) can bind to the
Toll-like (TLR) receptors; TLR2, TLR4, and TLR9 are associated with pancreatic adenocarcinoma
development [104]. TLR activation induces the STAT3 and NF-κB pathways, which act as tumorigenic
factors increasing cellular proliferation and suppressing apoptosis [39].

Besides the direct immunogenicity of the microbiome, an endocrine-like function was also
described in several cancers [30,105–107] including pancreatic adenocarcinoma. Bacteria can produce
bacterial metabolites that enter the systemic circulation and act on distant cancer cells. This process
possesses features of endocrine signaling: a chemical entity is synthesized at one location, then
transferred to another anatomical site where it binds to receptors and exerts biological responses
there. Hereby, we will review the bacterial metabolites with possible pro- or anti-neoplastic features in
pancreatic adenocarcinoma.

4. Bacterial Metabolites Playing Role in Pancreatic Adenocarcinoma

The gut microbiome harbors a large number of species with an immense and diverse metabolism.
Bacterial metabolites or components of bacteria can enter the systemic circulation of the host and be
transferred to distant sites where the metabolites can exert hormone-like effects [19,30,108]. Bacterial
metabolism is largely dysregulated in pancreatic adenocarcinoma [43]. Below, we will review the
source and (possible) roles of pro- or anti-carcinogenic bacterial metabolites (Figure 1).
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Figure 1. Known bacterial metabolite-elicited signaling pathways in pancreatic adenocarcinoma. Pro-
proliferative metabolites are shown in red; antiproliferative metabolites are shown in green. 
Abbreviations: SCFA—short chain fatty acid, DCA—deoxycholic acid, LPS—lipopolysaccharide, 
FFAR—free fatty acid receptor, TGR5—Takeda G Protein-Coupled Receptor 5/ G-protein-coupled 

Figure 1. Known bacterial metabolite-elicited signaling pathways in pancreatic adenocarcinoma.
Pro-proliferative metabolites are shown in red; antiproliferative metabolites are shown in green.
Abbreviations: SCFA—short chain fatty acid, DCA—deoxycholic acid, LPS—lipopolysaccharide,
FFAR—free fatty acid receptor, TGR5—Takeda G Protein-Coupled Receptor 5/ G-protein-coupled bile
acid receptor, EGFR—Epidermal growth factor receptor, TLR—Toll-like receptor, MAPK—mitogen
activated protein kinase, STAT—Signal transducer and activator of transcription.
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4.1. Short Chain Fatty Acids (SFCA)

Short chain fatty acids (SCFAs), namely acetate, propionate, butyrate, and lactate, are derived
from non-digestible carbohydrates by bacterial saccharolytic fermentation [109,110]. The major SCFAs
are acetate, propionate, and butyrate [111]. A smaller quantity of SCFA can be formed by amino
acid deamination; this is the only source of branched-chain short chain fatty acids [110]. Hydrolysis,
glycolysis, and the pentose-phosphate pathways are the key pathways for SCFA production [111],
nevertheless, other pathways are also active. SCFAs are produced in the colon. SCFA production affects
the pH of the colon and, hence, modulates the composition of the microbiome in the colon. SCFAs
can reduce the proliferation of Enterobacteriaceae (e.g., E. coli, Salmonella ssp., or Clostridia ssp.) and
Borrelia burgdorferi [112–115]. Furthermore, SCFAs can modulate the composition of the gut microbiome
through the direct modulation of the immune system [116].

SCFA production is common among bacteria. Bacteroidetes primarily produce acetate and
propionate, while Firmicutes chiefly produce butyrate [117]. Akkermansia muciniphila has a pivotal
role in propionate synthesis through the degradation of mucin [118]. Lachnospiraceae, Ruminococcus
obeum, and Roseburia inulinivorans produce propionate through the degradation of deoxy sugars (e.g.,
fucose, rhamnose), while Bacteroidetes and Negativicutes use hexoses to produce propionate [119].
Other propionate producers are Phascolarctobacterium spp., Dialister spp., Veillonella spp., Salmonella spp.,
Megasphaera elsdenii, and Coprococcus catus [120,121]. Acetate is predominantly produced by
Lactobacillus spp., Bifidobacterium spp., Akkermansia muciniphila, Bacteroides spp., Prevotella spp.,
Ruminococcus spp., and Streptococcus spp [108]. The bulk of butyrate production can be linked
to Odoribacter, Anaeotruncus, Faecalibacterium prausnitzii, Eubacterium rectale, Roseburia faecis, Clostridium
leptum, Coprococcus eutactus, Faecalibacterium prausnitzii, Eubacterium rectale, Anaerostipes caccae,
Eubacterium hallii, and an unnamed cultured species SS2/1 [120–123]. The bacterial species that
produce bacterial metabolites are summarized in Table 2.

Table 2. The microbial source of the metabolites mentioned in the review.

Parent Metabolite Bioactive Metabolite Genus Species Reference

complex
carbohydrates

simple
carbohydrates

mucin

acetate

Lactobacillus [108]
Bifidobacterium [108]

Bacteroides [108]
Prevotella [108]

Ruminococcus [108]
Streptococcus [108]

propionate

Lachnospiraceae [119]
Bacteroidetes [119]
Negativicutes [119]

Phascolarctobacterium [120,121]
Dialister [120,121]

Veillonella [120,121]
Salmonella [120,121]

Megasphaera elsdenii [120,121]
Coprococcus catus [120,121]

Akkermansia muciniphila [118]
Ruminococcus obeum [119]

Roseburia inulinivorans [119]

butyrate

Odoribacter [120–123]
Anaeotruncus [120–123]

Faecalibacterium prausnitzii [120–123]
Eubacterium rectale [120–123]

Roseburia faecis [120–123]
Clostridium leptum [120–123]

Coprococcus eutactus [120–123]
Faecalibacterium prausnitzii [120–123]

Eubacterium rectale [120–123]
Anaerostipes caccae [120–123]
Eubacterium hallii [120–123]

unnamed cultured species SS2/1 [120–123]
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Table 2. Cont.

Parent Metabolite Bioactive Metabolite Genus Species Reference

primary bile acids secondary bile acids

Clostridium [124–129]
Lactobacillus [124–129]

Bifidobacterium [124–129]
Eubacterium [124–126,128]

Ruminococcus [124–126,128]
Escherichia [124–126,128]

Bacteroides fragilis [124–129]
Bacteroides vulgatus [124–129]

Listeria monocytogenes [124–129]

polyamines

E. coli [108,130,131]
Enterococcus faecalis [108,130,131]

Staphylococcus aureus [108,130,131]
Haemophilus influenzae [108,130,131]

Neisseria flava [108,130,131]
Pseudomonas aeruginosa [108,130,131]

Campylobacter jejuni [108,130,131]
Yersinia pestis [108,130,131]
Vibrio cholerae [108,130,131]

Bacteroides dorei [108,130,131]
Bacteroides thetaiotaomicron [108,130,131]

Bacteroides fragilis [108,130,131]
Bacillus subtilis [108,130,131]
Proteus mirabilis [108,130,131]

lysine cadaverine

Streptococcus [132]
Shigella flexneri [132]
Shigella sonnei [132]
Escherichia coli [132]

tryptophan

tryptamine Clostridium sporogenes [133]
Ruminococcus gnavus [133]

indole acetic acid
Lactobacillus [133]
Clostridium [133]
Bacteroides [133]

The human serum reference concentrations of SCFAs fall into the range of 10–100 µM [134–136].
However, local concentrations can be as high as 1 mM [137]. SCFAs primarily bind to the free fatty
acid receptors (FFARs) found on both cancer cells and stromal cells [120,121,138,139]. SCFAs can be
utilized as an energy source by cells [108] and SCFAs can modulate epigenetics through inhibiting
histone deacetylases [140–142]. The activation of SCFA receptors controls numerous cancer hallmarks,
including cell proliferation, apoptosis, cell invasion, gene expression, metabolism, and immune
processes [140–144].

Acetate can ameliorate pancreatitis and its sequels, and, hence, protect against a risk factor of
pancreatic adenocarcinoma [145]. Acetate drives the epigenetic reprogramming of mesenchymal stem
cells towards cancer-associated fibroblasts that enhance the invasiveness of pancreatic adenocarcinoma
cells [146]. Butyrate, at a 2 mM concentration, can reduce the proliferation of cultured pancreatic
adenocarcinoma cells (Panc-1 and HPAF cells) and induce differentiation towards a secretory phenotype
marked by ultrastructural changes [147]. Furthermore, a hyaluronic acid conjugate of butyrate
proved to be cytostatic in a cultured pancreatic adenocarcinoma cell line [148]. Valproic acid,
a branched chain synthetic SCFA, was also cytostatic in pancreatic adenocarcinoma cells when
given in combination with 5-fluorouracil, suggesting similar properties for bacterial SCFAs [149].
In the pancreatic adenocarcinoma-associated oncobiome, probiotics and butyrate-producing bacteria
decreased [43], suggesting that the above-detailed beneficial effects of SCFAs are largely suppressed in
the disease.

4.2. Secondary Bile Acids

Chenodeoxycholic acid (CDCA) and cholic acid (CA) are primary bile acids, which are mainly
synthesized in the liver; however, extrahepatic tissues (e.g., ovaries, macrophages, vascular endothelium,
and brain) can contribute to this synthesis [150]. Primary bile acids are conjugated to glycine or taurine
and are secreted into the bile, then, via bile, into the duodenum. Hepatic primary bile acids emulsify
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fats and activate lipases. The microbiome of the gut (mostly in the large bowels) dehydroxylate and
deconjugate bile acids. Thus, primary bile acids are modified to produce secondary bile acids, including
lithocholic acid (LCA), deoxycholic acid (DCA), and ursodeoxycholic acid (UDCA) [151]. There are
16 bile acids in early life, while in adulthood there are 20 different bile acids in humans [124,152,153].
The majority of bile acids undergo reuptake via the portal circulation and are then transported to the
liver, where secondary bile acids are re-hydroxylated and re-conjugated for reuse. This cycle is called
the enterohepatic circulation of bile acids. A small fraction of the reabsorbed bile acids can enter the
systemic circulation [154] and systemic bile acids exert hormone-like, systemic effects [23,30,155–157].

The primary-to-secondary bile acid conversion is linked to the gut microbiome. Primarily,
colonic bacteria are responsible for bile acid conversion; nevertheless, upper segments of the
gastrointestinal tract may also play a role in bile acid transformation. Deconjugation takes place first,
followed by oxidation, dehydroxylation, and epimerization. Deconjugation is catalyzed by bile salt
hydrolases. Bacteroides fragilis, Bacteroides vulgatus, Listeria monocytogenes, Clostridium, Lactobacillus,
and Bifidobacterium possess bile salt hydrolases [124–129]. Oxidation and epimerization activities are
linked to intestinal Firmicutes (Clostridium, Eubacterium, and Ruminococcus), Bacteroides, and Escherichia,
while dehydroxylation is linked to Clostridia and Eubacteria [124–126,128]. The enzymes involved in
secondary bile acid production are assembled in the bile acid inducible (bai) operon in bacteria [151].

Bile acids have multiple receptors, including farnesoid-X-receptor (FXR), liver-X receptor (LXR),
Takeda G Protein-Coupled Receptor 5/G-protein-coupled bile acid receptor (TGR5), constitutive
androstane receptor (CAR), vitamin D receptor (VDR), and pregnane X receptor (PXR). These receptors
are nuclear receptors, except for TGR5. Through these receptors, bile acids impact on immune responses,
gastrointestinal mucosal barrier function, gestation [158], carcinogenesis [23,34], and metabolic
diseases [155,159].

Bile acid homeostasis is largely hampered in cancer and metabolic diseases [160]. Originally, bile
acids were regarded as procarcinogens [161]. However, recent advances suggest that some secondary
bile acids can behave as both pro- and anti-carcinogens, depending on the cancer in question and the
concentration of the bile acid present [23,34,105,107,162–169]. Bile acids also modulate the composition
of the microbiome [160,170–176] and facilitate bacterial translocation into tissues [177], a key step in
the carcinogenesis of pancreatic adenocarcinoma. Bacteria have different sensitivity for bile acids.
Enterococci are considered bile acid resistant bacteria, which may explain the reports showing increased
abundance of this bacteria in pancreatic adenocarcinoma [65,90,93].

Bile acid levels were reported to increase in pancreatic adenocarcinoma. A study comprised of
15 patients with pancreatic cancer and 15 patients with benign disease showed increasing trends in all
bile acid species detected in pancreatic cancer patients. Increases in unconjugated bile acid levels in
pancreatic adenocarcinoma patients were significant and surprisingly large (26 fold) [178].

Most bile acids have a carcinogenic role in pancreatic adenocarcinoma. Bile acids modulate risk
factors for pancreatic adenocarcinoma; bile acids impact pancreatitis and bile acid efflux disorders,
type II diabetes, obesity, and hyperlipidemia. Furthermore, bile acids reduce susceptibility to
apoptosis, induce inflammatory mediators, and may perturb membranes and cellular movement
(reviewed in [179]). Gallstones can obstruct the outflow of bile and, hence, can induce and sustain
pancreatitis [180], a risk factor for pancreatic adenocarcinoma [179,181,182]. Exposure of pre-malignant
pancreas ductal cells to bile may lead to carcinogenic transformation through inflammatory signaling,
as demonstrated in rodent and human data [183–186]. DCA, through binding to TGR5, can activate
EGFR, mitogen-activated protein kinase, and STAT3 signaling in pancreatic adenocarcinoma cells,
inducing cell cycle progression [187]. Interestingly, there seems to be a selectivity among bile acids,
as UDCA inhibits the epithelial-to-mesenchymal transition in pancreatic adenocarcinoma cell lines,
and in that regard, acts as an anti-carcinogenic factor [188].

Expression levels for VDR [189], FXR [190], and PXR [191] are higher in tumor tissue than in the
normal tissue of the pancreas. LXRβ, but not LXRα, is abundantly expressed in human pancreatic
adenocarcinoma cases [192]. In the serum of PDAC patients, components of the LXR/RXR system
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are enriched [193]. Furthermore, higher FXR expression correlates with higher TNM stage, shorter
survival, and poorer prognosis [190]. Higher PXR expression correlated with higher histological
grade of pancreatic adenocarcinoma [191]. Nevertheless, unexpectedly, enhanced PXR/RXRβ
expression correlated with smaller tumor size and the absence of lymph node metastases and longer
survival [191]. Additionally, LXR agonist treatments disrupted proliferation, cell-cycle progression,
and colony-formation in PDAC cells [194].

4.3. Polyamines

Polyamine metabolism is dysregulated in pancreatic adenocarcinoma [195]. The functional role of
polyamine biosynthesis in (human) pancreatic adenocarcinoma is highlighted by the fact that the effects
of the standard cytostatic therapies can be accentuated or ameliorated by modulation of the polyamine
cycle [196–200]. Cadaverine, putrescine, spermine, and spermidine are classified as polyamines, but
bacteria can produce other polyamines also [131,201].

Enzymes of the polyamine pathway had been identified in numerous species. However, the
functional characterization of polyamine biosynthesis is limited to a few species [131]. E. coli,
Enterococcus faecalis, Staphylococcus aureus, Haemophilus influenzae, Neisseria flava, Pseudomonas aeruginosa,
Campylobacter jejuni, Yersinia pestis, Vibrio cholerae, Bacteroides dorei, Bacteroides thetaiotaomicron, Bacteroides
fragilis, Bacillus subtilis, and Proteus mirabilis were shown to produce, accumulate, or need/use
polyamines [108,130,131].

Cadaverine is a decarboxylation product of lysine and the bacterial enzymes LdcC and CadA
are responsible for cadaverine biosynthesis [202,203]. Both the human body and bacteria can produce
cadaverine. Shigella flexneri, Shigella sonnei, Escherichia coli, and Streptococcus possess enzymes for
cadaverine biosynthesis [132]. Putrescine can be derived from arginine through decarboxylation, as is
the case in E. coli [108]. Polyamines support bacterial growth and biofilm formation and in many
pathogenic species are considered virulence factors [131].

A metabolomic and metatranscriptomic study of the fecal microbiome from a murine pancreatic
adenocarcinoma model [67] showed that bacterial polyamine biosynthetic capacity was upregulated
and aggravated by tumor progression. The main polyamines synthesized were putrescine, spermine,
and spermidine. In accordance with these results, serum polyamine levels were also higher in pancreatic
adenocarcinoma-bearing mice and patients. In contrast, Ren and co-workers [43] found that polyamine
biosynthesis and transport pathways were downregulated in samples from pancreatic adenocarcinoma
patients. Nevertheless, the lysine and putrescine transport systems were upregulated.

4.4. Bacterial Lipopolysaccharide (LPS)

Lipopolysaccharides, lypoglycans, or endotoxins are components of the bacterial outer membrane
in Gram-negative bacteria [204,205]. Although LPS is not a classical bacterial metabolite in the
strict sense, LPS seems to play a crucial role in the pathogenesis of pancreatic adenocarcinoma.
Lipopolysaccharides are built upon a lipid anchor to which a polysaccharide chain is attached.
The inherent role of LPS is to protect bacteria against toxins, antibiotics, or bile acids. However, LPS has
high immunogenic potential and is considered a member of the pathogen associated molecular patterns
(PAMPs). LPS elicits its effects through TLR4 and TLR2 receptors to induce innate immunity [204,205].

In pancreatic adenocarcinoma-associated oncobiosis, the proportion of LPS producing bacteria
(Prevotella, Hallella, and Enterobacter) increases [43]. In addition, TLR2, TLR4, and TLR9 [104] and the
downstream target of TLR4, MyD88 [40], are associated with pancreatic adenocarcinoma development.
Taken together, LPS-induced TLR signaling likely plays a key role in maintaining inflammation in
pancreatic adenocarcinoma.

4.5. Tryptophan Metabolites

Tryptophan is an amino acid with a very complex and intricate metabolism, in which bacterial
metabolism plays a major role. A considerable portion of tryptophan, 4–6%, is metabolized by bacteria
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to yield indol derivatives [206]. In germ-free mice, serum tryptophan levels increase, emphasizing the
volume of bacterial tryptophan degradation [133,207–210]. The bacterial metabolism of tryptophan
has multiple branches [133,206], described as follows:

(1) The decarboxylation of tryptophan yields tryptamine. Clostridium sporogenes and Ruminococcus
gnavus possess enzymes for tryptophan decarboxylation [133].

(2) Tryptophanase deaminates tryptophan to indole pyruvic acid, which is then metabolized to
indole. Indole can be further oxidized and the subsequent conjugation of sulphate yields indican.
Tryptophanase, denoted as TnaA, can be found in the tryptophanase operon [211]. Tryptophanase
expression is widespread among bacteria [212,213].

(3) Indole pyruvic acid can be decarboxylated to indole acetaldehyde. Indole acetaldehyde can be
converted to tryptophol or indole acetic acid. Indole acetic acid can be decarboxylated to yield
skatole or conjugated with glutamine to yield indole acetic acid-glutamine. The main genera for
this pathway are Lactobacillus, Clostridium, and Bacteroides [133].

(4) The reduction of indole pyruvic acid yields indole lactate, the dehydration of which yields indole
acrylic acid. This compound can be reduced to indole propionic acid. Indole propionic acid can
be further converted by human enzymes.

Tryptophan-derivatives (indoles) are ligands for the aryl hydrocarbon receptor (AHR) and can also
bind to the PXR receptor [214–216]. AHR activation is a key element in the regulation of the immune
system [133,217]. A tryptophan-poor diet has immunosuppressive effects in an AHR-dependent
fashion [218]. By modulating mucosal immunity through AHR, indole derivatives influence the
composition of the gut microbiome. For example, indole-derivatives can facilitate the expansion
of Lactobacillus reuteri and inhibit the growth of pathogenic bacteria [214,219–221]. Furthermore,
Lactobacillus utilizes tryptophan as an energy source [214].

Although direct data are missing for the effects of indole-derivatives in pancreatic adenocarcinoma,
the invasive behavior of pancreatic adenocarcinoma cells can be modulated through the selective
AHR modulators, Omeprazole and Tranilast [222]. Furthermore, as we noted above, a higher PXR
expression correlates with a higher histological grade of pancreatic adenocarcinoma, while enhanced
PXR/RXRβ expression correlates with a smaller tumor size, the absence of lymph node metastases, and
longer survival [191].

4.6. Other Metabolites

To date, two studies reported in silico reconstruction of metabolic pathways of the microbiome
in pancreatic adenocarcinoma. These data identify bacterial metabolites that potentially influence
pancreatic adenocarcinoma cells or carcinogenesis itself, thus, we review these data and provide a list
in Table 3.

Mendez and colleagues [67] reported a time course experiment using a murine model of
pancreatic adenocarcinoma. The results of this experiment revealed that the microbiome in pancreatic
adenocarcinoma shifted towards nucleotide, lipid, and polyamine biosynthesis that was accentuated
during the progression of the disease. Increased polyamine biosynthesis was confirmed by direct
measurement of polyamines in the serum of tumor-bearing mice and healthy controls and pancreatic
adenocarcinoma patients. In addition, hexitol fermentation, carbohydrate metabolism, and vitamin
biosynthesis and metabolism were upregulated.

The second study was a prospective study of 85 pancreatic adenocarcinoma patients and 57
matched healthy controls in which the fecal microbiome was assessed [43]. A decrease was observed
in various transport systems, amino acid metabolism, and core metabolic pathways in pancreatic
adenocarcinoma patients. Among the upregulated pathways were genes for amino acid metabolism,
carbohydrate metabolism, transport systems, and metabolic pathways.
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Table 3. Bacterial metabolic pathways dysregulated in pancreatic adenocarcinoma.

Study Direction of Regulation
in Patients Biological Process Biochemical Process

[67] upregulated

Nucleotide biosynthesis

Lipid biosynthesis

Polyamine biosynthesis

Hexitol fermentation

Carbohydrate metabolism

Vitamin biosynthesis and metabolism

[43]

downregulated

transport systems

Phosphate transport system (M00222)

Cobalt transport system (M00245)

Mannopine transport system (M00301)

Glutamate transport system (M00233)

Trehalose-maltose transport system (M00204)

Spermidine-putrescine transport system (M00299)

amino acid metabolism
Histidine biosynthesis (M00026)

Glutamate transport system (M00233)

metabolic pathways

Complex I/NADH dehydrogenase (M00144)

Pentose phosphate pathway/non-oxidative phase (M00007)

V type ATPase (M00159)

Pyrimidine deoxyribonucleotide biosynthesis (M00053)

Pyruvate ferredoxin oxidoreductase (M00310)

upregulated

amino acid metabolism

Leucine biosynthesis (M00019)

Twin arginine translocation/Tat system (M00336)

Histidine degradation (M00045)

Methionine salvage pathway (M00034)

Lysine arginine ornithine transport system (M00225)

Dipeptide transport system (M00324)

Arginine transport system (M00229)

Histidine transport system (M00226)

carbohydrate
metabolism

Oligogalacturonide transport system (M00202)

Entner Doudoroff pathway (M00008)

transport systems

Putative spermidine putrescine transport system (M00193)

Microcin C transport system (M00349)

Putrescine transport system (M00300)

Sec secretion system (M00335)

Histidine transport system (M00226)

metabolic pathways

Pyridoxal biosynthesis (M00124), Citrate cycle (M00011)

Complex II/succinate dehydrogenase (M00150)

Glyoxylate cycle (M00012)

C5 isoprenoid biosynthesis/non-mevalonate pathway (M00096)

Ubiquinone biosynthesis (M00117)

Prokaryotic GABA biosynthesis (M00136)

Lipopolysaccharide biosynthesis (M00060)

Bacterial DNA polymerase III complex (M00260)

polyamine biosynthesis
and transport

Polyamine biosynthesis (M00133)

Spermidine putrescine transport system (M00299)

5. Supporting Clinical Decision Making, Diagnostic Applications

As we noted earlier, certain studies assessing the oncobiome in pancreatic adenocarcinoma
came to the conclusion that the composition of the oral [63,82,86,88,223], gut [43], pancreatic [102],
and fecal [100] microbiomes differ from the corresponding healthy microbiomes. Thus, the microbiomes
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can be used for diagnostic applications. Diagnostics can be useful for the assessment of the risk for
tumor development (i.e., tumor detection) [82], survival prediction [41,91], deducting etiology [100],
predicting mortality [89], and selecting between the forms of the disease (e.g., obstructive versus
non-obstructive forms [43]).

Most studies mentioned above had low patient numbers (tens of patients to a few hundred) and,
therefore, did not reach the level of statistical significance. When already existing shotgun sequencing
data of tumor DNA was assessed for the presence of bacterial DNA detected statistically [102], counts of
bacteria in tumors differed from the corresponding non-transformed tissues. Importantly, patterns were
identified that had suitable specificity and selectivity values for subsequent diagnostic applications.
Furthermore, these patterns were detectable in serum in the form of cell-free DNA, suggesting that
serum could be used for diagnostic applications [102]. In addition, oral swab or feces can be used as
easily accessible biomaterials for the detection of pancreatic adenocarcinoma [82,88,100].

As the detection of pancreatic adenocarcinoma is difficult at early (curable) stages, early detection
through detecting oncobiotic transformation has clear advantages for patients. The choice of antibiotics
used for premedication before surgical excision of pancreatic adenocarcinoma can also be based on the
composition of the pancreatic microbiome [92].

6. Future Directions

Oncobiosis in pancreatic adenocarcinoma is a complex process, involving multiple microbiome
compartments, including the oral, gastric, duodenal, ductal, pancreatic, and fecal compartments.
The bacterial colonization of the pancreas drives inflammation and probably facilitates the initiation
and progression of the disease to determine the aggressiveness of the disease. Furthermore, there
seems to be a large set of bacterial metabolites released into the circulation or tumor microenvironment
that has direct effects on the behavior of pancreatic adenocarcinoma cells (Figure 2).Cancers 2020, 12, x 16 of 27 

 

 
Figure 2. Schematic representation of the role of oncobiosis in pancreatic adenocarcinoma. Rows 
represent the spillover of the dysbiotic microbiome of the oral cavity, stomach, and bowels to the 
pancreas and feces. Antineoplastic processes are shown in green and neoplastic processes are shown 
in red. Abbreviations: UDCA—ursodeoxycholic acid, DCA—deoxycholic acid, LPS—
lipopolysaccharide. 
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cancers, the involvement of the microbiome has gained ground quickly and holds promise for new 
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Establishing the causative role of oncobiosis in pancreatic adenocarcinoma will facilitate the 
assessment of how antibiotics, probiotics, or prebiotics may modulate the behavior of the disease in 
analogy to other diseases and studies [59,60,226–228]. Dietary intervention or special diets can be 
proposed to patients [229]. Thus, the study of the microbiome may change personalized medicine 
[100]. A better understanding of the oncobiome in pancreatic adenocarcinoma holds the promise of 
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Figure 2. Schematic representation of the role of oncobiosis in pancreatic adenocarcinoma.
Rows represent the spillover of the dysbiotic microbiome of the oral cavity, stomach, and bowels to the
pancreas and feces. Antineoplastic processes are shown in green and neoplastic processes are shown in
red. Abbreviations: UDCA—ursodeoxycholic acid, DCA—deoxycholic acid, LPS—lipopolysaccharide.

The involvement of bacterial metabolites is just coming of age in the microbiome field. In other
cancers, the involvement of the microbiome has gained ground quickly and holds promise for new
treatment modalities [224,225]. Studies on the in silico reconstruction of microbiome metabolism and
other circumstantial data suggest large changes to the bacterial metabolome, making it likely that such
metabolites will be identified and characterized in the future. It is important to note that in studies with
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bacterial metabolites, metabolites must be used in concentrations corresponding to serum or tissue
reference concentrations to avoid the non-physiological effects of supraphysiological concentrations.

Establishing the causative role of oncobiosis in pancreatic adenocarcinoma will facilitate the
assessment of how antibiotics, probiotics, or prebiotics may modulate the behavior of the disease in
analogy to other diseases and studies [59,60,226–228]. Dietary intervention or special diets can be
proposed to patients [229]. Thus, the study of the microbiome may change personalized medicine [100].
A better understanding of the oncobiome in pancreatic adenocarcinoma holds the promise of prolonging
survival in pancreatic adenocarcinoma.
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