Avoiding long Berge cycles, the missing cases $k=r+1$ and $k=r+2$

Beka Ergemlidze ${ }^{1}$
Nika Salia ${ }^{1}$
Ervin Győri ${ }^{1,2}$
Casey Tompkins ${ }^{2}$
Abhishek Methuku ${ }^{1}$
Oscar Zamora ${ }^{1,3}$
${ }^{1}$ Central European University, Budapest.
\{abhishekmethuku, beka.ergemlidze\}@gmail.com, Salia_Nika@phd.ceu.edu, oscarz93@yahoo.es
${ }^{2}$ Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. gyori.ervin@renyi.mta.hu, ctompkins496@gmail.com
${ }^{3}$ Universidad de Costa Rica, San José.

August 24, 2018

Abstract

The maximum size of an r-uniform hypergraph without a Berge cycle of length at least k has been determined for all $k \geq r+3$ by Füredi, Kostochka and Luo and for $k<r$ (and $k=r$, asymptotically) by Kostochka and Luo. In this paper, we settle the remaining cases: $k=r+1$ and $k=r+2$, proving a conjecture of Füredi, Kostochka and Luo.

Given a hypergraph \mathcal{H}, let $V(\mathcal{H})$ and $E(\mathcal{H})$ denote the set of vertices and hyperedges of \mathcal{H}, respectively, and let $e(\mathcal{H})=|E(\mathcal{H})|$. A hypergraph is called r-uniform if all of its hyperedges have size r. For convenience, we refer to an r-uniform hypergraph as an r-graph. Berge introduced the following definitions of a cycle and a path in a hypergraph.

Definition 1. A Berge cycle of length l in a hypergraph is a set of l distinct vertices $\left\{v_{1}, \ldots, v_{l}\right\}$ and l distinct hyperedges $\left\{e_{1}, \ldots, e_{l}\right\}$ such that $\left\{v_{i}, v_{i+1}\right\} \subseteq e_{i}$ with indices taken modulo l.

A Berge path of length l in a hypergraph is a set of $l+1$ distinct vertices v_{1}, \ldots, v_{l+1} and l distinct hyperedges e_{1}, \ldots, e_{l} such that $\left\{v_{i}, v_{i+1}\right\} \subseteq e_{i}$ for all $1 \leq i \leq l$. We say that such a Berge path is between v_{1} and v_{l+1}.

Notation 1. Let \mathcal{H} be a hypergraph. Then its 2 -shadow, $\partial_{2} \mathcal{H}$, is the collection of pairs that lie in some hyperedge of \mathcal{H}. Given a set $S \subseteq V(\mathcal{H})$, the subhypergraph of \mathcal{H} induced by S is denoted by $\mathcal{H}[S]$.

We say \mathcal{H} is connected if $\partial_{2}(\mathcal{H})$ is a connected graph. A hyperedge $h \in E(\mathcal{H})$ is called a cut-hyperedge of \mathcal{H} if $\mathcal{H} \backslash\{h\}:=(V(\mathcal{H}), E(\mathcal{H}) \backslash\{h\})$ is not connected.

When we say D is a block of $\partial_{2}(\mathcal{H})$, we may either mean D is the vertex-set of the block, or D is the edge-set of the block depending on the context.

1 Background and our results

Győri, Katona and Lemons extended the well-known Erdős-Gallai theorem to hypergraphs by showing the following.

Theorem 1 (Győri, Katona, Lemons [8]). Let \mathcal{H} be an r-uniform hypergraph with no Berge path of length k. If $k>r+1>3$, we have

$$
e(\mathcal{H}) \leq \frac{n}{k}\binom{k}{r}
$$

If $r \geq k>2$, we have

$$
e(\mathcal{H}) \leq \frac{n(k-1)}{r+1}
$$

For the case $k=r+1$, Győri, Katona and Lemons conjectured that the upper bound should have the same form as the $k>r+1$ case. This was settled by Davoodi, Győri, Methuku and Tompkins [1] who showed the following.

Theorem 2 (Davoodi, Győri, Methuku, Tompkins [1]). Fix $k=r+1>2$ and let \mathcal{H} be an r-uniform hypergraph containing no Berge path of length k. Then,

$$
e(\mathcal{H}) \leq \frac{n}{k}\binom{k}{r}=n .
$$

The bounds in the above two theorems are sharp for each k and r for infinitely many n. Győri, Methuku, Salia, Tompkins and Vizer [9] proved a significantly smaller upper bound on the maximum number of hyperedges in an n-vertex r-graph with no Berge path of length k under the assumption that it is connected. Their bound is asymptotically exact when r is fixed and k and n are sufficiently large. The notion of Berge cycles and Berge paths was generalized to arbitrary Berge graphs F by Gerbner and Palmer in [5], and the (3-uniform) Turán number of Berge- $K_{2, t}$ was determined asymptotically in [6]. The general behaviour of the Turán number of Berge- F, as the uniformity increases, was studied in [7].

Recently, Füredi, Kostochka and Luo [3] proved exact bounds similar to Theorem 1 for hypergraphs avoiding long Berge cycles.

Theorem 3 (Füredi, Kostochka, Luo [3). Let $r \geq 3$ and $k \geq r+3$, and suppose \mathcal{H} is an n-vertex r-graph with no Berge cycle of length k or longer. Then $e(\mathcal{H}) \leq \frac{n-1}{k-2}\binom{k-1}{r}$. Moreover, equality is achieved if and only if $\partial_{2}(\mathcal{H})$ is connected and for every block D of $\partial_{2}(\mathcal{H}), D=K_{k-1}$ and $\mathcal{H}[D]=K_{k-1}^{r}$.

Moreover, Kostochka and Luo [10] found exact bounds for $k \leq r-1$ and asymptotic bounds for $k=r$. Let us remark that their asymptotic bound in the case $k=r$ also follows from Theorem [5] stated below. (More recently, extending [3], Füredi, Kostochka, Luo [4] proved exact bounds and determined the extremal examples for all n when $k \geq r+4$.)

The two cases $k=r+2$ and $k=r+1$ remained open. For the case $k=r+2$, Füredi, Kostochka and Luo conjectured [3] that a similar statement as that of Theorem 3 holds and mentioned the answer is unknown for the case $k=r+1$. In this paper, we prove this conjecture.

Theorem 4. Let $r \geq 3$ and $n \geq 1$, and suppose \mathcal{H} is an n-vertex r-graph with no Berge cycle of length $r+2$ or longer. Then $e(\mathcal{H}) \leq \frac{r+1}{r}(n-1)$. Moreover, equality is achieved if and only if $\partial_{2}(\mathcal{H})$ is connected and for every block D of $\partial_{2}(\mathcal{H}), D=K_{r+1}$ and $\mathcal{H}[D]=K_{r+1}^{r}$.

In the case $k=r+1$, we prove the following exact result, and characterize the extremal examples.

Theorem 5. Let $r \geq 3$ and $n \geq 1$, and suppose \mathcal{H} is an n-vertex r-graph with no Berge cycle of length $r+1$ or longer. Then $e(\mathcal{H}) \leq n-1$. Moreover, equality is achieved if and only if $\partial_{2}(\mathcal{H})$ is connected and for every block D of $\partial_{2}(\mathcal{H}), D=K_{r+1}$ and $\mathcal{H}[D]$ consists of r hyperedges.

Note that Theorem 5 easily implies Theorem 2. In fact, it gives the following stronger form. Here we quickly prove this implication.

Theorem 6. Fix $k=r+1>2$ and let \mathcal{H} be an r-uniform hypergraph containing no Berge path of length k. Then, e $(\mathcal{H}) \leq \frac{n}{k}\binom{k}{r}=n$. Moreover, equality holds if and only if each connected component D of $\partial_{2}(\mathcal{H})$ is K_{r+1}, and $\mathcal{H}[D]=K_{r+1}^{r}$.

Proof. We proceed by induction on n. The base cases $n \leq r+1$ are easy to check. Let \mathcal{H} be an r-uniform hypergraph containing no Berge path of length $k=r+1$ such that $e(\mathcal{H}) \geq n$. Then by Theorem 55, \mathcal{H} contains a Berge cycle \mathcal{C} of length $r+1$ or longer. \mathcal{C} must be of length exactly $r+1$, otherwise it would contain a Berge path of length $r+1$. Let v_{1}, \ldots, v_{r+1} and e_{1}, \ldots, e_{r+1} be the vertices and edges of \mathcal{C} where $\left\{v_{i}, v_{i+1}\right\} \subseteq e_{i}$ (indices are taken modulo $r+1$). For any i with $1 \leq i \leq r+1$, if e_{i} contains a vertex $v \notin\left\{v_{1}, \ldots, v_{r+1}\right\}$, then $v_{i+1} e_{i+1} v_{i+2} e_{i+2} \ldots e_{i-1} v_{i} e_{i} v$ forms a Berge path of length $r+1$ in \mathcal{H}, a contradiction. Therefore, all of the edges e_{i} (for $1 \leq i \leq r+1$) are contained in the set $S:=\left\{v_{1}, \ldots, v_{r+1}\right\}$. That is, $\mathcal{H}[S]=K_{r+1}^{r}$. It is easy to see that S forms a connected component in $\partial_{2}(\mathcal{H})$ because if any hyperedge h of \mathcal{H} (with $h \notin \mathcal{C}$) contains a vertex of \mathcal{C}, then \mathcal{C} can be extended to form a Berge path of length $r+1$.

Let $S_{1}, S_{2}, \ldots, S_{t}$ be the vertex sets of connected components of $\partial_{2}(\mathcal{H})$. As noted before, one of them, say S_{1}, is equal to S. We delete the vertices of S_{1} from \mathcal{H} to form a new hypergraph \mathcal{H}^{\prime}; note that $\left|V\left(\mathcal{H}^{\prime}\right)\right|=|V(\mathcal{H})|-(r+1)$ and $\left|E\left(\mathcal{H}^{\prime}\right)\right|=|E(\mathcal{H})|-(r+1)$ and the connected components of $\partial_{2}\left(\mathcal{H}^{\prime}\right)$ are S_{2}, \ldots, S_{t}. By induction $\left|E\left(\mathcal{H}^{\prime}\right)\right| \leq\left|V\left(\mathcal{H}^{\prime}\right)\right|$. Thus $|E(\mathcal{H})|=\left|E\left(\mathcal{H}^{\prime}\right)\right|+(r+1) \leq\left|V\left(\mathcal{H}^{\prime}\right)\right|+(r+1)=|V(\mathcal{H})|$. Moreover, if $|E(\mathcal{H})|=|V(\mathcal{H})|$, then $\left|E\left(\mathcal{H}^{\prime}\right)\right|=\left|V\left(\mathcal{H}^{\prime}\right)\right|$, so by the induction hypothesis each connected component $S_{i}(i \geq 2)$ of $\partial_{2}\left(\mathcal{H}^{\prime}\right)$ is K_{r+1}, and $\mathcal{H}^{\prime}\left[S_{i}\right]=K_{r+1}^{r}$, proving the theorem.

Structure of the paper: In Section 2, we prove some basic lemmas which are used in our proofs. In Section 3, we prove Theorem 4, and in Section 4, we prove Theorem 5.

2 Basic Lemmas

We will use the following two lemmas.
Lemma 1. For any $r \geq 3$, if a set S of size $r+1$ contains r hyperedges of size r, then between any two vertices $u, v \in S$, there is a Berge path of length r consisting of these hyperedges.

Proof. Let \mathcal{H} be the hypergraph consisting of r hyperedges on $r+1$ vertices. First notice that for any pair of vertices $x, y \in S$, the number of hyperedges $h \subset S$ such that $\{x, y\} \not \subset h$ is at most 2. (Indeed, there is at most one hyperedge that does not contain x and at most one hyperedge that does not contain y.) This means that every pair $x, y \in S$ is contained in some hyperedge, as there are at least 3 hyperedges contained in S. In other words, $\partial_{2}(\mathcal{H})=K_{r+1}$.

Consider an arbitrary path $x_{1} x_{2}, \ldots, x_{r+1}$ of length r in the $\partial_{2}(\mathcal{H})$ connecting $u=x_{1}$ and $v=x_{r+1}$. We want to show that there are distinct hyperedges containing the pairs $x_{i} x_{i+1}$ for each $1 \leq i \leq r$. To this end, we consider an auxiliary bipartite graph with pairs $\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{r} x_{r+1}\right\}$ in one class and the r hyperedges $h \subset S$ in the other class, and a pair is connected to a hyperedge if it is contained in the hyperedge. We will show that Hall's condition holds: As noted before, every pair is contained in a hyperedge. Given any two distinct pairs $x_{i} x_{i+1}$ and $x_{j} x_{j+1}$, there is at most one hyperedge that does not contain either of them; i.e., at least $r-1$ hyperedges contain one of them. Thus we need $2 \leq r-1$ for Hall's condition to hold, but this is true as we assumed $r \geq 3$. Moreover, if we take any $3 \leq j \leq r$ distinct pairs, then every hyperedge contains one of them. Therefore, we need $j \leq r$, but this is true by assumption. This finishes the proof of the lemma.

Lemma 2. For any $r \geq 4$, if a set S of size $r+1$ contains $r-1$ hyperedges of size r, then between any two vertices $u, v \in S$, there is a Berge path of length $r-1$ consisting of these hyperedges.

Proof. The proof is similar to that of Lemma (1) Let \mathcal{H} be the hypergraph consisting of $r-1$ hyperedges on $r+1$ vertices. First notice that for any pair of vertices $x, y \in S$, the number of hyperedges $h \subset S$ such that $\{x, y\} \not \subset h$ is at most 2 . This means that every pair $x, y \in S$ is contained in some hyperedge, as there are at least $r-1 \geq 3$ hyperedges contained in S. In other words, $\partial_{2}(\mathcal{H})=K_{r+1}$.

Consider an arbitrary path $x_{1} x_{2} \ldots x_{r}$ of length $r-1$ in the $\partial_{2}(\mathcal{H})$ connecting $u=x_{1}$ and $v=x_{r}$. We want to show that there are distinct hyperedges containing the pairs $x_{i} x_{i+1}$ for each $1 \leq i \leq r-1$. To this end, we consider an auxiliary bipartite graph with pairs $\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{r-1} x_{r}\right\}$ in one class and the $r-1$ hyperedges $h \subset S$ in the other class, and a pair is connected to a hyperedge if it is contained in the hyperedge. We show that Hall's condition holds: As noted before, every pair is contained in a hyperedge. Given any two distinct pairs $x_{i} x_{i+1}$ and $x_{j} x_{j+1}$, there is at most one hyperedge that does not contain either of them; i.e., at least $r-2$ hyperedges contain one of them. Thus we need $2 \leq r-2$ for Hall's condition to hold, but this is true as we assumed $r \geq 4$. Moreover, if we take any $3 \leq j \leq r-1$ distinct pairs, then every hyperedge contains one of them. Therefore, we need $j \leq r-1$ for Hall's condition to hold, and this is true by assumption. This finishes the proof of the lemma.

3 Proof of Theorem 4 ($k=r+2$)

We will prove the theorem by induction on n. For the base cases, note that if $1 \leq n \leq r$ then the statement of the theorem is trivially true. If $n=r+1$, the statement is true since there are at most $r+1$ hyperedges of size r on $r+1$ vertices. Moreover, equality holds if and only if $\mathcal{H}=K_{r+1}^{r}$.

We will show the statement is true for $n \geq r+2$ assuming it is true for all smaller values. Let \mathcal{H} be an r-uniform hypergraph on n vertices having no Berge cycle of length $r+2$ or longer. We show that we may assume the following two properties hold for \mathcal{H}.
(1) For any set $S \subseteq V(\mathcal{H})$ of vertices, the number of hyperedges of \mathcal{H} incident to the vertices of S is at least $|S|$.
Indeed, suppose there is a set $S \subseteq V(\mathcal{H})$ with fewer than $|S|$ hyperedges incident to the vertices of S. If $|S|=n$ we immediately have the required bound on $e(\mathcal{H})$, so assume $n>|S|$. We can delete the vertices of S from \mathcal{H} to obtain a new hypergraph \mathcal{H}^{\prime} on $n-|S|$ vertices. By induction, \mathcal{H}^{\prime} contains at most $\frac{r+1}{r}(n-|S|-1)$ hyperedges, so \mathcal{H} contains less than $\frac{r+1}{r}(n-1-|S|)+|S|<\frac{r+1}{r}(n-1)$ hyperedges, as desired.
(2) There is no cut-hyperedge in \mathcal{H}.

Indeed, if $h \in E(\mathcal{H})$ is a cut-hyperedge, then $\partial_{2}(\mathcal{H} \backslash\{h\})$ is not a connected graph, so there are non-empty disjoint sets V_{1} and V_{2} such that $V(\mathcal{H})=V_{1} \cup V_{2}$, and there are no edges of $\partial_{2}(\mathcal{H} \backslash\{h\})$ between V_{1} and V_{2}. So both hypergraphs $\mathcal{H}\left[V_{1}\right]$ and $\mathcal{H}\left[V_{2}\right]$ do not contain a Berge cycle of length $r+2$ or longer. By induction, $e\left(\mathcal{H}\left[V_{1}\right]\right) \leq$ $\frac{r+1}{r}\left(\left|V_{1}\right|-1\right)$ and $e\left(\mathcal{H}\left[V_{2}\right]\right) \leq \frac{r+1}{r}\left(\left|V_{2}\right|-1\right)$. In total, $e(\mathcal{H})=e\left(\mathcal{H}\left[V_{1}\right]\right)+e\left(\mathcal{H}\left[V_{2}\right]\right)+1 \leq$ $\frac{r+1}{r}\left(\left|V_{1}\right|+\left|V_{2}\right|-2\right)+1<\frac{r+1}{r}(|V(\mathcal{H})|-1)$, as desired.

Consider an auxiliary bipartite graph B consisting of vertices of \mathcal{H} in one class and hyperedges of \mathcal{H} on the other class. Then property (1) shows that Hall's condition holds. Therefore,
there is a perfect matching in B. In other words, there exists an injection $f: V(\mathcal{H}) \rightarrow E(\mathcal{H})$ such that $v \in f(v)$.

Given an injection $f: V(\mathcal{H}) \rightarrow E(\mathcal{H})$ with $v \in f(v)$, let \mathcal{P}_{f} be a longest Berge path of the form $v_{1} f\left(v_{1}\right) v_{2} f\left(v_{2}\right) \ldots v_{l-1} f\left(v_{l-1}\right) v_{l}$ where for each $1 \leq i \leq l-1, v_{i+1} \in f\left(v_{i}\right)$. Moreover, among all injections $f: V(\mathcal{H}) \rightarrow E(\mathcal{H})$ with $v \in f(v)$, suppose $\phi: V(\mathcal{H}) \rightarrow E(\mathcal{H})$ is an injection for which the path $\mathcal{P}_{\phi}=v_{1} \phi\left(v_{1}\right) v_{2} \phi\left(v_{2}\right) \ldots v_{l-1} \phi\left(v_{l-1}\right) v_{l}$ is a longest path.

Claim 1. $\phi\left(v_{l}\right) \subset\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\}$.
Proof. First notice that if $\phi\left(v_{l}\right)$ contains a vertex $v_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{l-r-1}\right\}$, then the Berge cycle $v_{i} \phi\left(v_{i}\right) v_{i+1} \phi\left(v_{i+1}\right) \ldots v_{l} \phi\left(v_{l}\right) v_{i}$ is of length $r+2$ or longer, a contradiction. Moreover, if $\phi\left(v_{l}\right)$ contains a vertex $v \notin\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$, then \mathcal{P}_{ϕ} can be extended to a longer path $v_{1} \phi\left(v_{1}\right) v_{2} \phi\left(v_{2}\right) \ldots v_{l-1} \phi\left(v_{l-1}\right) v_{l} \phi\left(v_{l}\right) v$, a contradiction. This completes the proof of the claim.

By Claim 1, we know that $\phi\left(v_{l}\right)=\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\} \backslash\left\{v_{j}\right\}$ for some $l-r \leq j \leq$ $l-1$.

Claim 2. For any $i \in\{l-r, l-r+1, \ldots, l\} \backslash\{j\}$, we have $\phi\left(v_{i}\right) \subset\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\}$.
Proof. When $i=l$, we know the statement is true. Suppose $i \in\{l-r, l-r+1, \ldots, l-$ $1\} \backslash\{j\}$. Let us define a new injection $\psi: V(\mathcal{H}) \rightarrow E(\mathcal{H})$ as follows: $\psi(v)=\phi(v)$ for every $v \notin\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$, and for every $v \in\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$. Moreover, let $\psi\left(v_{i}\right)=\phi\left(v_{l}\right)$ and $\psi\left(v_{k}\right)=\phi\left(v_{k-1}\right)$ for each $l \geq k \geq i+1$.

Now consider the Berge path $v_{1} \phi\left(v_{1}\right) v_{2} \phi\left(v_{2}\right) \ldots v_{i} \phi\left(v_{l}\right) v_{l} \phi\left(v_{l-1}\right) \ldots v_{i+2} \phi\left(v_{i+1}\right) v_{i+1}$, equivalently $v_{1} \psi\left(v_{1}\right) v_{2} \psi\left(v_{2}\right) \ldots v_{i} \psi\left(v_{i}\right) v_{l} \psi\left(v_{l}\right) \ldots v_{i+2} \psi\left(v_{i+2}\right) v_{i+1}$. This path has the same length as \mathcal{P}_{ϕ}, so it is also a longest path. Moreover, notice that the sets of last $r+1$ vertices of both paths are the same. Thus we can apply Claim 1 to conclude that $\phi\left(v_{i}\right)=\psi\left(v_{i+1}\right) \subset$ $\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\}$, as desired.

Claim 2 shows that there are r hyperedges (each of size r) contained in the set $S:=$ $\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\}$ of size $r+1$. We will apply Lemma 1 to S.

Claim 3. The set $S=\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\}$ induces a block of $\partial_{2}(\mathcal{H})$.
Proof. Since the set $S=\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\}$ contains $r \geq 3$ hyperedges every pair $x, y \in S$ is contained in some hyperedge. Thus $\partial_{2}(\mathcal{H}[S])=K_{r+1}$. Consider a (maximal) block D of $\partial_{2}(\mathcal{H})$ containing S.

Suppose D contains a vertex $t \notin S$. Then since D is 2 -connected, there are two paths P_{1}, P_{2} in $\partial_{2}(\mathcal{H})$ between t and S, which are vertex-disjoint besides t. Let $V\left(P_{1}\right) \cap S=\{u\}$ and $V\left(P_{2}\right) \cap S=\{v\}$. For each edge $x y \in E\left(P_{1}\right) \cup E\left(P_{2}\right)$, fix an arbitrary hyperedge $h_{x y}$ of \mathcal{H} containing $x y$. It is easy to see that a subset of the hyperedges $\left\{h_{x y} \mid x y \in E\left(P_{1}\right) \cup E\left(P_{2}\right)\right\}$ forms a Berge path \mathcal{P} between u and v.

On the other hand, by Lemma 1, there is a Berge path \mathcal{P}^{\prime} of length r between u and v consisting of the r hyperedges contained in S. Note that \mathcal{P} and \mathcal{P}^{\prime} do not share any hyperedges (indeed, each hyperedge of \mathcal{P} contains a vertex not in S, while hyperedges of \mathcal{P}^{\prime}
are contained in S). Therefore, $\mathcal{P} \cup \mathcal{P}^{\prime}$ forms a Berge cycle of length $r+2$ or longer unless \mathcal{P} consists of only one hyperedge, say h. Note that h contains a vertex $x \notin S$ and $u, v \in h$; moreover by property (2), h is not a cut-hyperedge of \mathcal{H}. So after deleting h from \mathcal{H}, the hypergraph $\mathcal{H} \backslash\{h\}$ is still connected - so there is a (shortest) Berge path \mathcal{Q} in $\mathcal{H} \backslash\{h\}$ between x and a vertex $s \in S$ (note that the hyperedges of \mathcal{Q} are not contained in S). The vertex s is different from either u or v, say $s \neq u$ without loss of generality. By Lemma 1 , there is a Berge path \mathcal{Q}^{\prime} of length r between s and u (consisting of hyperedges contained in $S)$. Then, $\mathcal{Q}, \mathcal{Q}^{\prime}$ and h form a Berge cycle of length at least $r+2$, a contradiction. Therefore, D contains no vertex outside S; thus S induces a block of $\partial_{2}(\mathcal{H})$, as required.

Let $D_{1}, D_{2}, \ldots, D_{p}$ be the unique decomposition of $\partial_{2}(\mathcal{H})$ into 2 -connected blocks. Claim 3 shows that one of these blocks, say D_{1}, is induced by S. Let us contract the vertices of S to a single vertex, to produce a new hypergraph \mathcal{H}^{\prime}. Then it is clear that the block decomposition of $\partial_{2}\left(\mathcal{H}^{\prime}\right)$ consists of the blocks D_{2}, \ldots, D_{p}. So \mathcal{H}^{\prime} does not contain any Berge cycle of length $r+2$ or longer, as well; moreover $\left|V\left(\mathcal{H}^{\prime}\right)\right|=|V(\mathcal{H})|-r$. Thus, by induction, we have $e\left(\mathcal{H}^{\prime}\right) \leq \frac{r+1}{r}\left(\left|V\left(\mathcal{H}^{\prime}\right)\right|-1\right)$. Therefore,

$$
e(\mathcal{H}) \leq \frac{r+1}{r}\left(\left|V\left(\mathcal{H}^{\prime}\right)\right|-1\right)+(r+1)=\frac{r+1}{r}(|V(\mathcal{H})|-r-1)+(r+1)=\frac{r+1}{r}(|V(\mathcal{H})|-1) .
$$

Now if $e(\mathcal{H})=\frac{r+1}{r}(|V(\mathcal{H})|-1)$, then we must have $e\left(\mathcal{H}^{\prime}\right)=\frac{r+1}{r}\left(\left|V\left(\mathcal{H}^{\prime}\right)\right|-1\right)$ and S must contain all $r+1$ subsets of size r (i.e., $\mathcal{H}[S]=\mathcal{H}\left[D_{1}\right]=K_{r+1}^{r}$). Moreover, since equality holds for \mathcal{H}^{\prime}, by induction, $\partial_{2}\left(\mathcal{H}^{\prime}\right)$ is connected and for each block D_{i} (with $2 \leq i \leq p$) of $\partial_{2}\left(\mathcal{H}^{\prime}\right), D_{i}=K_{r+1}$ and $\mathcal{H}^{\prime}\left[D_{i}\right]=K_{r+1}^{r}$. This means that for every block D of $\partial_{2}(\mathcal{H})$, we have $D=K_{r+1}$ and $\mathcal{H}[D]=K_{r+1}^{r}$, completing the proof.

4 Proof of Theorem 5 ($k=r+1$)

The proof is similar to that of Theorem 4 but there are many important differences.
We use induction on n. For the base cases, notice that the statement of the theorem is trivially true if $1 \leq n \leq r$. Moreover, if $n=r+1$, then $e(\mathcal{H}) \leq r$ because otherwise, $\mathcal{H}=K_{r+1}^{r}$ and then it is easy to see that there is a (Hamiltonian) Berge cycle of length $r+1$ in \mathcal{H}, a contradiction. Therefore, $e(\mathcal{H}) \leq r=n-1$. Moreover, equality holds if and only if $\partial_{2}(\mathcal{H})=K_{r+1}$ and \mathcal{H} consists of r hyperedges.

We will show the statement is true for n assuming it is true for all smaller values. Let \mathcal{H} be an r-uniform hypergraph on n vertices having no Berge cycle of length $r+1$ or longer. We show that we may assume the following two properties hold for \mathcal{H}.
(1) For any set $S \subseteq V(\mathcal{H})$ with $|S| \leq|V(\mathcal{H})|-1=n-1$, the number of hyperedges of \mathcal{H} incident to the vertices of S is at least $|S|$.
Indeed, suppose there is a set $S \subset V(\mathcal{H})$ (i.e., $|S| \leq|V(\mathcal{H})|-1$) with fewer than $|S|$ hyperedges incident to the vertices of S. We delete the vertices of S from \mathcal{H} to obtain a new hypergraph \mathcal{H}^{\prime} on $n-|S|$ vertices. By induction, \mathcal{H}^{\prime} contains at most $(n-|S|-1)$ hyperedges, so \mathcal{H} contains less than $(n-1-|S|)+|S|=(n-1)$ hyperedges, as required.
(2) There is no cut-hyperedge in \mathcal{H}.

Indeed, if $h \in E(\mathcal{H})$ is a cut-hyperedge, then $\partial_{2}(\mathcal{H} \backslash\{h\})$ is not a connected graph, so there are disjoint non-empty sets V_{1} and V_{2} such that $V(\mathcal{H})=V_{1} \cup V_{2}$ and there are no edges of $\partial_{2}(\mathcal{H} \backslash\{h\})$ between V_{1} and V_{2}. So the hypergraphs $\mathcal{H}\left[V_{1}\right]$ and $\mathcal{H}\left[V_{2}\right]$ do not contain a Berge cycle of length $r+1$ or longer. Therefore, by induction, $e\left(\mathcal{H}\left[V_{1}\right]\right) \leq\left|V_{1}\right|-1$ and $e\left(\mathcal{H}\left[V_{2}\right]\right) \leq\left|V_{2}\right|-1$. In total, $e(\mathcal{H})=e\left(\mathcal{H}\left[V_{1}\right]\right)+e\left(\mathcal{H}\left[V_{2}\right]\right)+1 \leq$ $\left(\left|V_{1}\right|+\left|V_{2}\right|-2\right)+1=|V(\mathcal{H})|-1$, as desired.
Moreover, we claim that the equality $e(\mathcal{H})=|V(\mathcal{H})|-1$ cannot hold in this case (i.e., if there is a cut-hyperedge). Indeed, if equality holds, then we must have $e\left(\mathcal{H}\left[V_{1}\right]\right)=$ $\left|V_{1}\right|-1$ and $e\left(\mathcal{H}\left[V_{2}\right]\right)=\left|V_{2}\right|-1$. Notice that since $r \geq 3$, the hyperedge h either contains at least two vertices $x, y \in V_{1}$ or two vertices $x, y \in V_{2}$. Without loss of generality, assume the former is true. By induction, $\partial_{2}\left(\mathcal{H}\left[V_{1}\right]\right)$ is connected and for every block D of $\partial_{2}\left(\mathcal{H}\left[V_{1}\right]\right)$, we have $D=K_{r+1}$ and the subhypergraph induced by D consists of r hyperedges. So by Lemma 1, there is a Berge path of length r (consisting of the r hyperedges induced by D) between any two vertices of a block D. Then it is easy to see that since $\partial_{2}\left(\mathcal{H}\left[V_{1}\right]\right)$ is connected, there is a Berge path \mathcal{P} of length at least r between any two vertices of V_{1}, so in particular between x and y. Then \mathcal{P} together with h forms a Berge cycle of length $r+1$ in \mathcal{H}, a contradiction.

Consider an auxiliary bipartite graph B consisting of vertices of \mathcal{H} in one class and hyperedges of \mathcal{H} on the other class. Then property (1) shows that Hall's condition holds for all subsets of $V(\mathcal{H})$ of size up to $|V(\mathcal{H})|-1$. Therefore, there is a matching in B that matches all the vertices in $V(\mathcal{H})$, except at most one vertex, say x. In other words, there exists an injection $f: V(\mathcal{H}) \backslash\{x\} \rightarrow E(\mathcal{H})$ such that for every $v \in V(\mathcal{H}) \backslash\{x\}$, we have $v \in f(v)$. Given an injection $f: V(\mathcal{H}) \backslash\{x\} \rightarrow E(\mathcal{H})$ with $v \in f(v)$, let \mathcal{P}_{f} be a longest Berge path of the form $v_{1} f\left(v_{1}\right) v_{2} f\left(v_{2}\right) \ldots v_{l-1} f\left(v_{l-1}\right) v_{l}$ where for each $1 \leq i \leq l-1, v_{i+1} \in f\left(v_{i}\right)$. Moreover, among all injections $f: V(\mathcal{H}) \backslash\{x\} \rightarrow E(\mathcal{H})$ with $v \in f(v)$, suppose $\phi: V(\mathcal{H}) \backslash\{x\} \rightarrow E(\mathcal{H})$ is an injection for which the path $\mathcal{P}_{\phi}=v_{1} \phi\left(v_{1}\right) v_{2} \phi\left(v_{2}\right) \ldots v_{l-1} \phi\left(v_{l-1}\right) v_{l}$ is a longest path.

Because of the way \mathcal{P}_{ϕ} was constructed, it is also clear that $x \notin\left\{v_{1}, v_{2}, \ldots, v_{l-1}\right\}$. We consider two cases depending on whether v_{l} is equal to x or not.

Case 1: $v_{l} \neq x$. Our aim is to get a contradiction, and show that this case is impossible.
Claim 4. If $v_{l} \neq x$, then $\phi\left(v_{l}\right)=\left\{v_{l-r+1}, v_{l-r+2}, \ldots, v_{l}\right\}$.
Proof. If $v_{l} \neq x$, then we claim $\phi\left(v_{l}\right)=\left\{v_{l-r+1}, v_{l-r+2}, \ldots, v_{l}\right\}$. Indeed, if $\phi\left(v_{l}\right)$ contains a vertex $v_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{l-r}\right\}$, then the Berge cycle $v_{i} \phi\left(v_{i}\right) v_{i+1} \phi\left(v_{i+1}\right) \ldots v_{l} \phi\left(v_{l}\right) v_{i}$ is of length $r+1$ or longer, a contradiction. Moreover, if $\phi\left(v_{l}\right)$ contains a vertex $v \notin\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$, then P_{ϕ} can be extended to a longer path $v_{1} \phi\left(v_{1}\right) v_{2} \phi\left(v_{2}\right), \ldots, v_{l-1} \phi\left(v_{l-1}\right) v_{l} \phi\left(v_{l}\right) v$, a contradiction again, proving that $\phi\left(v_{l}\right)=\left\{v_{l-r+1}, v_{l-r+2}, \ldots, v_{l}\right\}$.

Fix some $i \in\{l-r+1, l-r+2, \ldots, l-1\}$. Let us define a new injection $\psi: V(\mathcal{H}) \backslash$ $\{x\} \rightarrow E(\mathcal{H})$ as follows: $\psi(v)=\phi(v)$ for every $v \notin\left\{x, v_{1}, v_{2}, \ldots, v_{l}\right\}$, and for every $v \in$ $\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$. Moreover, let $\psi\left(v_{i}\right)=\phi\left(v_{l}\right)$ and $\psi\left(v_{k}\right)=\phi\left(v_{k-1}\right)$ for each $l \geq k \geq$
$i+1$. Now consider the Berge path $v_{1} \phi\left(v_{1}\right) v_{2} \phi\left(v_{2}\right) \ldots v_{i} \phi\left(v_{l}\right) v_{l} \phi\left(v_{l-1}\right) \ldots v_{i+2} \phi\left(v_{i+1}\right) v_{i+1}$ $=v_{1} \psi\left(v_{1}\right) v_{2} \psi\left(v_{2}\right) \ldots v_{i} \psi\left(v_{i}\right) v_{l} \psi\left(v_{l}\right) \ldots v_{i+2} \psi\left(v_{i+2}\right) v_{i+1}$. This path has the same length as \mathcal{P}_{ϕ}, so it is also a longest path. Moreover, $v_{i+1} \neq x$, so we can apply Claim 4 to conclude that $\psi\left(v_{i+1}\right)=\left\{v_{l-r+1}, v_{l-r+2}, \ldots, v_{l}\right\}=\phi\left(v_{i}\right)$. But then $\phi\left(v_{i}\right)=\phi\left(v_{l}\right)$, a contradiction to the fact that ϕ was an injection.

Case 2: $v_{l}=x$.
Claim 5. $\phi\left(v_{l-1}\right) \subset\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l}\right\}$.
Proof. If $\phi\left(v_{l-1}\right)$ contains a vertex $v \notin\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$, then we consider the Berge path $v_{1} \phi\left(v_{1}\right) v_{2} \phi\left(v_{2}\right), \ldots, v_{l-1} \phi\left(v_{l-1}\right) v$. Since $v \neq x$, we get a contradiction by Case 1. Moreover, if $\phi\left(v_{l-1}\right)$ contains a vertex v_{i} with $i \in\{1,2, \ldots, l-r-1\}$, then the Berge cycle $v_{i} \phi\left(v_{i}\right) v_{i+1} \phi\left(v_{i+1}\right) \ldots v_{l-1} \phi\left(v_{l-1}\right) v_{i}$ is of length $r+1$ or longer, a contradiction. This finishes the proof of the claim.

By Claim 5, we know that $\phi\left(v_{l-1}\right)=\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\} \backslash\left\{v_{j}\right\}$ for some j with $l-r \leq j \leq l-2$. (From now, in the rest of the proof we fix this j.)

Claim 6. For any $i \in\{l-r, l-r+1, \ldots, l-1\} \backslash\{j\}$, we have $\phi\left(v_{i}\right) \subset\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\}$.
Proof. When $i=l-1$, we know the statement is true by Claim 5,
Suppose $i \in\{l-r, l-r+1, \ldots, l-2\} \backslash\{j\}$. Let us define a new injection $\psi: V(\mathcal{H}) \backslash$ $\{x\} \rightarrow E(\mathcal{H})$ as follows: $\psi(v)=\phi(v)$ for every $v \notin\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$, and for every $v \in$ $\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$. Moreover, let $\psi\left(v_{i}\right)=\phi\left(v_{l-1}\right)$ and $\psi\left(v_{k}\right)=\phi\left(v_{k-1}\right)$ for each $l-1 \geq$ $k \geq i+1$. Now consider the Berge path $v_{1} \phi\left(v_{1}\right) v_{2} \phi\left(v_{2}\right) \ldots v_{i} \phi\left(v_{l-1}\right) v_{l-1} \phi\left(v_{l-2}\right) \ldots v_{i+1}=$ $v_{1} \psi\left(v_{1}\right) v_{2} \psi\left(v_{2}\right) \ldots v_{i} \psi\left(v_{i}\right) v_{l-1} \psi\left(v_{l-1}\right) \ldots v_{i+1}$. (Note that when $i=l-2$, the Berge path is simply $\left.v_{1} \phi\left(v_{1}\right) v_{2} \phi\left(v_{2}\right) \ldots v_{i} \phi\left(v_{l-1}\right) v_{l-1}=v_{1} \psi\left(v_{1}\right) v_{2} \psi\left(v_{2}\right) \ldots v_{i} \psi\left(v_{i}\right) v_{l-1}.\right)$

If $\psi\left(v_{i+1}\right)$ contains a vertex $v \notin\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$, then the Berge path $v_{1} \psi\left(v_{1}\right) v_{2} \psi\left(v_{2}\right)$ $\ldots v_{i} \psi\left(v_{i}\right) v_{l-1} \psi\left(v_{l-1}\right) \ldots v_{i+2} \psi\left(v_{i+2}\right) v_{i+1} \psi\left(v_{i+1}\right) v$ has the same length as \mathcal{P}_{ϕ}, so it is also a longest path. Moreover, since $v \neq x$, we get a contradiction by Case 1 .

If $\psi\left(v_{i+1}\right)$ contains a vertex $v_{k} \in\left\{v_{1}, v_{2}, \ldots, v_{l-r-1}\right\}$ then one can see that the Berge cycle $v_{k} \psi\left(v_{k}\right) v_{k+1} \psi\left(v_{k+1}\right) \ldots v_{l-1} \psi\left(v_{l-1}\right) v_{k}$ is of length $r+1$ or longer, a contradiction. Therefore, we have $\psi\left(v_{i+1}\right) \subset\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l}\right\}$. But we defined $\psi\left(v_{i+1}\right)=\phi\left(v_{i}\right)$, proving the claim.

Note that Claim 6] shows that $r-1$ hyperedges of \mathcal{H} are contained in a set $S:=$ $\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\}$ of size $r+1$. The following claim shows that if we can find one more hyperedge of \mathcal{H} contained in S, then S must induce a block of $\partial_{2}(\mathcal{H})$.

Claim 7. Suppose $r \geq 3$. If a set S of size $r+1$ contains r hyperedges of \mathcal{H} then it induces a induces a block of $\partial_{2}(\mathcal{H})$.

Proof. Since the set S contains at least 3 hyperedges every pair $x, y \in S$ is contained in some hyperedge. Thus $\partial_{2}(\mathcal{H}[S])=K_{r+1}$. Consider a (maximal) block D of $\partial_{2}(\mathcal{H})$ containing S.

Suppose D contains a vertex $t \notin S$. Then since D is 2 -connected, there are two paths P_{1}, P_{2} in $\partial_{2}(\mathcal{H})$ between t and S, which are vertex-disjoint besides t. Let $V\left(P_{1}\right) \cap S=\{u\}$
and $V\left(P_{2}\right) \cap S=\{v\}$. For each edge $x y \in E\left(P_{1}\right) \cup E\left(P_{2}\right)$, fix an arbitrary hyperedge $h_{x y}$ of \mathcal{H} containing $x y$. It is easy to see that a subset of the hyperedges $\left\{h_{x y} \mid x y \in E\left(P_{1}\right) \cup E\left(P_{2}\right)\right\}$ forms a Berge path \mathcal{P} between u and v.

On the other hand, by Lemma 1, there is a Berge path \mathcal{P}^{\prime} of length r between u and v consisting of the r hyperedges contained in S. Note that \mathcal{P} and \mathcal{P}^{\prime} do not share any hyperedges (indeed, each hyperedge of \mathcal{P} contains a vertex not in S, while hyperedges of \mathcal{P}^{\prime} are contained in S). Therefore, \mathcal{P} together with \mathcal{P}^{\prime} forms a Berge cycle of length $r+1$ or longer, a contradiction. Therefore, D contains no vertex outside S; thus S induces a block of $\partial_{2}(\mathcal{H})$, as required.

We will use the above claim several times later. At this point we need to distinguish the cases $r=3$ and $r \geq 4$, since Lemma 2 only applies in the latter case.

The case $r \geq 4$

Since $r \geq 4$, by Claim 6 and Lemma 2 there is a Berge path of length $r-1$ between any two vertices of $S=\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\}$. This will allow us to show the following.

Claim 8. $\phi\left(v_{j}\right) \subset\left\{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_{l}\right\}=S$
Proof. Suppose for a contradiction that $\phi\left(v_{j}\right)$ contains a vertex $v \notin S$. The hyperedge $\phi\left(v_{j}\right)$ contains at least two vertices from S, namely v_{j} and v_{j+1}. By property (2), $\phi\left(v_{j}\right)$ is not a cut-hyperedge of \mathcal{H}. So after deleting $\phi\left(v_{j}\right)$ from \mathcal{H}, the hypergraph $\mathcal{H} \backslash\left\{\phi\left(v_{j}\right)\right\}$ is still connected - so there is a (shortest) Berge path \mathcal{Q} in $\mathcal{H} \backslash\left\{\phi\left(v_{j}\right)\right\}$ between v and a vertex $s \in S$ (note that the hyperedges of \mathcal{Q} are not contained in S). The vertex s is different from either v_{j} or v_{j+1}, say $s \neq v_{j}$, without loss of generality. By Lemma 2, there is a Berge path \mathcal{Q}^{\prime} of length $r-1$ between s and v_{j} (consisting of the hyperedges contained in S). Then $\mathcal{Q}, \mathcal{Q}^{\prime}$ and $\phi\left(v_{j}\right)$ form a Berge cycle of length at least $r+1$ in \mathcal{H}, a contradiction.

Claim 6 and Claim 8 together show that there are at least r hyperedges of \mathcal{H} contained in S. If all $r+1$ subsets of S of size r are hyperedges of \mathcal{H}, then S induces K_{r+1}^{r} and it is easy to show that it contains a Berge cycle of length $r+1$, a contradiction. This means S contains exactly r hyperedges of \mathcal{H}. Then by Claim 7 , we know that S induces a block of $\partial_{2}(\mathcal{H})$.

Let $D_{1}, D_{2}, \ldots, D_{p}$ be the unique decomposition of $\partial_{2}(\mathcal{H})$ into 2 -connected blocks. Claim 7 shows that one of these blocks, say D_{1}, is induced by S. Let us contract the vertices of S to a single vertex, to produce a new hypergraph \mathcal{H}^{\prime}. Then it is clear that the block decomposition of $\partial_{2}\left(\mathcal{H}^{\prime}\right)$ consists of the blocks D_{2}, \ldots, D_{p}. So \mathcal{H}^{\prime} does not contain any Berge cycle of length $r+1$ or longer, as well; moreover, $\left|V\left(\mathcal{H}^{\prime}\right)\right|=|V(\mathcal{H})|-r$ and $e\left(\mathcal{H}^{\prime}\right)=e(\mathcal{H})-r$. By induction, we have $e\left(\mathcal{H}^{\prime}\right) \leq\left|V\left(\mathcal{H}^{\prime}\right)\right|-1$. Therefore,

$$
e(\mathcal{H})=e\left(\mathcal{H}^{\prime}\right)+r \leq\left(\left|V\left(\mathcal{H}^{\prime}\right)\right|-1\right)+r=(|V(\mathcal{H})|-r-1)+r=|V(\mathcal{H})|-1 .
$$

If $e(\mathcal{H})=|V(\mathcal{H})|-1$, then we must have $e\left(\mathcal{H}^{\prime}\right)=\left|V\left(\mathcal{H}^{\prime}\right)\right|-1$ and S must contain exactly r hyperedges. Moreover, since equality holds for \mathcal{H}^{\prime}, by induction, $\partial_{2}\left(\mathcal{H}^{\prime}\right)$ is connected and
for each block D_{i} (with $2 \leq i \leq p$) of $\partial_{2}\left(\mathcal{H}^{\prime}\right), D_{i}=K_{r+1}$ and $\mathcal{H}^{\prime}\left[D_{i}\right]$ contains exactly r hyperedges. This means that for every block D of $\partial_{2}(\mathcal{H})$, we have $D=K_{r+1}$ and $\mathcal{H}[D]$ contains exactly r hyperedges, completing the proof in the case $r \geq 4$.

The case $r=3$

Recall that using Claim 6 we can find a set S of size 4 which contains 2 hyperedges of \mathcal{H}. Let $S=\{x, y, a, b\}$ and the two hyperedges be $x a b$ and $y a b$. By property (2), $x a b$ is not a cuthyperedge of \mathcal{H}. So after deleting $x a b$ from \mathcal{H}, the hypergraph $\mathcal{H} \backslash\{x a b\}$ is still connected - so there is a (shortest) Berge path \mathcal{Q} between x and $\{y, a, b\}$. If \mathcal{Q} is of length at least 2 , then it is easy to see that \mathcal{Q} together with $y a b$ and $x a b$ form a Berge cycle of length at least 4 , a contradiction. So \mathcal{Q} consists of only one hyperedge, say h.

Our goal is to find a set of vertices which induces a block of $\partial_{2}(\mathcal{H})$, so that we can apply induction.

If $|h \cap\{y, a, b\}|=2$ then $h, x a b, y a b$ are 3 hyperedges of \mathcal{H} contained in S, so by Claim 7, we can conclude that S induces a block of $\partial_{2}(\mathcal{H})$. (Notice that S contains exactly $|S|-1=3$ hyperedges of \mathcal{H}, otherwise it is easy to find a Berge cycle of length 4; this will be useful later.) So we can suppose $|h \cap\{y, a, b\}|=1$. We consider two cases depending on whether h is either xat or $x b t$, or whether h is $x y t$ for some $t \notin S$.

Case 1. First suppose without loss of generality that $h=x a t$ for some $t \notin S$. Consider the set \mathcal{D} of all hyperedges of \mathcal{H} containing the pairs $x a, a b$ or $x b$ and let D be the set of vertices spanned by them. For each pair of vertices $i, j \in\{x, a, b\}$, let $V_{i j}=\{v \mid i j v \in$ $\mathcal{H}\} \backslash\{x, a, b\}$. We claim that the sets $V_{x a}, V_{a b}, V_{x b}$ are pairwise disjoint. Suppose for the sake of a contradiction that $t^{\prime} \in V_{x a} \cap V_{a b}$. Then the hyperedges $x a t^{\prime}, a b t^{\prime}, x a b$ are contained in a set of 4 vertices $\left\{x, a, b, t^{\prime}\right\}$. Thus by Claim 7, this set induces a block of $\partial_{2}(\mathcal{H})$ and we are done (we found the desired block!). Thus we can suppose $V_{x a} \cap V_{a b}=\emptyset$. Similarly $V_{a b} \cap V_{x b}=\emptyset$ and $V_{x a} \cap V_{x b}=\emptyset$. This shows that $|D|=3+\left|V_{x a}\right|+\left|V_{x b}\right|+\left|V_{a b}\right|$. On the other hand, \mathcal{D} consists of $1+\left|V_{x a}\right|+\left|V_{x b}\right|+\left|V_{a b}\right|$ hyperedges, so $|\mathcal{D}|=|D|-2$.

We will now show that D induces a block of $\partial_{2}(\mathcal{H})$. Let D^{\prime} be a (maximal) block of $\partial_{2}(\mathcal{H})$ containing D and suppose for the sake of a contradiction that it contains a vertex $p \notin D$. Then since D^{\prime} is 2-connected, there are two paths P_{1}, P_{2} in $\partial_{2}(\mathcal{H})$ between p and D, which are vertex-disjoint besides p. Let $V\left(P_{1}\right) \cap D=\{u\}$ and $V\left(P_{2}\right) \cap D=\{v\}$. For each edge $x y \in E\left(P_{1}\right) \cup E\left(P_{2}\right)$, fix an arbitrary hyperedge $h_{x y}$ of \mathcal{H} containing $x y$. It is easy to see that a subset of the hyperedges $\left\{h_{x y} \mid x y \in E\left(P_{1}\right) \cup E\left(P_{2}\right)\right\}$ forms a Berge path \mathcal{P} between u and v. If $u v \notin\{x a, a b, x b\}$, then it is easy to see that there is a path \mathcal{P}^{\prime} of length 3 between u and v consisting of the hyperedges of \mathcal{D}. Then \mathcal{P} together with \mathcal{P}^{\prime} forms a Berge cycle of length at least 4 in \mathcal{H}, a contradiction. On the other hand if $u v \in\{x a, a b, x b\}$, then \mathcal{P} must contain at least two hyperedges of \mathcal{H} because otherwise $\mathcal{P}=\{p u v\}$ but then puv should have been in \mathcal{D} (since by definition \mathcal{D} must contain all the hyperedges of \mathcal{H} containing the pair $u v)$; moreover, it is easy to check that between u and v there is a Berge path \mathcal{P}^{\prime} of length 2 consisting of the hyperedges of \mathcal{D}. Then again, \mathcal{P} together with \mathcal{P}^{\prime} forms a Berge cycle of length at least 4 in \mathcal{H}, a contradiction. Therefore, D^{\prime} contains no vertex outside D; so D
induces a block of $\partial_{2}(\mathcal{H})$ (which contains $|D|-2$ hyperedges of \mathcal{H}), as desired.
Case 2. Finally suppose $h=x y t$ for some $t \notin S$. Let \mathcal{D} be the set of all hyperedges of \mathcal{H} containing the pair $x y$ plus the hyperedges $x a b$ and $y a b$, and let D be the set of vertices spanned by the hyperedges of \mathcal{D}. Let $V_{x y}=\{v \mid x y v \in \mathcal{H}\}$. We claim that $a \notin V_{x y}$ and $b \notin V_{x y}$. Indeed suppose for the sake of a contradiction that $a \in V_{x y}$. Then the hyperedges $x a b, y a b, x y a$ are contained in a set of 4 vertices $\{x, y, a, b\}$. So by Claim 7, this set induces a block of $\partial_{2}(\mathcal{H})$, and we are done. So $a \notin V_{x y}$. Similarly, we can conclude $b \notin V_{x y}$. Therefore, $|D|=\left|V_{x y}\right|+4$. On the other hand, $|\mathcal{D}|=\left|V_{x y}\right|+2$, so $|\mathcal{D}|=|D|-2$.

We claim that D induces a block of $\partial_{2}(\mathcal{H})$. The proof is very similar to that of Case 1, we still give it for completeness. Let D^{\prime} be a (maximal) block of $\partial_{2}(\mathcal{H})$ containing D and suppose for the sake of a contradiction that it contains a vertex $p \notin D$. Then since D^{\prime} is 2-connected, there are two paths P_{1}, P_{2} in $\partial_{2}(\mathcal{H})$ between p and D, which are vertex-disjoint besides p. Let $V\left(P_{1}\right) \cap D=\{u\}$ and $V\left(P_{2}\right) \cap D=\{v\}$. For each edge $x y \in E\left(P_{1}\right) \cup E\left(P_{2}\right)$, fix an arbitrary hyperedge $h_{x y}$ of \mathcal{H} containing $x y$. It is easy to see that a subset of the hyperedges $\left\{h_{x y} \mid x y \in E\left(P_{1}\right) \cup E\left(P_{2}\right)\right\}$ forms a Berge path \mathcal{P} between u and v.

If $u v \neq x y$, then it is easy to see that there is a path \mathcal{P}^{\prime} of length 3 or 4 between u and v consisting of the hyperedges of \mathcal{D}. (Indeed if $u, v \in V_{x y}$, then \mathcal{P}^{\prime} is of length 4 , otherwise it is of length 3.) Then \mathcal{P} together with \mathcal{P}^{\prime} forms a Berge cycle of length at least 4 in \mathcal{H}, a contradiction. On the other hand if $u v=x y$, then \mathcal{P} must contain at least two hyperedges of \mathcal{H} because otherwise $\mathcal{P}=\{p u v\}$ but then puv should have been in \mathcal{D} (since by definition \mathcal{D} must contain all the hyperedges of \mathcal{H} containing the pair $u v)$; moreover, it is easy to check that between u and v there is a Berge path \mathcal{P}^{\prime} of length 2 consisting of the hyperedges of \mathcal{D}. Then again, \mathcal{P} together with \mathcal{P}^{\prime} forms a Berge cycle of length at least 4 in \mathcal{H}, a contradiction. Therefore, D^{\prime} contains no vertex outside D; so D induces a block of $\partial_{2}(\mathcal{H})$ (and contains $|D|-2$ hyperedges of \mathcal{H}), as desired.

Let $D_{1}, D_{2}, \ldots, D_{p}$ be the unique decomposition of $\partial_{2}(\mathcal{H})$ into 2-connected blocks. In Case 1 and Case 2 we showed that one of these blocks, (say) $D_{1}=D$ is such that $\mathcal{H}\left[D_{1}\right]$ contains $\left|D_{1}\right|-2$ hyperedges of \mathcal{H}, otherwise, D_{1} is a set of 4 vertices such that $\mathcal{H}\left[D_{1}\right]$ contains exactly $\left|D_{1}\right|-1=3$ hyperedges of \mathcal{H}. In all these cases, note that $e\left(\mathcal{H}\left[D_{1}\right]\right) \leq\left|D_{1}\right|-1$.

Let us contract the vertices of D_{1} to a single vertex, to produce a new hypergraph \mathcal{H}^{\prime}. Then it is clear that the block decomposition of $\partial_{2}\left(\mathcal{H}^{\prime}\right)$ consists of the blocks D_{2}, \ldots, D_{p}. So \mathcal{H}^{\prime} does not contain any Berge cycle of length 4 or longer, as well; moreover, $\left|V\left(\mathcal{H}^{\prime}\right)\right|=$ $|V(\mathcal{H})|-\left|D_{1}\right|+1$ and $e\left(\mathcal{H}^{\prime}\right)=e(\mathcal{H})-e\left(\mathcal{H}\left[D_{1}\right]\right)$. By induction, we have $e\left(\mathcal{H}^{\prime}\right) \leq\left|V\left(\mathcal{H}^{\prime}\right)\right|-1$. Therefore,
$e(\mathcal{H})=e\left(\mathcal{H}^{\prime}\right)+e\left(\mathcal{H}\left[D_{1}\right]\right) \leq\left|V\left(\mathcal{H}^{\prime}\right)\right|-1+\left|D_{1}\right|-1=\left(|V(\mathcal{H})|-\left|D_{1}\right|+1\right)-1+\left|D_{1}\right|-1=|V(\mathcal{H})|-1$.
If $e(\mathcal{H})=|V(\mathcal{H})|-1$, then we must have $e\left(\mathcal{H}^{\prime}\right)=\left|V\left(\mathcal{H}^{\prime}\right)\right|-1$ and $\mathcal{H}\left[D_{1}\right]$ must contain exactly $\left|D_{1}\right|-1$ hyperedges. As noted before, this is only possible if D_{1} has 4 vertices and induces exactly 3 hyperedges of \mathcal{H}. Moreover, since equality holds for \mathcal{H}^{\prime}, by induction, $\partial_{2}\left(\mathcal{H}^{\prime}\right)$ is connected and for each block $D_{i}($ with $2 \leq i \leq p)$ of $\partial_{2}\left(\mathcal{H}^{\prime}\right), D_{i}=K_{4}$ and $\mathcal{H}^{\prime}\left[D_{i}\right]$ contains exactly 3 hyperedges. This means for every block D of $\partial_{2}(\mathcal{H})$, we have $D=K_{4}$ and $\mathcal{H}[D]$ contains exactly 3 hyperedges of \mathcal{H}, completing the proof in the case $r=3$.

Acknowledgment

The research of the authors is partially supported by the National Research, Development and Innovation Office NKFIH, grant K116769.

References

[1] A. Davoodi, E. Győri, A. Methuku, C. Tompkins. An Erdős-Gallai type theorem for uniform hypergraphs. European Journal of Combinatorics 69 (2018): 159-162.
[2] P. Erdős, T. Gallai. On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar. 10 (1959): 337-356.
[3] Z. Füredi, A. Kostochka, R. Luo. Avoiding long Berge cycles. arXiv preprint arXiv:1805.04195 (2018).
[4] Z. Füredi, A. Kostochka, R. Luo. Avoiding long Berge cycles II, exact bounds for all n. arXiv preprint arXiv:1807.06119 (2018).
[5] D. Gerbner and C. Palmer. Extremal results for Berge-hypergraphs. SIAM Journal on Discrete Mathematics, 31.4 (2017): 2314-2327.
[6] D. Gerbner, A. Methuku and M. Vizer. Asymptotics for the Turán number of Berge- $K_{2, t}$. arXiv preprint arXiv:1705.04134 (2017).
[7] D. Grósz, A. Methuku and C. Tompkins. Uniformity thresholds for the asymptotic size of extremal Berge-F-free hypergraphs. arXiv preprint arXiv:1803.01953 (2017).
[8] E. Győri, G. Y. Katona, N. Lemons. Hypergraph extensions of the Erdős-Gallai Theorem. European Journal of Combinatorics 58 (2016) 238-246.
[9] E. Győri, A. Methuku, N. Salia, C. Tompkins, M. Vizer. On the maximum size of connected hypergraphs without a path of given length. Discrete Mathematics 341(9) (2018): 2602-2605
[10] A. Kostochka, and R. Luo. On r-uniform hypergraphs with circumference less than r. arXiv preprint arXiv:1807.04683 (2018).

