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Abstract

The maximum size of an r-uniform hypergraph without a Berge cycle of length at
least k has been determined for all k¥ > r + 3 by Fiiredi, Kostochka and Luo and for
k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper, we settle the
remaining cases: k =7+ 1 and k = r + 2, proving a conjecture of Fiiredi, Kostochka
and Luo.

Given a hypergraph H, let V(H) and E(H) denote the set of vertices and hyperedges
of H, respectively, and let e(H) = |E(H)|. A hypergraph is called r-uniform if all of its
hyperedges have size r. For convenience, we refer to an r-uniform hypergraph as an r-graph.
Berge introduced the following definitions of a cycle and a path in a hypergraph.

Definition 1. A Berge cycle of length | in a hypergraph is a set of | distinct vertices
{v1,...,u} and | distinct hyperedges {e1, ..., e} such that {v;,v;11} C e; with indices taken
modulo [.

A Berge path of length | in a hypergraph is a set of [+ 1 distinct vertices vy, ..., v and
[ distinct hyperedges ey, ..., e; such that {v;,v;11} Ce; for all1 <i <. We say that such a
Berge path is between vy and v;i1.
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Notation 1. Let ‘H be a hypergraph. Then its 2-shadow, OsH, is the collection of pairs that
lie in some hyperedge of H. Given a set S C V(H), the subhypergraph of H induced by S is
denoted by H[S].

We say H is connected if 02(H) is a connected graph. A hyperedge h € E(H) is called a
cut-hyperedge of H if H\ {h} := (V(H), E(H) \ {h}) is not connected.

When we say D is a block of 02(H), we may either mean D is the vertex-set of the block,
or D is the edge-set of the block depending on the context.

1 Background and our results

Gyori, Katona and Lemons extended the well-known Erdds-Gallai theorem to hypergraphs
by showing the following.

Theorem 1 (Gy6ri, Katona, Lemons [8]). Let H be an r-uniform hypergraph with no Berge
path of length k. If k >r+ 1> 3, we have

If r > k > 2, we have

n(k —1)
< — .
e(#) < r+1
For the case k = r + 1, Gy¢ri, Katona and Lemons conjectured that the upper bound
should have the same form as the & > r + 1 case. This was settled by Davoodi, Gyori,
Methuku and Tompkins [I] who showed the following.

Theorem 2 (Davoodi, Gyéri, Methuku, Tompkins [1]). Fiz k =7+ 1> 2 and let H be an
r-uniform hypergraph containing no Berge path of length k. Then,

e(H) < %(]:) —n.

The bounds in the above two theorems are sharp for each k and r for infinitely many n.
Gyéri, Methuku, Salia, Tompkins and Vizer [9] proved a significantly smaller upper bound
on the maximum number of hyperedges in an n-vertex r-graph with no Berge path of length
k under the assumption that it is connected. Their bound is asymptotically exact when r
is fixed and k£ and n are sufficiently large. The notion of Berge cycles and Berge paths was
generalized to arbitrary Berge graphs F' by Gerbner and Palmer in [5], and the (3-uniform)
Turdn number of Berge- Ky, was determined asymptotically in [6]. The general behaviour of
the Turdn number of Berge-F', as the uniformity increases, was studied in [7].

Recently, Fiiredi, Kostochka and Luo [3] proved exact bounds similar to Theorem [I for
hypergraphs avoiding long Berge cycles.



Theorem 3 (Fiiredi, Kostochka, Luo [3]). Let r > 3 and k > r + 3, and suppose H is
an n-vertex r-graph with no Berge cycle of length k or longer. Then e(H) < Z%;(k;l)
Moreover, equality is achieved if and only if Oo(H) is connected and for every block D of

82(?‘[), D = Kk—l and H[D] = KIZ—l'

Moreover, Kostochka and Luo [10] found exact bounds for £ < r — 1 and asymptotic
bounds for £ = r. Let us remark that their asymptotic bound in the case k = r also follows
from Theorem [ stated below. (More recently, extending [3], Fiiredi, Kostochka, Luo [4]
proved exact bounds and determined the extremal examples for all n when k > r 4 4.)

The two cases k = r + 2 and k = r + 1 remained open. For the case k = r + 2, Fiiredi,
Kostochka and Luo conjectured [3] that a similar statement as that of Theorem [B] holds
and mentioned the answer is unknown for the case £ = r + 1. In this paper, we prove this
conjecture.

Theorem 4. Let r > 3 and n > 1, and suppose H s an n-vertex r-graph with no Berge
cycle of length r 4+ 2 or longer. Then e(H) < %1(71 —1). Moreover, equality is achieved if
and only if O(H) is connected and for every block D of 02(H), D = K,y and H[D] = K] ,.

In the case k = r + 1, we prove the following exact result, and characterize the extremal
examples.

Theorem 5. Let r > 3 and n > 1, and suppose H s an n-vertex r-graph with no Berge
cycle of length v + 1 or longer. Then e(H) < n — 1. Moreover, equality is achieved if and
only if O2(H) is connected and for every block D of 0o(H), D = K11 and H[D] consists of
r hyperedges.

Note that Theorem [4 easily implies Theorem 2l In fact, it gives the following stronger
form. Here we quickly prove this implication.

Theorem 6. Fix k =r+1 > 2 and let H be an r-uniform hypergraph containing no Berge
path of length k. Then, e(H) < ﬂ(k) = n. Moreover, equality holds if and only if each

k\r

connected component D of 02(H) is K,11, and H[D] = K]_,.

Proof. We proceed by induction on n. The base cases n < r + 1 are easy to check. Let
H be an r-uniform hypergraph containing no Berge path of length £ = r + 1 such that
e(H) > n. Then by Theorem Bl H contains a Berge cycle C of length r 4+ 1 or longer. C
must be of length exactly r + 1, otherwise it would contain a Berge path of length » + 1. Let
U1, ..., V41 and e, ..., .11 be the vertices and edges of C where {v;,v;41} C e; (indices are
taken modulo r + 1). For any i with 1 <i < r+1, if e; contains a vertex v &€ {vy,...,v41},
then v;11€;110;40€;49 ... €;_1v;e;u forms a Berge path of length » + 1 in H, a contradiction.
Therefore, all of the edges e; (for 1 <i <1+ 1) are contained in the set S := {vy,...,Vp41}.
That is, H[S] = K],,. It is easy to see that S forms a connected component in 0(H)
because if any hyperedge h of H (with h ¢ C) contains a vertex of C, then C can be extended
to form a Berge path of length r + 1.



Let S1, 5, ...,S; be the vertex sets of connected components of d;(#). As noted before,
one of them, say S, is equal to S. We delete the vertices of S; from H to form a new
hypergraph H’; note that |V (H')| = |V(H)| — (r + 1) and |E(H')| = |E(H)| — (r + 1) and
the connected components of dy(H') are S, ..., S:. By induction |E(H')| < |[V(H')|. Thus
|E(H)| = |E(H)| + (r+1) < |[V(H)|+ (r+1) = |V(H)|. Moreover, if |[E(H)| = |V (H)],
then |E(H')| = |V(H')], so by the induction hypothesis each connected component .S; (i > 2)
of 0y(H') is K41, and H'[S;| = K], proving the theorem. O

Structure of the paper: In Section 2] we prove some basic lemmas which are used in
our proofs. In Section Bl we prove Theorem M| and in Section [, we prove Theorem [Gl

2 Basic Lemmas

We will use the following two lemmas.

Lemma 1. For anyr > 3, if a set S of size r+1 contains r hyperedges of size r, then between
any two vertices u,v € S, there is a Berge path of length r consisting of these hyperedges.

Proof. Let H be the hypergraph consisting of r hyperedges on r 4+ 1 vertices. First notice
that for any pair of vertices x,y € S, the number of hyperedges h C S such that {x,y} ¢ his
at most 2. (Indeed, there is at most one hyperedge that does not contain x and at most one
hyperedge that does not contain y.) This means that every pair x,y € S is contained in some
hyperedge, as there are at least 3 hyperedges contained in S. In other words, 0y(H) = K, 1.

Consider an arbitrary path zjxs, ...,z of length 7 in the 0y(H) connecting u = x;
and v = x,.1;. We want to show that there are distinct hyperedges containing the pairs
x;xipq for each 1 < ¢ < r. To this end, we consider an auxiliary bipartite graph with pairs
{z129, 273, ..., 2,241} in one class and the r hyperedges h C S in the other class, and
a pair is connected to a hyperedge if it is contained in the hyperedge. We will show that
Hall’s condition holds: As noted before, every pair is contained in a hyperedge. Given any
two distinct pairs z;z;41 and x;2,41, there is at most one hyperedge that does not contain
either of them; i.e., at least » — 1 hyperedges contain one of them. Thus we need 2 <r — 1
for Hall’s condition to hold, but this is true as we assumed r > 3. Moreover, if we take any
3 < j < r distinct pairs, then every hyperedge contains one of them. Therefore, we need
j <r, but this is true by assumption. This finishes the proof of the lemma. O

Lemma 2. For any r > 4, if a set S of size r + 1 contains r — 1 hyperedges of size r, then
between any two vertices u,v € S, there is a Berge path of length r — 1 consisting of these
hyperedges.

Proof. The proof is similar to that of Lemmal[ll Let H be the hypergraph consisting of r —1
hyperedges on r + 1 vertices. First notice that for any pair of vertices x,y € S, the number
of hyperedges h C S such that {z,y} ¢ h is at most 2. This means that every pair x,y € S
is contained in some hyperedge, as there are at least » — 1 > 3 hyperedges contained in S.
In other words, 0s(H) = K,11.



Consider an arbitrary path x;xs ...z, of length r — 1 in the 0y(#H) connecting u =
and v = x,. We want to show that there are distinct hyperedges containing the pairs x;x;
for each 1 < ¢ < r — 1. To this end, we consider an auxiliary bipartite graph with pairs
{z129, xo23, ..., 2,12, } in one class and the r — 1 hyperedges h C S in the other class, and
a pair is connected to a hyperedge if it is contained in the hyperedge. We show that Hall’s
condition holds: As noted before, every pair is contained in a hyperedge. Given any two
distinct pairs z; 7,41 and x;x;41, there is at most one hyperedge that does not contain either
of them; i.e., at least » — 2 hyperedges contain one of them. Thus we need 2 < r — 2 for
Hall’s condition to hold, but this is true as we assumed r > 4. Moreover, if we take any
3 < j <r—1distinct pairs, then every hyperedge contains one of them. Therefore, we need
j < r—1 for Hall’s condition to hold, and this is true by assumption. This finishes the proof
of the lemma. O

3 Proof of Theorem dl (k =1 + 2)

We will prove the theorem by induction on n. For the base cases, note that if 1 < n < r
then the statement of the theorem is trivially true. If n = r + 1, the statement is true since
there are at most r + 1 hyperedges of size r on r + 1 vertices. Moreover, equality holds if
and only if H = K] _,.

We will show the statement is true for n > r + 2 assuming it is true for all smaller values.
Let ‘H be an r-uniform hypergraph on n vertices having no Berge cycle of length r + 2 or

longer. We show that we may assume the following two properties hold for H.

(1) For any set S C V(H) of vertices, the number of hyperedges of H incident to the
vertices of S is at least |S|.

Indeed, suppose there is a set S C V(H) with fewer than |S| hyperedges incident to

the vertices of S. If |S| = n we immediately have the required bound on e(H), so

assume n > |S|. We can delete the vertices of S from H to obtain a new hypergraph

H' on n — | S| vertices. By induction, H’ contains at most £t (n — |S|—1) hyperedges,

so H contains less than “H(n — 1 — |S]) 4 |S|< “(n — 1) hyperedges, as desired.
(2) There is no cut-hyperedge in H.

Indeed, if h € E(H) is a cut-hyperedge, then 0x(H \ {h}) is not a connected graph,
so there are non-empty disjoint sets V; and V5 such that V(H) = V4 U V5, and there
are no edges of dy(H \ {h}) between V; and V5. So both hypergraphs H[V;] and H[V5]
do not contain a Berge cycle of length r + 2 or longer. By induction, e(H[V}]) <
SV 1) and e(H[Va]) < ZE(|V|—1). In total, e(H) = e(H[Vi]) +e(H[V2]) +1 <
L (Vi Va|=2) + 1 < L (|V(H)|—1), as desired.

Consider an auxiliary bipartite graph B consisting of vertices of H in one class and hyper-
edges of H on the other class. Then property (1) shows that Hall’s condition holds. Therefore,



there is a perfect matching in B. In other words, there exists an injection f : V(H) — E(H)
such that v € f(v).

Given an injection f : V(H) — E(H) with v € f(v), let P; be a longest Berge path of the
form vy f(vy)vaf(ve) ... v_1f(v_1)v; where for each 1 < i <1 —1, vy € f(v;). Moreover,
among all injections f : V(H) — E(H) with v € f(v), suppose ¢ : V(H) — E(H) is an
injection for which the path P, = v1¢(v1)vag(va) ... vi_1¢(v;_1)v; is a longest path.

Claim 1. ¢(v;) C {vi—r, Vi—pi1, ..., U_1, Ui}

Proof. First notice that if ¢(v;) contains a vertex v; € {vy,va,...,v_,_1}, then the Berge
cycle v;0(v;)Vi10(viv1) - .. vd(v)v; is of length r + 2 or longer, a contradiction. Moreover,
if ¢(v;) contains a vertex v ¢ {vy,va,..., v}, then P, can be extended to a longer path

v1P(v1)vad(V2) . .. U1 P(vi—1)vP(vy)v, a contradiction. This completes the proof of the claim.
O

By Claim [, we know that ¢(v;) = {vi—, vir41, ..., vi—1, U} \ {v;} for some | —r < j <
[—1.

Claim 2. Foranyi € {l—r,l—r+1,....[}\{j}, we have ¢(v;) C {vi_p,V1—pi1,. .., 01,0}

Proof. When ¢ = [, we know the statement is true. Suppose i € {{ —r,l —r+1,...,1 —
1}\ {j}. Let us define a new injection ¢ : V(H) — E(H) as follows: ¥ (v) = ¢(v) for every
v & {v1,va,...,u}, and for every v € {vy,vy,...,v;_1}. Moreover, let ¥ (v;) = ¢(v;) and
(vg) = ¢(vg_q) foreach I > k > i+ 1.

Now consider the Berge path v1¢(v1)vad(v2) ... v;d(v)vid(vi_1) . . . V2P (Vig1)Vig1, €QUIV-
alently vy1(vy)vat(ve) ... vb(v;) v (vy) . .. V12 (Vire)vir1. This path has the same length
as Py, so it is also a longest path. Moreover, notice that the sets of last r + 1 vertices of
both paths are the same. Thus we can apply Claim [Il to conclude that ¢(v;) = ¥(viyq) C
{vi_r,V1—p11, .-, U0_1,0;}, as desired. O

Claim [2 shows that there are r hyperedges (each of size r) contained in the set S :=
{vi_ryVi—ps1, ..., U_1,v} of size r + 1. We will apply Lemma [l to S.

Claim 3. The set S = {v;_p, U_rs1,...,0-1,U} induces a block of Ox(H).

Proof. Since the set S = {v;_,vj_r11,...,v_1,v} contains r > 3 hyperedges every pair
x,y € S is contained in some hyperedge. Thus 0y(#H[S]) = K,;1. Consider a (maximal)
block D of 05(H) containing S.

Suppose D contains a vertex t ¢ S. Then since D is 2-connected, there are two paths
Py, Py in 0y(H) between ¢ and S, which are vertex-disjoint besides ¢. Let V(P) NS = {u}
and V(P,) NS = {v}. For each edge zy € E(P,) U E(P), fix an arbitrary hyperedge h,,, of
H containing zy. It is easy to see that a subset of the hyperedges {h,, | zy € E(P)UE(P)}
forms a Berge path P between u and v.

On the other hand, by Lemma [ there is a Berge path P’ of length r between u and
v consisting of the r hyperedges contained in S. Note that P and P’ do not share any
hyperedges (indeed, each hyperedge of P contains a vertex not in S, while hyperedges of P’
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are contained in S). Therefore, P U P’ forms a Berge cycle of length r + 2 or longer unless
P consists of only one hyperedge, say h. Note that h contains a vertex x ¢ S and u,v € h;
moreover by property (2), h is not a cut-hyperedge of H. So after deleting h from #, the
hypergraph H \ {h} is still connected — so there is a (shortest) Berge path Q in H \ {h}
between x and a vertex s € S (note that the hyperedges of Q are not contained in S). The
vertex s is different from either u or v, say s # u without loss of generality. By Lemma [I
there is a Berge path Q' of length r between s and u (consisting of hyperedges contained in
S). Then, Q, @ and h form a Berge cycle of length at least +2, a contradiction. Therefore,
D contains no vertex outside S; thus S induces a block of d0y(H), as required. O

Let Dy, Do, ..., D, be the unique decomposition of d(H) into 2-connected blocks. Claim
[3l shows that one of these blocks, say D, is induced by S. Let us contract the vertices of
S to a single vertex, to produce a new hypergraph H’. Then it is clear that the block
decomposition of dy(H') consists of the blocks Dy, ..., D,. So H' does not contain any Berge
cycle of length r + 2 or longer, as well; moreover |V (H')|= |V (H)|—r. Thus, by induction,
we have e(H') < == (]V(H')|—1). Therefore,

r+1 r+1 r+1

eH) < ——=(VH)-) + @+ 1) = ——=(V(H)[=r = 1) + (r +1) = ——=(V(H)|-1).
Now if e(H) = Z=(|]V(H)|—1), then we must have e(H') = “=(|]V(H')|—1) and S must
contain all r 4+ 1 subsets of size r (i.e., H[S] = H[D:1] = K] ,,). Moreover, since equality

holds for H', by induction, dy(H') is connected and for each block D; (with 2 < i < p) of
02(H'), D; = K,11 and H'[D;] = K] |. This means that for every block D of 0y(H), we
have D = K, and H[D] = K, completing the proof.

4 Proof of Theorem [l (k =7+ 1)

The proof is similar to that of Theorem M| but there are many important differences.

We use induction on n. For the base cases, notice that the statement of the theorem
is trivially true if 1 < n < r. Moreover, if n = r + 1, then e(H) < r because otherwise,
H = K], and then it is easy to see that there is a (Hamiltonian) Berge cycle of length  +1
in H, a contradiction. Therefore, e(H) < r = n — 1. Moreover, equality holds if and only if
O2(H) = K41 and H consists of r hyperedges.

We will show the statement is true for n assuming it is true for all smaller values. Let H
be an r-uniform hypergraph on n vertices having no Berge cycle of length r + 1 or longer.
We show that we may assume the following two properties hold for H.

(1) For any set S C V(H) with |S|< |V(H)|—1 = n — 1, the number of hyperedges of H
incident to the vertices of S is at least |S)|.
Indeed, suppose there is a set S C V(H) (ie., |5]|< |[V(H)|—1) with fewer than |S]|
hyperedges incident to the vertices of S. We delete the vertices of S from H to obtain a
new hypergraph H’ on n — |S| vertices. By induction, H' contains at most (n —[S|—1)
hyperedges, so H contains less than (n—1—15|)+|S|= (n—1) hyperedges, as required.
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(2) There is no cut-hyperedge in H.

Indeed, if h € E(H) is a cut-hyperedge, then 0x(H \ {h}) is not a connected graph,
so there are disjoint non-empty sets V; and V5 such that V(H) = V3 U V5 and there
are no edges of 0y(H \ {h}) between V; and V5. So the hypergraphs #H[V;] and H[V5]
do not contain a Berge cycle of length r + 1 or longer. Therefore, by induction,
e(H[V1]) < |[Vi|—1 and e(H[V3]) < |Va|—1. In total, e(H) = e(H[V1]) + e(H[V3]) +1 <
(IVi|+|Va]=2) + 1 = |V (H)|—1, as desired.

Moreover, we claim that the equality e(H) = |V (#)|—1 cannot hold in this case (i.e.,
if there is a cut-hyperedge). Indeed, if equality holds, then we must have e(H[V]]) =
|V1|—1 and e(H[V5]) = |Va|—1. Notice that since r > 3, the hyperedge h either contains
at least two vertices x,y € V; or two vertices x,y € V5. Without loss of generality,
assume the former is true. By induction, dy(#[V1]) is connected and for every block
D of 05(H[V1]), we have D = K, and the subhypergraph induced by D consists of
r hyperedges. So by Lemma [I] there is a Berge path of length r (consisting of the
r hyperedges induced by D) between any two vertices of a block D. Then it is easy
to see that since 0y(H[V1]) is connected, there is a Berge path P of length at least r
between any two vertices of V7, so in particular between x and y. Then P together
with h forms a Berge cycle of length r» + 1 in H, a contradiction.

Consider an auxiliary bipartite graph B consisting of vertices of H in one class and
hyperedges of H on the other class. Then property (1) shows that Hall’s condition holds for
all subsets of V (H) of size up to |V (#H)|—1. Therefore, there is a matching in B that matches
all the vertices in V(H), except at most one vertex, say x. In other words, there exists an
injection f : V(H) \ {x} — E(H) such that for every v € V(H) \ {z}, we have v € f(v).
Given an injection f: V(H)\ {z} — E(H) with v € f(v), let P; be a longest Berge path of
the form vy f(v1)va f(va) . .. vj_1f (v;—1)v; where for each 1 <i <[—1, v;41 € f(v;). Moreover,
among all injections f : V(H)\{z} — E(H) with v € f(v), suppose ¢ : V(H)\{z} = E(H)
is an injection for which the path Py = v1¢(v1)vap(v2) . .. vi—1¢(vi—1)v; is a longest path.

Because of the way P, was constructed, it is also clear that x & {vy,ve,...,u_1}. We
consider two cases depending on whether v; is equal to x or not.

Case 1: v; # z. Our aim is to get a contradiction, and show that this case is impossible.
Claim 4. If U # x, then ¢(Ul) = {Ul—r-i-lu Ul—p42y - - 7Ul}'

Proof. If v; # x, then we claim ¢(v;) = {v_y41,V1_pso,...,0}. Indeed, if ¢(v;) contains a
vertex v; € {vy, Vs, ..., v}, then the Berge cycle v;¢(v;)vix10(vig1) - .. vp(v;)v; is of length
r+1 or longer, a contradiction. Moreover, if ¢(v;) contains a vertex v & {vy, vo, ..., v}, then
P, can be extended to a longer path v1¢(vy)vag(va), ..., v_10(v—1)vip(v)v, a contradiction
again, proving that ¢(v;) = {vi—rs1, Vi—pi2, ..., U} O

Fix some i € {{—r+ 1,1 —r+2,...,1 —1}. Let us define a new injection ¢ : V(H) \
{z} — E(H) as follows: ¥(v) = ¢(v) for every v & {x,v1,v9,...,v}, and for every v €
{v1,v9,...,v;_1}. Moreover, let 1(v;) = ¢(v;) and ¥(vy) = ¢(vg_q) for each | > k >
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i+ 1. Now consider the Berge path vi¢(vy)vad(vs) ... vid(v)vd(vi—1) .. . Vigod(Vir1)Vig1
= v1(v1)vah(va) ... vb(v;)v(vy) .. Vi (viso)vir1. This path has the same length as
Py, so it is also a longest path. Moreover, v;41 # x, so we can apply Claim M to conclude
that ¥ (viy1) = {vi—ri1, Vimri2, .-, 0} = ¢(v;). But then ¢(v;) = ¢(v;), a contradiction to
the fact that ¢ was an injection.

Case 2: v, = z.
Claim 5. ¢(v;-1) C {viy, Vi—py1, - -, Ui}

Proof. If ¢(v;_1) contains a vertex v & {vy,vs,...,v}, then we consider the Berge path
v10(V1)ved(vVa), . . ., u_1P(v_1)v. Since v # x, we get a contradiction by Case 1. More-
over, if ¢(v;_1) contains a vertex v; with ¢« € {1,2,...,1 —r — 1}, then the Berge cycle
(V) Vi1 0(Vig1) - - - V_10(vi—1)v; s of length r + 1 or longer, a contradiction. This finishes
the proof of the claim. O

By Claim [ we know that ¢(vi—1) = {vi—r, vi—rt1, ..., v—1, 0} \ {v;} for some j with
| —r <j<1l-2. (From now, in the rest of the proof we fix this j.)

Claim 6. Foranyi € {l—r,l—r+1,...,[—=1}\{j}, we have ¢(v;) C {Vi—p, Vi—py1, .., V_1,V1}.

Proof. When i =1 — 1, we know the statement is true by Claim [3l

Suppose i € {l —r,l —r+1,....,1—2}\ {j}. Let us define a new injection ¢ : V(H) \
{z} — E(H) as follows: ¢(v) = ¢(v) for every v & {vi,ve,...,u}, and for every v €
{v1,v9,...,v;_1}. Moreover, let ¥(v;) = ¢(v_1) and ¥(vy) = P(vg_q) for each [ — 1 >
k > i+ 1. Now consider the Berge path v1¢(v1)vad(v2) ... v;d(vi_1)vi_1P(v_2). . Vi1 =
vi(vy)vath(va) ... v (v)v_1¥(v_1) ... vip1. (Note that when ¢ = [ — 2, the Berge path is
simply v10(v1)v20(v2) ... Vip(Vi—1)vi—1 = V1Y(V1)v2t(va) . .. VP (V) V1)

If ¢(v;y1) contains a vertex v & {vy,va,...,v}, then the Berge path vt (vq)vath(vs)

() v (vr) - Va0 (Vir2)Vip1 (Vi1 )u has the same length as Py, so it is also a

longest path. Moreover, since v # x, we get a contradiction by Case 1.

If ¢(v;41) contains a vertex vy € {vi,vs,...,v_,—1} then one can see that the Berge
cycle v (V) Vg1 (Vgs1) .. vi—1¥(vi_1)vg is of length r + 1 or longer, a contradiction.
Therefore, we have ¥(viy1) C {vi_r, Vi_ps1, ..., 0 }. But we defined ¥ (v;11) = ¢(v;), proving
the claim. O

Note that Claim [ shows that r — 1 hyperedges of H are contained in a set S :=
{vi—r,v1—p11, ..., v_1,v} of size r + 1. The following claim shows that if we can find one
more hyperedge of H contained in .S, then S must induce a block of 0y(H).

Claim 7. Suppose r > 3. If a set S of size r + 1 contains r hyperedges of H then it induces
a induces a block of Oy(H).

Proof. Since the set S contains at least 3 hyperedges every pair x,y € S is contained in some

hyperedge. Thus 05(#H[S]) = K,41. Consider a (maximal) block D of 0,(#H) containing S.
Suppose D contains a vertex t € S. Then since D is 2-connected, there are two paths

Py, Py in 0y(H) between ¢ and S, which are vertex-disjoint besides ¢. Let V(P) NS = {u}
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and V() NS = {v}. For each edge zy € E(P;) U E(P), fix an arbitrary hyperedge h,, of
H containing xy. It is easy to see that a subset of the hyperedges {h,, | vy € E(P)UE(F,)}
forms a Berge path P between u and v.

On the other hand, by Lemma [Il there is a Berge path P’ of length r between u and
v consisting of the r hyperedges contained in S. Note that P and P’ do not share any
hyperedges (indeed, each hyperedge of P contains a vertex not in .S, while hyperedges of P’
are contained in S). Therefore, P together with P’ forms a Berge cycle of length r + 1 or
longer, a contradiction. Therefore, D contains no vertex outside S; thus S induces a block
of 0y(H), as required. 0O

We will use the above claim several times later. At this point we need to distinguish the
cases r = 3 and r > 4, since Lemma [2] only applies in the latter case.

The case r > 4

Since r > 4, by Claim [0l and Lemma 2] there is a Berge path of length r — 1 between any two
vertices of S = {v;_,vj_r11,...,v_1,v}. This will allow us to show the following.

Claim 8. ¢(Uj) CAv—r, Vimpg1s - 0—, 0 = 8

Proof. Suppose for a contradiction that ¢(v;) contains a vertex v ¢ S. The hyperedge ¢(v;)
contains at least two vertices from S, namely v; and v;41. By property (2), ¢(v;) is not
a cut-hyperedge of H. So after deleting ¢(v;) from H, the hypergraph H \ {4(v;)} is still
connected — so there is a (shortest) Berge path Q in H \ {¢(v;)} between v and a vertex
s € S (note that the hyperedges of Q are not contained in S). The vertex s is different from
either v; or v;41, say s # v;, without loss of generality. By Lemma [2, there is a Berge path
Q' of length r — 1 between s and v; (consisting of the hyperedges contained in ). Then
Q, @ and ¢(v;) form a Berge cycle of length at least » + 1 in H, a contradiction. O

Claim [6] and Claim [§] together show that there are at least r hyperedges of H contained
in S. If all r + 1 subsets of S of size r are hyperedges of H, then S induces K, and it is
easy to show that it contains a Berge cycle of length r + 1, a contradiction. This means S
contains exactly r hyperedges of H. Then by Claim [1, we know that S induces a block of
O (H).

Let Dy, Ds, ..., D, be the unique decomposition of d(H) into 2-connected blocks. Claim
[7 shows that one of these blocks, say Dy, is induced by S. Let us contract the vertices of
S to a single vertex, to produce a new hypergraph H'. Then it is clear that the block
decomposition of dy(H') consists of the blocks Dy, ..., D,. So H' does not contain any Berge
cycle of length r + 1 or longer, as well; moreover, |V (H')|= |V (H)|—r and e(H') = e(H) —r.
By induction, we have e(H') < |V(H')|—1. Therefore,

e(H)=eH)+r <([VH)|-1)+r=(V(H)|-r—1)+r=|V(H)|-1.

If e(H) = |V(H)|—1, then we must have e(H') = |V (H')|—1 and S must contain exactly
r hyperedges. Moreover, since equality holds for H’, by induction, ds(H’) is connected and
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for each block D; (with 2 < i < p) of 0y(H'), D; = K,4+1 and H'[D;] contains exactly r
hyperedges. This means that for every block D of 0y(#H), we have D = K., and H[D)]
contains exactly r hyperedges, completing the proof in the case r > 4.

The case r = 3

Recall that using Claim [6l we can find a set .S of size 4 which contains 2 hyperedges of H. Let
S = {z,y,a,b} and the two hyperedges be xab and yab. By property (2), zab is not a cut-
hyperedge of H. So after deleting zab from H, the hypergraph H \ {zab} is still connected
— so there is a (shortest) Berge path Q between = and {y, a,b}. If Q is of length at least 2,
then it is easy to see that Q together with yab and xab form a Berge cycle of length at least
4, a contradiction. So Q consists of only one hyperedge, say h.

Our goal is to find a set of vertices which induces a block of 05(H), so that we can apply
induction.

If |h N {y,a,b}| =2 then h, xab, yab are 3 hyperedges of H contained in .S, so by Claim [7]
we can conclude that S induces a block of 0y(#). (Notice that S contains exactly |S|—1 = 3
hyperedges of H, otherwise it is easy to find a Berge cycle of length 4; this will be useful
later.) So we can suppose |h N {y,a,b}| = 1. We consider two cases depending on whether
h is either xat or xbt, or whether h is xyt for some t € S.

Case 1. First suppose without loss of generality that h = zat for some t ¢ S. Consider
the set D of all hyperedges of ‘H containing the pairs xa, ab or xb and let D be the set of
vertices spanned by them. For each pair of vertices i,j € {z,a,b}, let V;; = {v | ijv €
H}\ {z,a,b}. We claim that the sets V., Vi, Vi are pairwise disjoint. Suppose for the
sake of a contradiction that ¢’ € V,, N V,,. Then the hyperedges zat’, abt’, zab are contained
in a set of 4 vertices {z,a,b,t'}. Thus by Claim [7, this set induces a block of 0»(H) and
we are done (we found the desired block!). Thus we can suppose Vo, N Vg, = (0. Similarly
Vs NV = 0 and V,,, NV, = (. This shows that |D| = 3+ |Vya| + |Vis| + [Vas|. On the other
hand, D consists of 1 + |Vya| + |Vas| + |Vas| hyperedges, so |D| = |D| — 2.

We will now show that D induces a block of 02(H). Let D’ be a (maximal) block of 05(H)
containing D and suppose for the sake of a contradiction that it contains a vertex p € D.
Then since D’ is 2-connected, there are two paths P;, P, in 0(H) between p and D, which
are vertex-disjoint besides p. Let V(P) N D = {u} and V(FP,) N D = {v}. For each edge
xy € E(P) U E(P,), fix an arbitrary hyperedge h,, of H containing xy. It is easy to see
that a subset of the hyperedges {h,, | zy € E(P)UE(P)} forms a Berge path P between u
and v. If uv & {za, ab, xb}, then it is easy to see that there is a path P’ of length 3 between
u and v consisting of the hyperedges of D. Then P together with P’ forms a Berge cycle of
length at least 4 in H, a contradiction. On the other hand if uwv € {xa, ab, xb}, then P must
contain at least two hyperedges of H because otherwise P = {puv} but then puv should have
been in D (since by definition D must contain all the hyperedges of H containing the pair
uv); moreover, it is easy to check that between u and v there is a Berge path P’ of length 2
consisting of the hyperedges of D. Then again, P together with P’ forms a Berge cycle of
length at least 4 in H, a contradiction. Therefore, D’ contains no vertex outside D; so D
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induces a block of 0y(#H) (which contains |D| — 2 hyperedges of H), as desired.

Case 2. Finally suppose h = zyt for some t € S. Let D be the set of all hyperedges of
‘H containing the pair zy plus the hyperedges xab and yab, and let D be the set of vertices
spanned by the hyperedges of D. Let V., = {v | zyv € H}. We claim that a ¢ V,, and
b & V,,. Indeed suppose for the sake of a contradiction that a € V,,. Then the hyperedges
xab, yab, xya are contained in a set of 4 vertices {x,y, a,b}. So by Claim [T, this set induces a
block of 05(H), and we are done. So a & V;,. Similarly, we can conclude b ¢ V,,,. Therefore,
|D| = |Vy| + 4. On the other hand, |D| = |V,,| + 2, so |D| = |D| — 2.

We claim that D induces a block of 0y(#). The proof is very similar to that of Case 1,
we still give it for completeness. Let D’ be a (maximal) block of 0y(#) containing D and
suppose for the sake of a contradiction that it contains a vertex p ¢ D. Then since D’ is
2-connected, there are two paths P;, P, in 0y(H) between p and D, which are vertex-disjoint
besides p. Let V(Py) N D = {u} and V(P) N D = {v}. For each edge xy € E(P,) U E(P),
fix an arbitrary hyperedge h,, of H containing xy. It is easy to see that a subset of the
hyperedges {hy, | vy € E(P;) U E(P)} forms a Berge path P between u and v.

If uv # xy, then it is easy to see that there is a path P’ of length 3 or 4 between u and
v consisting of the hyperedges of D. (Indeed if u,v € V,,, then P’ is of length 4, otherwise
it is of length 3.) Then P together with P’ forms a Berge cycle of length at least 4 in H, a
contradiction. On the other hand if uv = xy, then P must contain at least two hyperedges
of H because otherwise P = {puv} but then puv should have been in D (since by definition
D must contain all the hyperedges of H containing the pair uv); moreover, it is easy to check
that between u and v there is a Berge path P’ of length 2 consisting of the hyperedges of D.
Then again, P together with P’ forms a Berge cycle of length at least 4 in H, a contradiction.
Therefore, D’ contains no vertex outside D; so D induces a block of 0y(H) (and contains
|D| — 2 hyperedges of H), as desired.

Let Dy, Dy, ..., D, be the unique decomposition of dy(H) into 2-connected blocks. In
Case 1 and Case 2 we showed that one of these blocks, (say) Dy = D is such that H[D;]
contains | D1|—2 hyperedges of H, otherwise, D; is a set of 4 vertices such that H[D;] contains
exactly |D;| — 1 = 3 hyperedges of H. In all these cases, note that e(H[D;]) < |D;| — 1.

Let us contract the vertices of D; to a single vertex, to produce a new hypergraph H’.
Then it is clear that the block decomposition of 0y(H') consists of the blocks Ds, ..., D,.
So H’ does not contain any Berge cycle of length 4 or longer, as well; moreover, |V (H')|=
|[V(H)|—|D1]+1 and e(H') = e(H) — e(H[D,]). By induction, we have e(H') < |V(H')|-1.
Therefore,

e(H) = e(H)+e(H[D1]) < [V(H)=1+[D1|=1 = (|[V(H)|=|D1[+1)=1+[D1[-1 = [V (H)|-1.

If e(H) = |[V(H)|—1, then we must have e(H') = |V (H')|—1 and H[D;] must contain
exactly |D;| — 1 hyperedges. As noted before, this is only possible if Dy has 4 vertices and
induces exactly 3 hyperedges of H. Moreover, since equality holds for H’, by induction,
02(H') is connected and for each block D; (with 2 < ¢ < p) of 0o(H'), D; = K, and H'[D;]
contains exactly 3 hyperedges. This means for every block D of 0;(H), we have D = K, and
‘H[D] contains exactly 3 hyperedges of H, completing the proof in the case r = 3.
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