Avoiding long Berge cycles, the missing cases k = r + 1 and k = r + 2

Beka Ergemlidze¹Ervin Győri^{1,2}Abhishek Methuku¹Nika Salia¹Casey Tompkins²Oscar Zamora^{1,3}

¹Central European University, Budapest. {abhishekmethuku,beka.ergemlidze}@gmail.com, Salia_Nika@phd.ceu.edu, oscarz93@yahoo.es
²Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. gyori.ervin@renyi.mta.hu, ctompkins496@gmail.com
³Universidad de Costa Rica, San José.

August 24, 2018

Abstract

The maximum size of an r-uniform hypergraph without a Berge cycle of length at least k has been determined for all $k \ge r+3$ by Füredi, Kostochka and Luo and for k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper, we settle the remaining cases: k = r+1 and k = r+2, proving a conjecture of Füredi, Kostochka and Luo.

Given a hypergraph \mathcal{H} , let $V(\mathcal{H})$ and $E(\mathcal{H})$ denote the set of vertices and hyperedges of \mathcal{H} , respectively, and let $e(\mathcal{H}) = |E(\mathcal{H})|$. A hypergraph is called *r*-uniform if all of its hyperedges have size *r*. For convenience, we refer to an *r*-uniform hypergraph as an *r*-graph. Berge introduced the following definitions of a cycle and a path in a hypergraph.

Definition 1. A Berge cycle of length l in a hypergraph is a set of l distinct vertices $\{v_1, \ldots, v_l\}$ and l distinct hyperedges $\{e_1, \ldots, e_l\}$ such that $\{v_i, v_{i+1}\} \subseteq e_i$ with indices taken modulo l.

A Berge path of length l in a hypergraph is a set of l+1 distinct vertices v_1, \ldots, v_{l+1} and l distinct hyperedges e_1, \ldots, e_l such that $\{v_i, v_{i+1}\} \subseteq e_i$ for all $1 \leq i \leq l$. We say that such a Berge path is between v_1 and v_{l+1} .

Notation 1. Let \mathcal{H} be a hypergraph. Then its 2-shadow, $\partial_2 \mathcal{H}$, is the collection of pairs that lie in some hyperedge of \mathcal{H} . Given a set $S \subseteq V(\mathcal{H})$, the subhypergraph of \mathcal{H} induced by S is denoted by $\mathcal{H}[S]$.

We say \mathcal{H} is connected if $\partial_2(\mathcal{H})$ is a connected graph. A hyperedge $h \in E(\mathcal{H})$ is called a cut-hyperedge of \mathcal{H} if $\mathcal{H} \setminus \{h\} := (V(\mathcal{H}), E(\mathcal{H}) \setminus \{h\})$ is not connected.

When we say D is a block of $\partial_2(\mathcal{H})$, we may either mean D is the vertex-set of the block, or D is the edge-set of the block depending on the context.

1 Background and our results

Győri, Katona and Lemons extended the well-known Erdős-Gallai theorem to hypergraphs by showing the following.

Theorem 1 (Győri, Katona, Lemons [8]). Let \mathcal{H} be an *r*-uniform hypergraph with no Berge path of length k. If k > r + 1 > 3, we have

$$e(\mathcal{H}) \le \frac{n}{k} \binom{k}{r}.$$

If $r \geq k > 2$, we have

$$e(\mathcal{H}) \le \frac{n(k-1)}{r+1}.$$

For the case k = r + 1, Győri, Katona and Lemons conjectured that the upper bound should have the same form as the k > r + 1 case. This was settled by Davoodi, Győri, Methuku and Tompkins [1] who showed the following.

Theorem 2 (Davoodi, Győri, Methuku, Tompkins [1]). Fix k = r + 1 > 2 and let \mathcal{H} be an *r*-uniform hypergraph containing no Berge path of length k. Then,

$$e(\mathcal{H}) \le \frac{n}{k} \binom{k}{r} = n.$$

The bounds in the above two theorems are sharp for each k and r for infinitely many n. Győri, Methuku, Salia, Tompkins and Vizer [9] proved a significantly smaller upper bound on the maximum number of hyperedges in an n-vertex r-graph with no Berge path of length k under the assumption that it is connected. Their bound is asymptotically exact when ris fixed and k and n are sufficiently large. The notion of Berge cycles and Berge paths was generalized to arbitrary Berge graphs F by Gerbner and Palmer in [5], and the (3-uniform) Turán number of Berge- $K_{2,t}$ was determined asymptotically in [6]. The general behaviour of the Turán number of Berge-F, as the uniformity increases, was studied in [7].

Recently, Füredi, Kostochka and Luo [3] proved exact bounds similar to Theorem 1 for hypergraphs avoiding long Berge cycles.

Theorem 3 (Füredi, Kostochka, Luo [3]). Let $r \geq 3$ and $k \geq r+3$, and suppose \mathcal{H} is an n-vertex r-graph with no Berge cycle of length k or longer. Then $e(\mathcal{H}) \leq \frac{n-1}{k-2} \binom{k-1}{r}$. Moreover, equality is achieved if and only if $\partial_2(\mathcal{H})$ is connected and for every block D of $\partial_2(\mathcal{H})$, $D = K_{k-1}$ and $\mathcal{H}[D] = K_{k-1}^r$.

Moreover, Kostochka and Luo [10] found exact bounds for $k \leq r - 1$ and asymptotic bounds for k = r. Let us remark that their asymptotic bound in the case k = r also follows from Theorem 5 stated below. (More recently, extending [3], Füredi, Kostochka, Luo [4] proved exact bounds and determined the extremal examples for all n when $k \geq r + 4$.)

The two cases k = r + 2 and k = r + 1 remained open. For the case k = r + 2, Füredi, Kostochka and Luo conjectured [3] that a similar statement as that of Theorem 3 holds and mentioned the answer is unknown for the case k = r + 1. In this paper, we prove this conjecture.

Theorem 4. Let $r \geq 3$ and $n \geq 1$, and suppose \mathcal{H} is an n-vertex r-graph with no Berge cycle of length r + 2 or longer. Then $e(\mathcal{H}) \leq \frac{r+1}{r}(n-1)$. Moreover, equality is achieved if and only if $\partial_2(\mathcal{H})$ is connected and for every block D of $\partial_2(\mathcal{H})$, $D = K_{r+1}$ and $\mathcal{H}[D] = K_{r+1}^r$.

In the case k = r + 1, we prove the following exact result, and characterize the extremal examples.

Theorem 5. Let $r \geq 3$ and $n \geq 1$, and suppose \mathcal{H} is an n-vertex r-graph with no Berge cycle of length r + 1 or longer. Then $e(\mathcal{H}) \leq n - 1$. Moreover, equality is achieved if and only if $\partial_2(\mathcal{H})$ is connected and for every block D of $\partial_2(\mathcal{H})$, $D = K_{r+1}$ and $\mathcal{H}[D]$ consists of r hyperedges.

Note that Theorem 5 easily implies Theorem 2. In fact, it gives the following stronger form. Here we quickly prove this implication.

Theorem 6. Fix k = r + 1 > 2 and let \mathcal{H} be an r-uniform hypergraph containing no Berge path of length k. Then, $e(\mathcal{H}) \leq \frac{n}{k} {k \choose r} = n$. Moreover, equality holds if and only if each connected component D of $\partial_2(\mathcal{H})$ is K_{r+1} , and $\mathcal{H}[D] = K_{r+1}^r$.

Proof. We proceed by induction on n. The base cases $n \leq r+1$ are easy to check. Let \mathcal{H} be an r-uniform hypergraph containing no Berge path of length k = r+1 such that $e(\mathcal{H}) \geq n$. Then by Theorem 5, \mathcal{H} contains a Berge cycle \mathcal{C} of length r+1 or longer. \mathcal{C} must be of length exactly r+1, otherwise it would contain a Berge path of length r+1. Let v_1, \ldots, v_{r+1} and e_1, \ldots, e_{r+1} be the vertices and edges of \mathcal{C} where $\{v_i, v_{i+1}\} \subseteq e_i$ (indices are taken modulo r+1). For any i with $1 \leq i \leq r+1$, if e_i contains a vertex $v \notin \{v_1, \ldots, v_{r+1}\}$, then $v_{i+1}e_{i+1}v_{i+2}e_{i+2}\ldots e_{i-1}v_ie_iv$ forms a Berge path of length r+1 in \mathcal{H} , a contradiction. Therefore, all of the edges e_i (for $1 \leq i \leq r+1$) are contained in the set $S := \{v_1, \ldots, v_{r+1}\}$. That is, $\mathcal{H}[S] = K_{r+1}^r$. It is easy to see that S forms a connected component in $\partial_2(\mathcal{H})$ because if any hyperedge h of \mathcal{H} (with $h \notin \mathcal{C}$) contains a vertex of \mathcal{C} , then \mathcal{C} can be extended to form a Berge path of length r+1.

Let S_1, S_2, \ldots, S_t be the vertex sets of connected components of $\partial_2(\mathcal{H})$. As noted before, one of them, say S_1 , is equal to S. We delete the vertices of S_1 from \mathcal{H} to form a new hypergraph \mathcal{H}' ; note that $|V(\mathcal{H}')| = |V(\mathcal{H})| - (r+1)$ and $|E(\mathcal{H}')| = |E(\mathcal{H})| - (r+1)$ and the connected components of $\partial_2(\mathcal{H}')$ are S_2, \ldots, S_t . By induction $|E(\mathcal{H}')| \leq |V(\mathcal{H}')|$. Thus $|E(\mathcal{H})| = |E(\mathcal{H}')| + (r+1) \leq |V(\mathcal{H}')| + (r+1) = |V(\mathcal{H})|$. Moreover, if $|E(\mathcal{H})| = |V(\mathcal{H})|$, then $|E(\mathcal{H}')| = |V(\mathcal{H}')|$, so by the induction hypothesis each connected component S_i $(i \geq 2)$ of $\partial_2(\mathcal{H}')$ is K_{r+1} , and $\mathcal{H}'[S_i] = K_{r+1}^r$, proving the theorem.

Structure of the paper: In Section 2, we prove some basic lemmas which are used in our proofs. In Section 3, we prove Theorem 4, and in Section 4, we prove Theorem 5.

2 Basic Lemmas

We will use the following two lemmas.

Lemma 1. For any $r \ge 3$, if a set S of size r+1 contains r hyperedges of size r, then between any two vertices $u, v \in S$, there is a Berge path of length r consisting of these hyperedges.

Proof. Let \mathcal{H} be the hypergraph consisting of r hyperedges on r + 1 vertices. First notice that for any pair of vertices $x, y \in S$, the number of hyperedges $h \subset S$ such that $\{x, y\} \not\subset h$ is at most 2. (Indeed, there is at most one hyperedge that does not contain x and at most one hyperedge that does not contain y.) This means that every pair $x, y \in S$ is contained in some hyperedge, as there are at least 3 hyperedges contained in S. In other words, $\partial_2(\mathcal{H}) = K_{r+1}$.

Consider an arbitrary path x_1x_2, \ldots, x_{r+1} of length r in the $\partial_2(\mathcal{H})$ connecting $u = x_1$ and $v = x_{r+1}$. We want to show that there are distinct hyperedges containing the pairs x_ix_{i+1} for each $1 \leq i \leq r$. To this end, we consider an auxiliary bipartite graph with pairs $\{x_1x_2, x_2x_3, \ldots, x_rx_{r+1}\}$ in one class and the r hyperedges $h \subset S$ in the other class, and a pair is connected to a hyperedge if it is contained in the hyperedge. We will show that Hall's condition holds: As noted before, every pair is contained in a hyperedge. Given any two distinct pairs x_ix_{i+1} and x_jx_{j+1} , there is at most one hyperedge that does not contain either of them; i.e., at least r - 1 hyperedges contain one of them. Thus we need $2 \leq r - 1$ for Hall's condition to hold, but this is true as we assumed $r \geq 3$. Moreover, if we take any $3 \leq j \leq r$ distinct pairs, then every hyperedge contains one of them. Therefore, we need $j \leq r$, but this is true by assumption. This finishes the proof of the lemma.

Lemma 2. For any $r \ge 4$, if a set S of size r + 1 contains r - 1 hyperedges of size r, then between any two vertices $u, v \in S$, there is a Berge path of length r - 1 consisting of these hyperedges.

Proof. The proof is similar to that of Lemma 1. Let \mathcal{H} be the hypergraph consisting of r-1 hyperedges on r+1 vertices. First notice that for any pair of vertices $x, y \in S$, the number of hyperedges $h \subset S$ such that $\{x, y\} \not\subset h$ is at most 2. This means that every pair $x, y \in S$ is contained in some hyperedge, as there are at least $r-1 \geq 3$ hyperedges contained in S. In other words, $\partial_2(\mathcal{H}) = K_{r+1}$.

Consider an arbitrary path $x_1x_2...x_r$ of length r-1 in the $\partial_2(\mathcal{H})$ connecting $u = x_1$ and $v = x_r$. We want to show that there are distinct hyperedges containing the pairs x_ix_{i+1} for each $1 \leq i \leq r-1$. To this end, we consider an auxiliary bipartite graph with pairs $\{x_1x_2, x_2x_3, \ldots, x_{r-1}x_r\}$ in one class and the r-1 hyperedges $h \subset S$ in the other class, and a pair is connected to a hyperedge if it is contained in the hyperedge. We show that Hall's condition holds: As noted before, every pair is contained in a hyperedge. Given any two distinct pairs x_ix_{i+1} and x_jx_{j+1} , there is at most one hyperedge that does not contain either of them; i.e., at least r-2 hyperedges contain one of them. Thus we need $2 \leq r-2$ for Hall's condition to hold, but this is true as we assumed $r \geq 4$. Moreover, if we take any $3 \leq j \leq r-1$ distinct pairs, then every hyperedge contains one of them. Therefore, we need $j \leq r-1$ for Hall's condition to hold, and this is true by assumption. This finishes the proof of the lemma.

3 Proof of Theorem 4 (k = r + 2)

We will prove the theorem by induction on n. For the base cases, note that if $1 \le n \le r$ then the statement of the theorem is trivially true. If n = r + 1, the statement is true since there are at most r + 1 hyperedges of size r on r + 1 vertices. Moreover, equality holds if and only if $\mathcal{H} = K_{r+1}^r$.

We will show the statement is true for $n \ge r+2$ assuming it is true for all smaller values. Let \mathcal{H} be an *r*-uniform hypergraph on *n* vertices having no Berge cycle of length r+2 or longer. We show that we may assume the following two properties hold for \mathcal{H} .

(1) For any set $S \subseteq V(\mathcal{H})$ of vertices, the number of hyperedges of \mathcal{H} incident to the vertices of S is at least |S|.

Indeed, suppose there is a set $S \subseteq V(\mathcal{H})$ with fewer than |S| hyperedges incident to the vertices of S. If |S| = n we immediately have the required bound on $e(\mathcal{H})$, so assume n > |S|. We can delete the vertices of S from \mathcal{H} to obtain a new hypergraph \mathcal{H}' on n - |S| vertices. By induction, \mathcal{H}' contains at most $\frac{r+1}{r}(n - |S| - 1)$ hyperedges, so \mathcal{H} contains less than $\frac{r+1}{r}(n - 1 - |S|) + |S| < \frac{r+1}{r}(n - 1)$ hyperedges, as desired.

(2) There is no cut-hyperedge in \mathcal{H} .

Indeed, if $h \in E(\mathcal{H})$ is a cut-hyperedge, then $\partial_2(\mathcal{H} \setminus \{h\})$ is not a connected graph, so there are non-empty disjoint sets V_1 and V_2 such that $V(\mathcal{H}) = V_1 \cup V_2$, and there are no edges of $\partial_2(\mathcal{H} \setminus \{h\})$ between V_1 and V_2 . So both hypergraphs $\mathcal{H}[V_1]$ and $\mathcal{H}[V_2]$ do not contain a Berge cycle of length r + 2 or longer. By induction, $e(\mathcal{H}[V_1]) \leq \frac{r+1}{r}(|V_1|-1)$ and $e(\mathcal{H}[V_2]) \leq \frac{r+1}{r}(|V_2|-1)$. In total, $e(\mathcal{H}) = e(\mathcal{H}[V_1]) + e(\mathcal{H}[V_2]) + 1 \leq \frac{r+1}{r}(|V_1|+|V_2|-2) + 1 < \frac{r+1}{r}(|V(\mathcal{H})|-1)$, as desired.

Consider an auxiliary bipartite graph B consisting of vertices of \mathcal{H} in one class and hyperedges of \mathcal{H} on the other class. Then property (1) shows that Hall's condition holds. Therefore, there is a perfect matching in B. In other words, there exists an injection $f: V(\mathcal{H}) \to E(\mathcal{H})$ such that $v \in f(v)$.

Given an injection $f: V(\mathcal{H}) \to E(\mathcal{H})$ with $v \in f(v)$, let \mathcal{P}_f be a longest Berge path of the form $v_1 f(v_1) v_2 f(v_2) \dots v_{l-1} f(v_{l-1}) v_l$ where for each $1 \leq i \leq l-1$, $v_{i+1} \in f(v_i)$. Moreover, among all injections $f: V(\mathcal{H}) \to E(\mathcal{H})$ with $v \in f(v)$, suppose $\phi: V(\mathcal{H}) \to E(\mathcal{H})$ is an injection for which the path $\mathcal{P}_{\phi} = v_1 \phi(v_1) v_2 \phi(v_2) \dots v_{l-1} \phi(v_{l-1}) v_l$ is a longest path.

Claim 1. $\phi(v_l) \subset \{v_{l-r}, v_{l-r+1}, \dots, v_{l-1}, v_l\}.$

Proof. First notice that if $\phi(v_l)$ contains a vertex $v_i \in \{v_1, v_2, \dots, v_{l-r-1}\}$, then the Berge cycle $v_i\phi(v_i)v_{i+1}\phi(v_{i+1})\dots v_l\phi(v_l)v_i$ is of length r+2 or longer, a contradiction. Moreover, if $\phi(v_l)$ contains a vertex $v \notin \{v_1, v_2, \dots, v_l\}$, then \mathcal{P}_{ϕ} can be extended to a longer path $v_1\phi(v_1)v_2\phi(v_2)\dots v_{l-1}\phi(v_{l-1})v_l\phi(v_l)v$, a contradiction. This completes the proof of the claim.

By Claim 1, we know that $\phi(v_l) = \{v_{l-r}, v_{l-r+1}, \dots, v_{l-1}, v_l\} \setminus \{v_j\}$ for some $l-r \leq j \leq l-1$.

Claim 2. For any $i \in \{l-r, l-r+1, ..., l\} \setminus \{j\}$, we have $\phi(v_i) \subset \{v_{l-r}, v_{l-r+1}, ..., v_{l-1}, v_l\}$.

Proof. When i = l, we know the statement is true. Suppose $i \in \{l - r, l - r + 1, \ldots, l - 1\} \setminus \{j\}$. Let us define a new injection $\psi : V(\mathcal{H}) \to E(\mathcal{H})$ as follows: $\psi(v) = \phi(v)$ for every $v \notin \{v_1, v_2, \ldots, v_l\}$, and for every $v \in \{v_1, v_2, \ldots, v_{i-1}\}$. Moreover, let $\psi(v_i) = \phi(v_l)$ and $\psi(v_k) = \phi(v_{k-1})$ for each $l \ge k \ge i+1$.

Now consider the Berge path $v_1\phi(v_1)v_2\phi(v_2)\ldots v_i\phi(v_l)v_l\phi(v_{l-1})\ldots v_{i+2}\phi(v_{i+1})v_{i+1}$, equivalently $v_1\psi(v_1)v_2\psi(v_2)\ldots v_i\psi(v_i)v_l\psi(v_l)\ldots v_{i+2}\psi(v_{i+2})v_{i+1}$. This path has the same length as \mathcal{P}_{ϕ} , so it is also a longest path. Moreover, notice that the sets of last r+1 vertices of both paths are the same. Thus we can apply Claim 1 to conclude that $\phi(v_i) = \psi(v_{i+1}) \subset \{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_l\}$, as desired.

Claim 2 shows that there are r hyperedges (each of size r) contained in the set $S := \{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_l\}$ of size r + 1. We will apply Lemma 1 to S.

Claim 3. The set $S = \{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_l\}$ induces a block of $\partial_2(\mathcal{H})$.

Proof. Since the set $S = \{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_l\}$ contains $r \geq 3$ hyperedges every pair $x, y \in S$ is contained in some hyperedge. Thus $\partial_2(\mathcal{H}[S]) = K_{r+1}$. Consider a (maximal) block D of $\partial_2(\mathcal{H})$ containing S.

Suppose D contains a vertex $t \notin S$. Then since D is 2-connected, there are two paths P_1, P_2 in $\partial_2(\mathcal{H})$ between t and S, which are vertex-disjoint besides t. Let $V(P_1) \cap S = \{u\}$ and $V(P_2) \cap S = \{v\}$. For each edge $xy \in E(P_1) \cup E(P_2)$, fix an arbitrary hyperedge h_{xy} of \mathcal{H} containing xy. It is easy to see that a subset of the hyperedges $\{h_{xy} \mid xy \in E(P_1) \cup E(P_2)\}$ forms a Berge path \mathcal{P} between u and v.

On the other hand, by Lemma 1, there is a Berge path \mathcal{P}' of length r between u and v consisting of the r hyperedges contained in S. Note that \mathcal{P} and \mathcal{P}' do not share any hyperedges (indeed, each hyperedge of \mathcal{P} contains a vertex not in S, while hyperedges of \mathcal{P}'

are contained in S). Therefore, $\mathcal{P} \cup \mathcal{P}'$ forms a Berge cycle of length r + 2 or longer unless \mathcal{P} consists of only one hyperedge, say h. Note that h contains a vertex $x \notin S$ and $u, v \in h$; moreover by property (2), h is not a cut-hyperedge of \mathcal{H} . So after deleting h from \mathcal{H} , the hypergraph $\mathcal{H} \setminus \{h\}$ is still connected – so there is a (shortest) Berge path \mathcal{Q} in $\mathcal{H} \setminus \{h\}$ between x and a vertex $s \in S$ (note that the hyperedges of \mathcal{Q} are not contained in S). The vertex s is different from either u or v, say $s \neq u$ without loss of generality. By Lemma 1, there is a Berge path \mathcal{Q}' of length r between s and u (consisting of hyperedges contained in S). Then, $\mathcal{Q}, \mathcal{Q}'$ and h form a Berge cycle of length at least r+2, a contradiction. Therefore, D contains no vertex outside S; thus S induces a block of $\partial_2(\mathcal{H})$, as required.

Let D_1, D_2, \ldots, D_p be the unique decomposition of $\partial_2(\mathcal{H})$ into 2-connected blocks. Claim 3 shows that one of these blocks, say D_1 , is induced by S. Let us contract the vertices of S to a single vertex, to produce a new hypergraph \mathcal{H}' . Then it is clear that the block decomposition of $\partial_2(\mathcal{H}')$ consists of the blocks D_2, \ldots, D_p . So \mathcal{H}' does not contain any Berge cycle of length r + 2 or longer, as well; moreover $|V(\mathcal{H}')| = |V(\mathcal{H})| - r$. Thus, by induction, we have $e(\mathcal{H}') \leq \frac{r+1}{r}(|V(\mathcal{H}')|-1)$. Therefore,

$$e(\mathcal{H}) \leq \frac{r+1}{r}(|V(\mathcal{H}')|-1) + (r+1) = \frac{r+1}{r}(|V(\mathcal{H})|-r-1) + (r+1) = \frac{r+1}{r}(|V(\mathcal{H})|-1).$$

Now if $e(\mathcal{H}) = \frac{r+1}{r}(|V(\mathcal{H})|-1)$, then we must have $e(\mathcal{H}') = \frac{r+1}{r}(|V(\mathcal{H}')|-1)$ and S must contain all r+1 subsets of size r (i.e., $\mathcal{H}[S] = \mathcal{H}[D_1] = K_{r+1}^r$). Moreover, since equality holds for \mathcal{H}' , by induction, $\partial_2(\mathcal{H}')$ is connected and for each block D_i (with $2 \leq i \leq p$) of $\partial_2(\mathcal{H}')$, $D_i = K_{r+1}$ and $\mathcal{H}'[D_i] = K_{r+1}^r$. This means that for every block D of $\partial_2(\mathcal{H})$, we have $D = K_{r+1}$ and $\mathcal{H}[D] = K_{r+1}^r$, completing the proof.

4 Proof of Theorem 5 (k = r + 1)

The proof is similar to that of Theorem 4 but there are many important differences.

We use induction on n. For the base cases, notice that the statement of the theorem is trivially true if $1 \leq n \leq r$. Moreover, if n = r + 1, then $e(\mathcal{H}) \leq r$ because otherwise, $\mathcal{H} = K_{r+1}^r$ and then it is easy to see that there is a (Hamiltonian) Berge cycle of length r + 1in \mathcal{H} , a contradiction. Therefore, $e(\mathcal{H}) \leq r = n - 1$. Moreover, equality holds if and only if $\partial_2(\mathcal{H}) = K_{r+1}$ and \mathcal{H} consists of r hyperedges.

We will show the statement is true for n assuming it is true for all smaller values. Let \mathcal{H} be an *r*-uniform hypergraph on *n* vertices having no Berge cycle of length r + 1 or longer. We show that we may assume the following two properties hold for \mathcal{H} .

(1) For any set $S \subseteq V(\mathcal{H})$ with $|S| \leq |V(\mathcal{H})| - 1 = n - 1$, the number of hyperedges of \mathcal{H} incident to the vertices of S is at least |S|.

Indeed, suppose there is a set $S \subset V(\mathcal{H})$ (i.e., $|S| \leq |V(\mathcal{H})| - 1$) with fewer than |S| hyperedges incident to the vertices of S. We delete the vertices of S from \mathcal{H} to obtain a new hypergraph \mathcal{H}' on n - |S| vertices. By induction, \mathcal{H}' contains at most (n - |S| - 1) hyperedges, so \mathcal{H} contains less than (n - 1 - |S|) + |S| = (n - 1) hyperedges, as required.

(2) There is no cut-hyperedge in \mathcal{H} .

Indeed, if $h \in E(\mathcal{H})$ is a cut-hyperedge, then $\partial_2(\mathcal{H} \setminus \{h\})$ is not a connected graph, so there are disjoint non-empty sets V_1 and V_2 such that $V(\mathcal{H}) = V_1 \cup V_2$ and there are no edges of $\partial_2(\mathcal{H} \setminus \{h\})$ between V_1 and V_2 . So the hypergraphs $\mathcal{H}[V_1]$ and $\mathcal{H}[V_2]$ do not contain a Berge cycle of length r + 1 or longer. Therefore, by induction, $e(\mathcal{H}[V_1]) \leq |V_1| - 1$ and $e(\mathcal{H}[V_2]) \leq |V_2| - 1$. In total, $e(\mathcal{H}) = e(\mathcal{H}[V_1]) + e(\mathcal{H}[V_2]) + 1 \leq (|V_1| + |V_2| - 2) + 1 = |V(\mathcal{H})| - 1$, as desired.

Moreover, we claim that the equality $e(\mathcal{H}) = |V(\mathcal{H})| - 1$ cannot hold in this case (i.e., if there is a cut-hyperedge). Indeed, if equality holds, then we must have $e(\mathcal{H}[V_1]) = |V_1| - 1$ and $e(\mathcal{H}[V_2]) = |V_2| - 1$. Notice that since $r \geq 3$, the hyperedge h either contains at least two vertices $x, y \in V_1$ or two vertices $x, y \in V_2$. Without loss of generality, assume the former is true. By induction, $\partial_2(\mathcal{H}[V_1])$ is connected and for every block D of $\partial_2(\mathcal{H}[V_1])$, we have $D = K_{r+1}$ and the subhypergraph induced by D consists of r hyperedges. So by Lemma 1, there is a Berge path of length r (consisting of the r hyperedges induced by D) between any two vertices of a block D. Then it is easy to see that since $\partial_2(\mathcal{H}[V_1])$ is connected, there is a Berge path \mathcal{P} of length at least rbetween any two vertices of V_1 , so in particular between x and y. Then \mathcal{P} together with h forms a Berge cycle of length r + 1 in \mathcal{H} , a contradiction.

Consider an auxiliary bipartite graph B consisting of vertices of \mathcal{H} in one class and hyperedges of \mathcal{H} on the other class. Then property (1) shows that Hall's condition holds for all subsets of $V(\mathcal{H})$ of size up to $|V(\mathcal{H})|-1$. Therefore, there is a matching in B that matches all the vertices in $V(\mathcal{H})$, except at most one vertex, say x. In other words, there exists an injection $f: V(\mathcal{H}) \setminus \{x\} \to E(\mathcal{H})$ such that for every $v \in V(\mathcal{H}) \setminus \{x\}$, we have $v \in f(v)$. Given an injection $f: V(\mathcal{H}) \setminus \{x\} \to E(\mathcal{H})$ with $v \in f(v)$, let \mathcal{P}_f be a longest Berge path of the form $v_1 f(v_1) v_2 f(v_2) \dots v_{l-1} f(v_{l-1}) v_l$ where for each $1 \leq i \leq l-1, v_{i+1} \in f(v_i)$. Moreover, among all injections $f: V(\mathcal{H}) \setminus \{x\} \to E(\mathcal{H})$ with $v \in f(v)$, suppose $\phi: V(\mathcal{H}) \setminus \{x\} \to E(\mathcal{H})$ is an injection for which the path $\mathcal{P}_{\phi} = v_1 \phi(v_1) v_2 \phi(v_2) \dots v_{l-1} \phi(v_{l-1}) v_l$ is a longest path.

Because of the way \mathcal{P}_{ϕ} was constructed, it is also clear that $x \notin \{v_1, v_2, \ldots, v_{l-1}\}$. We consider two cases depending on whether v_l is equal to x or not.

Case 1: $v_l \neq x$. Our aim is to get a contradiction, and show that this case is impossible.

Claim 4. If
$$v_l \neq x$$
, then $\phi(v_l) = \{v_{l-r+1}, v_{l-r+2}, \dots, v_l\}$.

Proof. If $v_l \neq x$, then we claim $\phi(v_l) = \{v_{l-r+1}, v_{l-r+2}, \dots, v_l\}$. Indeed, if $\phi(v_l)$ contains a vertex $v_i \in \{v_1, v_2, \dots, v_{l-r}\}$, then the Berge cycle $v_i\phi(v_i)v_{i+1}\phi(v_{i+1})\dots v_l\phi(v_l)v_i$ is of length r+1 or longer, a contradiction. Moreover, if $\phi(v_l)$ contains a vertex $v \notin \{v_1, v_2, \dots, v_l\}$, then P_{ϕ} can be extended to a longer path $v_1\phi(v_1)v_2\phi(v_2), \dots, v_{l-1}\phi(v_{l-1})v_l\phi(v_l)v$, a contradiction again, proving that $\phi(v_l) = \{v_{l-r+1}, v_{l-r+2}, \dots, v_l\}$.

Fix some $i \in \{l - r + 1, l - r + 2, ..., l - 1\}$. Let us define a new injection $\psi : V(\mathcal{H}) \setminus \{x\} \to E(\mathcal{H})$ as follows: $\psi(v) = \phi(v)$ for every $v \notin \{x, v_1, v_2, ..., v_l\}$, and for every $v \in \{v_1, v_2, ..., v_{i-1}\}$. Moreover, let $\psi(v_i) = \phi(v_l)$ and $\psi(v_k) = \phi(v_{k-1})$ for each $l \geq k \geq k$

i + 1. Now consider the Berge path $v_1\phi(v_1)v_2\phi(v_2) \dots v_i\phi(v_l)v_l\phi(v_{l-1})\dots v_{i+2}\phi(v_{i+1})v_{i+1}$ = $v_1\psi(v_1)v_2\psi(v_2)\dots v_i\psi(v_i)v_l\psi(v_l)\dots v_{i+2}\psi(v_{i+2})v_{i+1}$. This path has the same length as \mathcal{P}_{ϕ} , so it is also a longest path. Moreover, $v_{i+1} \neq x$, so we can apply Claim 4 to conclude that $\psi(v_{i+1}) = \{v_{l-r+1}, v_{l-r+2}, \dots, v_l\} = \phi(v_i)$. But then $\phi(v_i) = \phi(v_l)$, a contradiction to the fact that ϕ was an injection.

Case 2: $v_l = x$.

Claim 5. $\phi(v_{l-1}) \subset \{v_{l-r}, v_{l-r+1}, \dots, v_l\}.$

Proof. If $\phi(v_{l-1})$ contains a vertex $v \notin \{v_1, v_2, \ldots, v_l\}$, then we consider the Berge path $v_1\phi(v_1)v_2\phi(v_2), \ldots, v_{l-1}\phi(v_{l-1})v$. Since $v \neq x$, we get a contradiction by Case 1. Moreover, if $\phi(v_{l-1})$ contains a vertex v_i with $i \in \{1, 2, \ldots, l-r-1\}$, then the Berge cycle $v_i\phi(v_i)v_{i+1}\phi(v_{i+1})\ldots v_{l-1}\phi(v_{l-1})v_i$ is of length r+1 or longer, a contradiction. This finishes the proof of the claim.

By Claim 5, we know that $\phi(v_{l-1}) = \{v_{l-r}, v_{l-r+1}, \dots, v_{l-1}, v_l\} \setminus \{v_j\}$ for some j with $l-r \leq j \leq l-2$. (From now, in the rest of the proof we fix this j.)

Claim 6. For any
$$i \in \{l-r, l-r+1, ..., l-1\} \setminus \{j\}$$
, we have $\phi(v_i) \subset \{v_{l-r}, v_{l-r+1}, ..., v_{l-1}, v_l\}$.

Proof. When i = l - 1, we know the statement is true by Claim 5.

Suppose $i \in \{l-r, l-r+1, \ldots, l-2\} \setminus \{j\}$. Let us define a new injection $\psi : V(\mathcal{H}) \setminus \{x\} \to E(\mathcal{H})$ as follows: $\psi(v) = \phi(v)$ for every $v \notin \{v_1, v_2, \ldots, v_l\}$, and for every $v \in \{v_1, v_2, \ldots, v_{i-1}\}$. Moreover, let $\psi(v_i) = \phi(v_{l-1})$ and $\psi(v_k) = \phi(v_{k-1})$ for each $l-1 \geq k \geq i+1$. Now consider the Berge path $v_1\phi(v_1)v_2\phi(v_2) \ldots v_i\phi(v_{l-1})v_{l-1}\phi(v_{l-2})\ldots v_{i+1} = v_1\psi(v_1)v_2\psi(v_2) \ldots v_i\psi(v_i)v_{l-1}\psi(v_{l-1})\ldots v_{i+1}$. (Note that when i = l-2, the Berge path is simply $v_1\phi(v_1)v_2\phi(v_2) \ldots v_i\phi(v_{l-1})v_{l-1} = v_1\psi(v_1)v_2\psi(v_2)\ldots v_i\psi(v_i)v_{l-1}$.)

If $\psi(v_{i+1})$ contains a vertex $v \notin \{v_1, v_2, \ldots, v_l\}$, then the Berge path $v_1\psi(v_1)v_2\psi(v_2)$ $\ldots v_i\psi(v_i)v_{l-1}\psi(v_{l-1})\ldots v_{i+2}\psi(v_{i+2})v_{i+1}\psi(v_{i+1})v$ has the same length as \mathcal{P}_{ϕ} , so it is also a longest path. Moreover, since $v \neq x$, we get a contradiction by Case 1.

If $\psi(v_{i+1})$ contains a vertex $v_k \in \{v_1, v_2, \dots, v_{l-r-1}\}$ then one can see that the Berge cycle $v_k \psi(v_k) v_{k+1} \psi(v_{k+1}) \dots v_{l-1} \psi(v_{l-1}) v_k$ is of length r+1 or longer, a contradiction. Therefore, we have $\psi(v_{i+1}) \subset \{v_{l-r}, v_{l-r+1}, \dots, v_l\}$. But we defined $\psi(v_{i+1}) = \phi(v_i)$, proving the claim.

Note that Claim 6 shows that r-1 hyperedges of \mathcal{H} are contained in a set $S := \{v_{l-r}, v_{l-r+1}, \ldots, v_{l-1}, v_l\}$ of size r+1. The following claim shows that if we can find one more hyperedge of \mathcal{H} contained in S, then S must induce a block of $\partial_2(\mathcal{H})$.

Claim 7. Suppose $r \ge 3$. If a set S of size r + 1 contains r hyperedges of \mathcal{H} then it induces a induces a block of $\partial_2(\mathcal{H})$.

Proof. Since the set S contains at least 3 hyperedges every pair $x, y \in S$ is contained in some hyperedge. Thus $\partial_2(\mathcal{H}[S]) = K_{r+1}$. Consider a (maximal) block D of $\partial_2(\mathcal{H})$ containing S.

Suppose D contains a vertex $t \notin S$. Then since D is 2-connected, there are two paths P_1, P_2 in $\partial_2(\mathcal{H})$ between t and S, which are vertex-disjoint besides t. Let $V(P_1) \cap S = \{u\}$

and $V(P_2) \cap S = \{v\}$. For each edge $xy \in E(P_1) \cup E(P_2)$, fix an arbitrary hyperedge h_{xy} of \mathcal{H} containing xy. It is easy to see that a subset of the hyperedges $\{h_{xy} \mid xy \in E(P_1) \cup E(P_2)\}$ forms a Berge path \mathcal{P} between u and v.

On the other hand, by Lemma 1, there is a Berge path \mathcal{P}' of length r between u and v consisting of the r hyperedges contained in S. Note that \mathcal{P} and \mathcal{P}' do not share any hyperedges (indeed, each hyperedge of \mathcal{P} contains a vertex not in S, while hyperedges of \mathcal{P}' are contained in S). Therefore, \mathcal{P} together with \mathcal{P}' forms a Berge cycle of length r + 1 or longer, a contradiction. Therefore, D contains no vertex outside S; thus S induces a block of $\partial_2(\mathcal{H})$, as required.

We will use the above claim several times later. At this point we need to distinguish the cases r = 3 and $r \ge 4$, since Lemma 2 only applies in the latter case.

The case $r \ge 4$

Since $r \ge 4$, by Claim 6 and Lemma 2 there is a Berge path of length r-1 between any two vertices of $S = \{v_{l-r}, v_{l-r+1}, \dots, v_{l-1}, v_l\}$. This will allow us to show the following.

Claim 8. $\phi(v_j) \subset \{v_{l-r}, v_{l-r+1}, \dots, v_{l-1}, v_l\} = S$

Proof. Suppose for a contradiction that $\phi(v_j)$ contains a vertex $v \notin S$. The hyperedge $\phi(v_j)$ contains at least two vertices from S, namely v_j and v_{j+1} . By property (2), $\phi(v_j)$ is not a cut-hyperedge of \mathcal{H} . So after deleting $\phi(v_j)$ from \mathcal{H} , the hypergraph $\mathcal{H} \setminus \{\phi(v_j)\}$ is still connected – so there is a (shortest) Berge path \mathcal{Q} in $\mathcal{H} \setminus \{\phi(v_j)\}$ between v and a vertex $s \in S$ (note that the hyperedges of \mathcal{Q} are not contained in S). The vertex s is different from either v_j or v_{j+1} , say $s \neq v_j$, without loss of generality. By Lemma 2, there is a Berge path \mathcal{Q}' of length r-1 between s and v_j (consisting of the hyperedges contained in S). Then $\mathcal{Q}, \mathcal{Q}'$ and $\phi(v_j)$ form a Berge cycle of length at least r+1 in \mathcal{H} , a contradiction.

Claim 6 and Claim 8 together show that there are at least r hyperedges of \mathcal{H} contained in S. If all r + 1 subsets of S of size r are hyperedges of \mathcal{H} , then S induces K_{r+1}^r and it is easy to show that it contains a Berge cycle of length r + 1, a contradiction. This means Scontains exactly r hyperedges of \mathcal{H} . Then by Claim 7, we know that S induces a block of $\partial_2(\mathcal{H})$.

Let D_1, D_2, \ldots, D_p be the unique decomposition of $\partial_2(\mathcal{H})$ into 2-connected blocks. Claim 7 shows that one of these blocks, say D_1 , is induced by S. Let us contract the vertices of S to a single vertex, to produce a new hypergraph \mathcal{H}' . Then it is clear that the block decomposition of $\partial_2(\mathcal{H}')$ consists of the blocks D_2, \ldots, D_p . So \mathcal{H}' does not contain any Berge cycle of length r+1 or longer, as well; moreover, $|V(\mathcal{H}')| = |V(\mathcal{H})| - r$ and $e(\mathcal{H}') = e(\mathcal{H}) - r$. By induction, we have $e(\mathcal{H}') \leq |V(\mathcal{H}')| - 1$. Therefore,

$$e(\mathcal{H}) = e(\mathcal{H}') + r \le (|V(\mathcal{H}')| - 1) + r = (|V(\mathcal{H})| - r - 1) + r = |V(\mathcal{H})| - 1.$$

If $e(\mathcal{H}) = |V(\mathcal{H})| - 1$, then we must have $e(\mathcal{H}') = |V(\mathcal{H}')| - 1$ and S must contain exactly r hyperedges. Moreover, since equality holds for \mathcal{H}' , by induction, $\partial_2(\mathcal{H}')$ is connected and for each block D_i (with $2 \leq i \leq p$) of $\partial_2(\mathcal{H}')$, $D_i = K_{r+1}$ and $\mathcal{H}'[D_i]$ contains exactly r hyperedges. This means that for every block D of $\partial_2(\mathcal{H})$, we have $D = K_{r+1}$ and $\mathcal{H}[D]$ contains exactly r hyperedges, completing the proof in the case $r \geq 4$.

The case r = 3

Recall that using Claim 6 we can find a set S of size 4 which contains 2 hyperedges of \mathcal{H} . Let $S = \{x, y, a, b\}$ and the two hyperedges be *xab* and *yab*. By property (2), *xab* is not a cuthyperedge of \mathcal{H} . So after deleting *xab* from \mathcal{H} , the hypergraph $\mathcal{H} \setminus \{xab\}$ is still connected – so there is a (shortest) Berge path \mathcal{Q} between x and $\{y, a, b\}$. If \mathcal{Q} is of length at least 2, then it is easy to see that \mathcal{Q} together with *yab* and *xab* form a Berge cycle of length at least 4, a contradiction. So \mathcal{Q} consists of only one hyperedge, say h.

Our goal is to find a set of vertices which induces a block of $\partial_2(\mathcal{H})$, so that we can apply induction.

If $|h \cap \{y, a, b\}| = 2$ then h, xab, yab are 3 hyperedges of \mathcal{H} contained in S, so by Claim 7, we can conclude that S induces a block of $\partial_2(\mathcal{H})$. (Notice that S contains exactly |S| - 1 = 3 hyperedges of \mathcal{H} , otherwise it is easy to find a Berge cycle of length 4; this will be useful later.) So we can suppose $|h \cap \{y, a, b\}| = 1$. We consider two cases depending on whether h is either *xat* or *xbt*, or whether h is *xyt* for some $t \notin S$.

Case 1. First suppose without loss of generality that h = xat for some $t \notin S$. Consider the set \mathcal{D} of all hyperedges of \mathcal{H} containing the pairs xa, ab or xb and let D be the set of vertices spanned by them. For each pair of vertices $i, j \in \{x, a, b\}$, let $V_{ij} = \{v \mid ijv \in$ $\mathcal{H}\} \setminus \{x, a, b\}$. We claim that the sets V_{xa}, V_{ab}, V_{xb} are pairwise disjoint. Suppose for the sake of a contradiction that $t' \in V_{xa} \cap V_{ab}$. Then the hyperedges xat', abt', xab are contained in a set of 4 vertices $\{x, a, b, t'\}$. Thus by Claim 7, this set induces a block of $\partial_2(\mathcal{H})$ and we are done (we found the desired block!). Thus we can suppose $V_{xa} \cap V_{ab} = \emptyset$. Similarly $V_{ab} \cap V_{xb} = \emptyset$ and $V_{xa} \cap V_{xb} = \emptyset$. This shows that $|D| = 3 + |V_{xa}| + |V_{xb}| + |V_{ab}|$. On the other hand, \mathcal{D} consists of $1 + |V_{xa}| + |V_{xb}| + |V_{ab}|$ hyperedges, so $|\mathcal{D}| = |D| - 2$.

We will now show that D induces a block of $\partial_2(\mathcal{H})$. Let D' be a (maximal) block of $\partial_2(\mathcal{H})$ containing D and suppose for the sake of a contradiction that it contains a vertex $p \notin D$. Then since D' is 2-connected, there are two paths P_1, P_2 in $\partial_2(\mathcal{H})$ between p and D, which are vertex-disjoint besides p. Let $V(P_1) \cap D = \{u\}$ and $V(P_2) \cap D = \{v\}$. For each edge $xy \in E(P_1) \cup E(P_2)$, fix an arbitrary hyperedge h_{xy} of \mathcal{H} containing xy. It is easy to see that a subset of the hyperedges $\{h_{xy} \mid xy \in E(P_1) \cup E(P_2)\}$ forms a Berge path \mathcal{P} between uand v. If $uv \notin \{xa, ab, xb\}$, then it is easy to see that there is a path \mathcal{P}' of length 3 between u and v consisting of the hyperedges of \mathcal{D} . Then \mathcal{P} together with \mathcal{P}' forms a Berge cycle of length at least 4 in \mathcal{H} , a contradiction. On the other hand if $uv \in \{xa, ab, xb\}$, then \mathcal{P} must contain at least two hyperedges of \mathcal{H} because otherwise $\mathcal{P} = \{puv\}$ but then puv should have been in \mathcal{D} (since by definition \mathcal{D} must contain all the hyperedges of \mathcal{H} containing the pair uv); moreover, it is easy to check that between u and v there is a Berge path \mathcal{P}' of length 2 consisting of the hyperedges of \mathcal{D} . Then again, \mathcal{P} together with \mathcal{P}' forms a Berge cycle of length at least 4 in \mathcal{H} , a contradiction. Therefore, D' contains no vertex outside D; so D induces a block of $\partial_2(\mathcal{H})$ (which contains |D| - 2 hyperedges of \mathcal{H}), as desired.

Case 2. Finally suppose h = xyt for some $t \notin S$. Let \mathcal{D} be the set of all hyperedges of \mathcal{H} containing the pair xy plus the hyperedges xab and yab, and let D be the set of vertices spanned by the hyperedges of \mathcal{D} . Let $V_{xy} = \{v \mid xyv \in \mathcal{H}\}$. We claim that $a \notin V_{xy}$ and $b \notin V_{xy}$. Indeed suppose for the sake of a contradiction that $a \in V_{xy}$. Then the hyperedges xab, yab, xya are contained in a set of 4 vertices $\{x, y, a, b\}$. So by Claim 7, this set induces a block of $\partial_2(\mathcal{H})$, and we are done. So $a \notin V_{xy}$. Similarly, we can conclude $b \notin V_{xy}$. Therefore, $|D| = |V_{xy}| + 4$. On the other hand, $|\mathcal{D}| = |V_{xy}| + 2$, so $|\mathcal{D}| = |D| - 2$.

We claim that D induces a block of $\partial_2(\mathcal{H})$. The proof is very similar to that of **Case 1**, we still give it for completeness. Let D' be a (maximal) block of $\partial_2(\mathcal{H})$ containing D and suppose for the sake of a contradiction that it contains a vertex $p \notin D$. Then since D' is 2-connected, there are two paths P_1, P_2 in $\partial_2(\mathcal{H})$ between p and D, which are vertex-disjoint besides p. Let $V(P_1) \cap D = \{u\}$ and $V(P_2) \cap D = \{v\}$. For each edge $xy \in E(P_1) \cup E(P_2)$, fix an arbitrary hyperedge h_{xy} of \mathcal{H} containing xy. It is easy to see that a subset of the hyperedges $\{h_{xy} \mid xy \in E(P_1) \cup E(P_2)\}$ forms a Berge path \mathcal{P} between u and v.

If $uv \neq xy$, then it is easy to see that there is a path \mathcal{P}' of length 3 or 4 between u and v consisting of the hyperedges of \mathcal{D} . (Indeed if $u, v \in V_{xy}$, then \mathcal{P}' is of length 4, otherwise it is of length 3.) Then \mathcal{P} together with \mathcal{P}' forms a Berge cycle of length at least 4 in \mathcal{H} , a contradiction. On the other hand if uv = xy, then \mathcal{P} must contain at least two hyperedges of \mathcal{H} because otherwise $\mathcal{P} = \{puv\}$ but then puv should have been in \mathcal{D} (since by definition \mathcal{D} must contain all the hyperedges of \mathcal{H} containing the pair uv); moreover, it is easy to check that between u and v there is a Berge path \mathcal{P}' of length 2 consisting of the hyperedges of \mathcal{D} . Then again, \mathcal{P} together with \mathcal{P}' forms a Berge cycle of length at least 4 in \mathcal{H} , a contradiction. Therefore, D' contains no vertex outside D; so D induces a block of $\partial_2(\mathcal{H})$ (and contains |D| - 2 hyperedges of \mathcal{H}), as desired.

Let D_1, D_2, \ldots, D_p be the unique decomposition of $\partial_2(\mathcal{H})$ into 2-connected blocks. In **Case 1** and **Case 2** we showed that one of these blocks, (say) $D_1 = D$ is such that $\mathcal{H}[D_1]$ contains $|D_1|-2$ hyperedges of \mathcal{H} , otherwise, D_1 is a set of 4 vertices such that $\mathcal{H}[D_1]$ contains exactly $|D_1| - 1 = 3$ hyperedges of \mathcal{H} . In all these cases, note that $e(\mathcal{H}[D_1]) \leq |D_1| - 1$.

Let us contract the vertices of D_1 to a single vertex, to produce a new hypergraph \mathcal{H}' . Then it is clear that the block decomposition of $\partial_2(\mathcal{H}')$ consists of the blocks D_2, \ldots, D_p . So \mathcal{H}' does not contain any Berge cycle of length 4 or longer, as well; moreover, $|V(\mathcal{H}')| = |V(\mathcal{H})| - |D_1| + 1$ and $e(\mathcal{H}') = e(\mathcal{H}) - e(\mathcal{H}[D_1])$. By induction, we have $e(\mathcal{H}') \leq |V(\mathcal{H}')| - 1$. Therefore,

$$e(\mathcal{H}) = e(\mathcal{H}') + e(\mathcal{H}[D_1]) \le |V(\mathcal{H}')| - 1 + |D_1| - 1 = (|V(\mathcal{H})| - |D_1| + 1) - 1 + |D_1| - 1 = |V(\mathcal{H})| - 1 = |$$

If $e(\mathcal{H}) = |V(\mathcal{H})| - 1$, then we must have $e(\mathcal{H}') = |V(\mathcal{H}')| - 1$ and $\mathcal{H}[D_1]$ must contain exactly $|D_1| - 1$ hyperedges. As noted before, this is only possible if D_1 has 4 vertices and induces exactly 3 hyperedges of \mathcal{H} . Moreover, since equality holds for \mathcal{H}' , by induction, $\partial_2(\mathcal{H}')$ is connected and for each block D_i (with $2 \leq i \leq p$) of $\partial_2(\mathcal{H}')$, $D_i = K_4$ and $\mathcal{H}'[D_i]$ contains exactly 3 hyperedges. This means for every block D of $\partial_2(\mathcal{H})$, we have $D = K_4$ and $\mathcal{H}[D]$ contains exactly 3 hyperedges of \mathcal{H} , completing the proof in the case r = 3.

Acknowledgment

The research of the authors is partially supported by the National Research, Development and Innovation Office NKFIH, grant K116769.

References

- A. Davoodi, E. Győri, A. Methuku, C. Tompkins. An Erdős-Gallai type theorem for uniform hypergraphs. *European Journal of Combinatorics* 69 (2018): 159–162.
- [2] P. Erdős, T. Gallai. On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar. 10 (1959): 337–356.
- [3] Z. Füredi, A. Kostochka, R. Luo. Avoiding long Berge cycles. arXiv preprint arXiv:1805.04195 (2018).
- [4] Z. Füredi, A. Kostochka, R. Luo. Avoiding long Berge cycles II, exact bounds for all *n*. *arXiv preprint* arXiv:1807.06119 (2018).
- [5] D. Gerbner and C. Palmer. Extremal results for Berge-hypergraphs. SIAM Journal on Discrete Mathematics, 31.4 (2017): 2314–2327.
- [6] D. Gerbner, A. Methuku and M. Vizer. Asymptotics for the Turán number of Berge- $K_{2,t}$. arXiv preprint arXiv:1705.04134 (2017).
- [7] D. Grósz, A. Methuku and C. Tompkins. Uniformity thresholds for the asymptotic size of extremal Berge-F-free hypergraphs. *arXiv preprint* arXiv:1803.01953 (2017).
- [8] E. Győri, G. Y. Katona, N. Lemons. Hypergraph extensions of the Erdős-Gallai Theorem. European Journal of Combinatorics 58 (2016) 238–246.
- [9] E. Győri, A. Methuku, N. Salia, C. Tompkins, M. Vizer. On the maximum size of connected hypergraphs without a path of given length. *Discrete Mathematics* 341(9) (2018): 2602-2605
- [10] A. Kostochka, and R. Luo. On *r*-uniform hypergraphs with circumference less than *r*. *arXiv preprint* arXiv:1807.04683 (2018).