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Abstract

The maximum size of an r-uniform hypergraph without a Berge cycle of length at
least k has been determined for all k ≥ r + 3 by Füredi, Kostochka and Luo and for
k < r (and k = r, asymptotically) by Kostochka and Luo. In this paper, we settle the
remaining cases: k = r + 1 and k = r + 2, proving a conjecture of Füredi, Kostochka
and Luo.

Given a hypergraph H, let V (H) and E(H) denote the set of vertices and hyperedges
of H, respectively, and let e(H) = |E(H)|. A hypergraph is called r-uniform if all of its
hyperedges have size r. For convenience, we refer to an r-uniform hypergraph as an r-graph.
Berge introduced the following definitions of a cycle and a path in a hypergraph.

Definition 1. A Berge cycle of length l in a hypergraph is a set of l distinct vertices

{v1, . . . , vl} and l distinct hyperedges {e1, . . . , el} such that {vi, vi+1} ⊆ ei with indices taken

modulo l.

A Berge path of length l in a hypergraph is a set of l+1 distinct vertices v1, . . . , vl+1 and

l distinct hyperedges e1, . . . , el such that {vi, vi+1} ⊆ ei for all 1 ≤ i ≤ l. We say that such a

Berge path is between v1 and vl+1.
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Notation 1. Let H be a hypergraph. Then its 2-shadow, ∂2H, is the collection of pairs that

lie in some hyperedge of H. Given a set S ⊆ V (H), the subhypergraph of H induced by S is

denoted by H[S].
We say H is connected if ∂2(H) is a connected graph. A hyperedge h ∈ E(H) is called a

cut-hyperedge of H if H \ {h} := (V (H), E(H) \ {h}) is not connected.

When we say D is a block of ∂2(H), we may either mean D is the vertex-set of the block,

or D is the edge-set of the block depending on the context.

1 Background and our results

Győri, Katona and Lemons extended the well-known Erdős-Gallai theorem to hypergraphs
by showing the following.

Theorem 1 (Győri, Katona, Lemons [8]). Let H be an r-uniform hypergraph with no Berge

path of length k. If k > r + 1 > 3, we have

e(H) ≤
n

k

(

k

r

)

.

If r ≥ k > 2, we have

e(H) ≤
n(k − 1)

r + 1
.

For the case k = r + 1, Győri, Katona and Lemons conjectured that the upper bound
should have the same form as the k > r + 1 case. This was settled by Davoodi, Győri,
Methuku and Tompkins [1] who showed the following.

Theorem 2 (Davoodi, Győri, Methuku, Tompkins [1]). Fix k = r + 1 > 2 and let H be an

r-uniform hypergraph containing no Berge path of length k. Then,

e(H) ≤
n

k

(

k

r

)

= n.

The bounds in the above two theorems are sharp for each k and r for infinitely many n.
Győri, Methuku, Salia, Tompkins and Vizer [9] proved a significantly smaller upper bound
on the maximum number of hyperedges in an n-vertex r-graph with no Berge path of length
k under the assumption that it is connected. Their bound is asymptotically exact when r

is fixed and k and n are sufficiently large. The notion of Berge cycles and Berge paths was
generalized to arbitrary Berge graphs F by Gerbner and Palmer in [5], and the (3-uniform)
Turán number of Berge-K2,t was determined asymptotically in [6]. The general behaviour of
the Turán number of Berge-F , as the uniformity increases, was studied in [7].

Recently, Füredi, Kostochka and Luo [3] proved exact bounds similar to Theorem 1 for
hypergraphs avoiding long Berge cycles.
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Theorem 3 (Füredi, Kostochka, Luo [3]). Let r ≥ 3 and k ≥ r + 3, and suppose H is

an n-vertex r-graph with no Berge cycle of length k or longer. Then e(H) ≤ n−1

k−2

(

k−1

r

)

.

Moreover, equality is achieved if and only if ∂2(H) is connected and for every block D of

∂2(H), D = Kk−1 and H[D] = Kr
k−1

.

Moreover, Kostochka and Luo [10] found exact bounds for k ≤ r − 1 and asymptotic
bounds for k = r. Let us remark that their asymptotic bound in the case k = r also follows
from Theorem 5 stated below. (More recently, extending [3], Füredi, Kostochka, Luo [4]
proved exact bounds and determined the extremal examples for all n when k ≥ r + 4.)

The two cases k = r + 2 and k = r + 1 remained open. For the case k = r + 2, Füredi,
Kostochka and Luo conjectured [3] that a similar statement as that of Theorem 3 holds
and mentioned the answer is unknown for the case k = r + 1. In this paper, we prove this
conjecture.

Theorem 4. Let r ≥ 3 and n ≥ 1, and suppose H is an n-vertex r-graph with no Berge

cycle of length r + 2 or longer. Then e(H) ≤ r+1

r
(n − 1). Moreover, equality is achieved if

and only if ∂2(H) is connected and for every block D of ∂2(H), D = Kr+1 and H[D] = Kr
r+1.

In the case k = r + 1, we prove the following exact result, and characterize the extremal
examples.

Theorem 5. Let r ≥ 3 and n ≥ 1, and suppose H is an n-vertex r-graph with no Berge

cycle of length r + 1 or longer. Then e(H) ≤ n − 1. Moreover, equality is achieved if and

only if ∂2(H) is connected and for every block D of ∂2(H), D = Kr+1 and H[D] consists of

r hyperedges.

Note that Theorem 5 easily implies Theorem 2. In fact, it gives the following stronger
form. Here we quickly prove this implication.

Theorem 6. Fix k = r + 1 > 2 and let H be an r-uniform hypergraph containing no Berge

path of length k. Then, e(H) ≤ n
k

(

k

r

)

= n. Moreover, equality holds if and only if each

connected component D of ∂2(H) is Kr+1, and H[D] = Kr
r+1.

Proof. We proceed by induction on n. The base cases n ≤ r + 1 are easy to check. Let
H be an r-uniform hypergraph containing no Berge path of length k = r + 1 such that
e(H) ≥ n. Then by Theorem 5, H contains a Berge cycle C of length r + 1 or longer. C
must be of length exactly r+1, otherwise it would contain a Berge path of length r+1. Let
v1, . . . , vr+1 and e1, . . . , er+1 be the vertices and edges of C where {vi, vi+1} ⊆ ei (indices are
taken modulo r+1). For any i with 1 ≤ i ≤ r+1, if ei contains a vertex v 6∈ {v1, . . . , vr+1},
then vi+1ei+1vi+2ei+2 . . . ei−1vieiv forms a Berge path of length r + 1 in H, a contradiction.
Therefore, all of the edges ei (for 1 ≤ i ≤ r+1) are contained in the set S := {v1, . . . , vr+1}.
That is, H[S] = Kr

r+1. It is easy to see that S forms a connected component in ∂2(H)
because if any hyperedge h of H (with h 6∈ C) contains a vertex of C, then C can be extended
to form a Berge path of length r + 1.
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Let S1, S2, . . . , St be the vertex sets of connected components of ∂2(H). As noted before,
one of them, say S1, is equal to S. We delete the vertices of S1 from H to form a new
hypergraph H′; note that |V (H′)| = |V (H)| − (r + 1) and |E(H′)| = |E(H)| − (r + 1) and
the connected components of ∂2(H

′) are S2, . . . , St. By induction |E(H′)| ≤ |V (H′)|. Thus
|E(H)| = |E(H′)| + (r + 1) ≤ |V (H′)| + (r + 1) = |V (H)|. Moreover, if |E(H)| = |V (H)|,
then |E(H′)| = |V (H′)|, so by the induction hypothesis each connected component Si (i ≥ 2)
of ∂2(H

′) is Kr+1, and H′[Si] = Kr
r+1, proving the theorem.

Structure of the paper: In Section 2, we prove some basic lemmas which are used in
our proofs. In Section 3, we prove Theorem 4, and in Section 4, we prove Theorem 5.

2 Basic Lemmas

We will use the following two lemmas.

Lemma 1. For any r ≥ 3, if a set S of size r+1 contains r hyperedges of size r, then between

any two vertices u, v ∈ S, there is a Berge path of length r consisting of these hyperedges.

Proof. Let H be the hypergraph consisting of r hyperedges on r + 1 vertices. First notice
that for any pair of vertices x, y ∈ S, the number of hyperedges h ⊂ S such that {x, y} 6⊂ h is
at most 2. (Indeed, there is at most one hyperedge that does not contain x and at most one
hyperedge that does not contain y.) This means that every pair x, y ∈ S is contained in some
hyperedge, as there are at least 3 hyperedges contained in S. In other words, ∂2(H) = Kr+1.

Consider an arbitrary path x1x2, . . . , xr+1 of length r in the ∂2(H) connecting u = x1
and v = xr+1. We want to show that there are distinct hyperedges containing the pairs
xixi+1 for each 1 ≤ i ≤ r. To this end, we consider an auxiliary bipartite graph with pairs
{x1x2, x2x3, . . . , xrxr+1} in one class and the r hyperedges h ⊂ S in the other class, and
a pair is connected to a hyperedge if it is contained in the hyperedge. We will show that
Hall’s condition holds: As noted before, every pair is contained in a hyperedge. Given any
two distinct pairs xixi+1 and xjxj+1, there is at most one hyperedge that does not contain
either of them; i.e., at least r − 1 hyperedges contain one of them. Thus we need 2 ≤ r − 1
for Hall’s condition to hold, but this is true as we assumed r ≥ 3. Moreover, if we take any
3 ≤ j ≤ r distinct pairs, then every hyperedge contains one of them. Therefore, we need
j ≤ r, but this is true by assumption. This finishes the proof of the lemma.

Lemma 2. For any r ≥ 4, if a set S of size r + 1 contains r − 1 hyperedges of size r, then

between any two vertices u, v ∈ S, there is a Berge path of length r − 1 consisting of these

hyperedges.

Proof. The proof is similar to that of Lemma 1. Let H be the hypergraph consisting of r−1
hyperedges on r + 1 vertices. First notice that for any pair of vertices x, y ∈ S, the number
of hyperedges h ⊂ S such that {x, y} 6⊂ h is at most 2. This means that every pair x, y ∈ S

is contained in some hyperedge, as there are at least r − 1 ≥ 3 hyperedges contained in S.
In other words, ∂2(H) = Kr+1.
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Consider an arbitrary path x1x2 . . . xr of length r − 1 in the ∂2(H) connecting u = x1
and v = xr. We want to show that there are distinct hyperedges containing the pairs xixi+1

for each 1 ≤ i ≤ r − 1. To this end, we consider an auxiliary bipartite graph with pairs
{x1x2, x2x3, . . . , xr−1xr} in one class and the r− 1 hyperedges h ⊂ S in the other class, and
a pair is connected to a hyperedge if it is contained in the hyperedge. We show that Hall’s
condition holds: As noted before, every pair is contained in a hyperedge. Given any two
distinct pairs xixi+1 and xjxj+1, there is at most one hyperedge that does not contain either
of them; i.e., at least r − 2 hyperedges contain one of them. Thus we need 2 ≤ r − 2 for
Hall’s condition to hold, but this is true as we assumed r ≥ 4. Moreover, if we take any
3 ≤ j ≤ r− 1 distinct pairs, then every hyperedge contains one of them. Therefore, we need
j ≤ r−1 for Hall’s condition to hold, and this is true by assumption. This finishes the proof
of the lemma.

3 Proof of Theorem 4 (k = r + 2)

We will prove the theorem by induction on n. For the base cases, note that if 1 ≤ n ≤ r

then the statement of the theorem is trivially true. If n = r + 1, the statement is true since
there are at most r + 1 hyperedges of size r on r + 1 vertices. Moreover, equality holds if
and only if H = Kr

r+1.
We will show the statement is true for n ≥ r+2 assuming it is true for all smaller values.

Let H be an r-uniform hypergraph on n vertices having no Berge cycle of length r + 2 or
longer. We show that we may assume the following two properties hold for H.

(1) For any set S ⊆ V (H) of vertices, the number of hyperedges of H incident to the
vertices of S is at least |S|.

Indeed, suppose there is a set S ⊆ V (H) with fewer than |S| hyperedges incident to
the vertices of S. If |S| = n we immediately have the required bound on e(H), so
assume n > |S|. We can delete the vertices of S from H to obtain a new hypergraph
H′ on n− |S| vertices. By induction, H′ contains at most r+1

r
(n− |S|−1) hyperedges,

so H contains less than r+1

r
(n− 1− |S|) + |S|< r+1

r
(n− 1) hyperedges, as desired.

(2) There is no cut-hyperedge in H.

Indeed, if h ∈ E(H) is a cut-hyperedge, then ∂2(H \ {h}) is not a connected graph,
so there are non-empty disjoint sets V1 and V2 such that V (H) = V1 ∪ V2, and there
are no edges of ∂2(H\ {h}) between V1 and V2. So both hypergraphs H[V1] and H[V2]
do not contain a Berge cycle of length r + 2 or longer. By induction, e(H[V1]) ≤
r+1

r
(|V1|−1) and e(H[V2]) ≤

r+1

r
(|V2|−1). In total, e(H) = e(H[V1]) + e(H[V2]) + 1 ≤

r+1

r
(|V1|+|V2|−2) + 1 < r+1

r
(|V (H)|−1), as desired.

Consider an auxiliary bipartite graph B consisting of vertices ofH in one class and hyper-
edges ofH on the other class. Then property (1) shows that Hall’s condition holds. Therefore,
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there is a perfect matching in B. In other words, there exists an injection f : V (H) → E(H)
such that v ∈ f(v).

Given an injection f : V (H) → E(H) with v ∈ f(v), let Pf be a longest Berge path of the
form v1f(v1)v2f(v2) . . . vl−1f(vl−1)vl where for each 1 ≤ i ≤ l − 1, vi+1 ∈ f(vi). Moreover,
among all injections f : V (H) → E(H) with v ∈ f(v), suppose φ : V (H) → E(H) is an
injection for which the path Pφ = v1φ(v1)v2φ(v2) . . . vl−1φ(vl−1)vl is a longest path.

Claim 1. φ(vl) ⊂ {vl−r, vl−r+1, . . . , vl−1, vl}.

Proof. First notice that if φ(vl) contains a vertex vi ∈ {v1, v2, . . . , vl−r−1}, then the Berge
cycle viφ(vi)vi+1φ(vi+1) . . . vlφ(vl)vi is of length r + 2 or longer, a contradiction. Moreover,
if φ(vl) contains a vertex v 6∈ {v1, v2, . . . , vl}, then Pφ can be extended to a longer path
v1φ(v1)v2φ(v2) . . . vl−1φ(vl−1)vlφ(vl)v, a contradiction. This completes the proof of the claim.

By Claim 1, we know that φ(vl) = {vl−r, vl−r+1, . . . , vl−1, vl} \ {vj} for some l − r ≤ j ≤
l − 1.

Claim 2. For any i ∈ {l−r, l−r+1, . . . , l}\{j}, we have φ(vi) ⊂ {vl−r, vl−r+1, . . . , vl−1, vl}.

Proof. When i = l, we know the statement is true. Suppose i ∈ {l − r, l − r + 1, . . . , l −
1} \ {j}. Let us define a new injection ψ : V (H) → E(H) as follows: ψ(v) = φ(v) for every
v 6∈ {v1, v2, . . . , vl}, and for every v ∈ {v1, v2, . . . , vi−1}. Moreover, let ψ(vi) = φ(vl) and
ψ(vk) = φ(vk−1) for each l ≥ k ≥ i+ 1.

Now consider the Berge path v1φ(v1)v2φ(v2) . . . viφ(vl)vlφ(vl−1) . . . vi+2φ(vi+1)vi+1, equiv-
alently v1ψ(v1)v2ψ(v2) . . . viψ(vi)vlψ(vl) . . . vi+2ψ(vi+2)vi+1. This path has the same length
as Pφ, so it is also a longest path. Moreover, notice that the sets of last r + 1 vertices of
both paths are the same. Thus we can apply Claim 1 to conclude that φ(vi) = ψ(vi+1) ⊂
{vl−r, vl−r+1, . . . , vl−1, vl}, as desired.

Claim 2 shows that there are r hyperedges (each of size r) contained in the set S :=
{vl−r, vl−r+1, . . . , vl−1, vl} of size r + 1. We will apply Lemma 1 to S.

Claim 3. The set S = {vl−r, vl−r+1, . . . , vl−1, vl} induces a block of ∂2(H).

Proof. Since the set S = {vl−r, vl−r+1, . . . , vl−1, vl} contains r ≥ 3 hyperedges every pair
x, y ∈ S is contained in some hyperedge. Thus ∂2(H[S]) = Kr+1. Consider a (maximal)
block D of ∂2(H) containing S.

Suppose D contains a vertex t 6∈ S. Then since D is 2-connected, there are two paths
P1, P2 in ∂2(H) between t and S, which are vertex-disjoint besides t. Let V (P1) ∩ S = {u}
and V (P2) ∩ S = {v}. For each edge xy ∈ E(P1) ∪ E(P2), fix an arbitrary hyperedge hxy of
H containing xy. It is easy to see that a subset of the hyperedges {hxy | xy ∈ E(P1)∪E(P2)}
forms a Berge path P between u and v.

On the other hand, by Lemma 1, there is a Berge path P ′ of length r between u and
v consisting of the r hyperedges contained in S. Note that P and P ′ do not share any
hyperedges (indeed, each hyperedge of P contains a vertex not in S, while hyperedges of P ′
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are contained in S). Therefore, P ∪ P ′ forms a Berge cycle of length r + 2 or longer unless
P consists of only one hyperedge, say h. Note that h contains a vertex x 6∈ S and u, v ∈ h;
moreover by property (2), h is not a cut-hyperedge of H. So after deleting h from H, the
hypergraph H \ {h} is still connected – so there is a (shortest) Berge path Q in H \ {h}
between x and a vertex s ∈ S (note that the hyperedges of Q are not contained in S). The
vertex s is different from either u or v, say s 6= u without loss of generality. By Lemma 1,
there is a Berge path Q′ of length r between s and u (consisting of hyperedges contained in
S). Then, Q,Q′ and h form a Berge cycle of length at least r+2, a contradiction. Therefore,
D contains no vertex outside S; thus S induces a block of ∂2(H), as required.

Let D1, D2, . . . , Dp be the unique decomposition of ∂2(H) into 2-connected blocks. Claim
3 shows that one of these blocks, say D1, is induced by S. Let us contract the vertices of
S to a single vertex, to produce a new hypergraph H′. Then it is clear that the block
decomposition of ∂2(H

′) consists of the blocks D2, . . . , Dp. So H′ does not contain any Berge
cycle of length r + 2 or longer, as well; moreover |V (H′)|= |V (H)|−r. Thus, by induction,
we have e(H′) ≤ r+1

r
(|V (H′)|−1). Therefore,

e(H) ≤
r + 1

r
(|V (H′)|−1) + (r + 1) =

r + 1

r
(|V (H)|−r − 1) + (r + 1) =

r + 1

r
(|V (H)|−1).

Now if e(H) = r+1

r
(|V (H)|−1), then we must have e(H′) = r+1

r
(|V (H′)|−1) and S must

contain all r + 1 subsets of size r (i.e., H[S] = H[D1] = Kr
r+1). Moreover, since equality

holds for H′, by induction, ∂2(H
′) is connected and for each block Di (with 2 ≤ i ≤ p) of

∂2(H
′), Di = Kr+1 and H′[Di] = Kr

r+1. This means that for every block D of ∂2(H), we
have D = Kr+1 and H[D] = Kr

r+1, completing the proof.

4 Proof of Theorem 5 (k = r + 1)

The proof is similar to that of Theorem 4 but there are many important differences.
We use induction on n. For the base cases, notice that the statement of the theorem

is trivially true if 1 ≤ n ≤ r. Moreover, if n = r + 1, then e(H) ≤ r because otherwise,
H = Kr

r+1 and then it is easy to see that there is a (Hamiltonian) Berge cycle of length r+1
in H, a contradiction. Therefore, e(H) ≤ r = n− 1. Moreover, equality holds if and only if
∂2(H) = Kr+1 and H consists of r hyperedges.

We will show the statement is true for n assuming it is true for all smaller values. Let H
be an r-uniform hypergraph on n vertices having no Berge cycle of length r + 1 or longer.
We show that we may assume the following two properties hold for H.

(1) For any set S ⊆ V (H) with |S|≤ |V (H)|−1 = n − 1, the number of hyperedges of H
incident to the vertices of S is at least |S|.

Indeed, suppose there is a set S ⊂ V (H) (i.e., |S|≤ |V (H)|−1) with fewer than |S|
hyperedges incident to the vertices of S. We delete the vertices of S from H to obtain a
new hypergraph H′ on n−|S| vertices. By induction, H′ contains at most (n−|S|−1)
hyperedges, so H contains less than (n−1−|S|)+ |S|= (n−1) hyperedges, as required.

7



(2) There is no cut-hyperedge in H.

Indeed, if h ∈ E(H) is a cut-hyperedge, then ∂2(H \ {h}) is not a connected graph,
so there are disjoint non-empty sets V1 and V2 such that V (H) = V1 ∪ V2 and there
are no edges of ∂2(H \ {h}) between V1 and V2. So the hypergraphs H[V1] and H[V2]
do not contain a Berge cycle of length r + 1 or longer. Therefore, by induction,
e(H[V1]) ≤ |V1|−1 and e(H[V2]) ≤ |V2|−1. In total, e(H) = e(H[V1]) + e(H[V2]) + 1 ≤
(|V1|+|V2|−2) + 1 = |V (H)|−1, as desired.

Moreover, we claim that the equality e(H) = |V (H)|−1 cannot hold in this case (i.e.,
if there is a cut-hyperedge). Indeed, if equality holds, then we must have e(H[V1]) =
|V1|−1 and e(H[V2]) = |V2|−1. Notice that since r ≥ 3, the hyperedge h either contains
at least two vertices x, y ∈ V1 or two vertices x, y ∈ V2. Without loss of generality,
assume the former is true. By induction, ∂2(H[V1]) is connected and for every block
D of ∂2(H[V1]), we have D = Kr+1 and the subhypergraph induced by D consists of
r hyperedges. So by Lemma 1, there is a Berge path of length r (consisting of the
r hyperedges induced by D) between any two vertices of a block D. Then it is easy
to see that since ∂2(H[V1]) is connected, there is a Berge path P of length at least r
between any two vertices of V1, so in particular between x and y. Then P together
with h forms a Berge cycle of length r + 1 in H, a contradiction.

Consider an auxiliary bipartite graph B consisting of vertices of H in one class and
hyperedges of H on the other class. Then property (1) shows that Hall’s condition holds for
all subsets of V (H) of size up to |V (H)|−1. Therefore, there is a matching in B that matches
all the vertices in V (H), except at most one vertex, say x. In other words, there exists an
injection f : V (H) \ {x} → E(H) such that for every v ∈ V (H) \ {x}, we have v ∈ f(v).
Given an injection f : V (H) \ {x} → E(H) with v ∈ f(v), let Pf be a longest Berge path of
the form v1f(v1)v2f(v2) . . . vl−1f(vl−1)vl where for each 1 ≤ i ≤ l−1, vi+1 ∈ f(vi). Moreover,
among all injections f : V (H)\{x} → E(H) with v ∈ f(v), suppose φ : V (H)\{x} → E(H)
is an injection for which the path Pφ = v1φ(v1)v2φ(v2) . . . vl−1φ(vl−1)vl is a longest path.

Because of the way Pφ was constructed, it is also clear that x 6∈ {v1, v2, . . . , vl−1}. We
consider two cases depending on whether vl is equal to x or not.

Case 1: vl 6= x. Our aim is to get a contradiction, and show that this case is impossible.

Claim 4. If vl 6= x, then φ(vl) = {vl−r+1, vl−r+2, . . . , vl}.

Proof. If vl 6= x, then we claim φ(vl) = {vl−r+1, vl−r+2, . . . , vl}. Indeed, if φ(vl) contains a
vertex vi ∈ {v1, v2, . . . , vl−r}, then the Berge cycle viφ(vi)vi+1φ(vi+1) . . . vlφ(vl)vi is of length
r+1 or longer, a contradiction. Moreover, if φ(vl) contains a vertex v 6∈ {v1, v2, . . . , vl}, then
Pφ can be extended to a longer path v1φ(v1)v2φ(v2), . . . , vl−1φ(vl−1)vlφ(vl)v, a contradiction
again, proving that φ(vl) = {vl−r+1, vl−r+2, . . . , vl}.

Fix some i ∈ {l − r + 1, l − r + 2, . . . , l − 1}. Let us define a new injection ψ : V (H) \
{x} → E(H) as follows: ψ(v) = φ(v) for every v 6∈ {x, v1, v2, . . . , vl}, and for every v ∈
{v1, v2, . . . , vi−1}. Moreover, let ψ(vi) = φ(vl) and ψ(vk) = φ(vk−1) for each l ≥ k ≥
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i + 1. Now consider the Berge path v1φ(v1)v2φ(v2) . . . viφ(vl)vlφ(vl−1) . . . vi+2φ(vi+1)vi+1

= v1ψ(v1)v2ψ(v2) . . . viψ(vi)vlψ(vl) . . . vi+2ψ(vi+2)vi+1. This path has the same length as
Pφ, so it is also a longest path. Moreover, vi+1 6= x, so we can apply Claim 4 to conclude
that ψ(vi+1) = {vl−r+1, vl−r+2, . . . , vl} = φ(vi). But then φ(vi) = φ(vl), a contradiction to
the fact that φ was an injection.

Case 2: vl = x.

Claim 5. φ(vl−1) ⊂ {vl−r, vl−r+1, . . . , vl}.

Proof. If φ(vl−1) contains a vertex v 6∈ {v1, v2, . . . , vl}, then we consider the Berge path
v1φ(v1)v2φ(v2), . . . ,vl−1φ(vl−1)v. Since v 6= x, we get a contradiction by Case 1. More-
over, if φ(vl−1) contains a vertex vi with i ∈ {1, 2, . . . , l − r − 1}, then the Berge cycle
viφ(vi)vi+1φ(vi+1) . . . vl−1φ(vl−1)vi is of length r + 1 or longer, a contradiction. This finishes
the proof of the claim.

By Claim 5, we know that φ(vl−1) = {vl−r, vl−r+1, . . . , vl−1, vl} \ {vj} for some j with
l − r ≤ j ≤ l − 2. (From now, in the rest of the proof we fix this j.)

Claim 6. For any i ∈ {l−r, l−r+1, . . . , l−1}\{j}, we have φ(vi) ⊂ {vl−r, vl−r+1, . . . , vl−1, vl}.

Proof. When i = l − 1, we know the statement is true by Claim 5.
Suppose i ∈ {l − r, l − r + 1, . . . , l − 2} \ {j}. Let us define a new injection ψ : V (H) \

{x} → E(H) as follows: ψ(v) = φ(v) for every v 6∈ {v1, v2, . . . , vl}, and for every v ∈
{v1, v2, . . . , vi−1}. Moreover, let ψ(vi) = φ(vl−1) and ψ(vk) = φ(vk−1) for each l − 1 ≥
k ≥ i + 1. Now consider the Berge path v1φ(v1)v2φ(v2) . . . viφ(vl−1)vl−1φ(vl−2). . .vi+1 =
v1ψ(v1)v2ψ(v2) . . . viψ(vi)vl−1ψ(vl−1) . . . vi+1. (Note that when i = l − 2, the Berge path is
simply v1φ(v1)v2φ(v2) . . . viφ(vl−1)vl−1 = v1ψ(v1)v2ψ(v2) . . . viψ(vi)vl−1.)

If ψ(vi+1) contains a vertex v 6∈ {v1, v2, . . . , vl}, then the Berge path v1ψ(v1)v2ψ(v2)
. . . viψ(vi)vl−1ψ(vl−1) . . . vi+2ψ(vi+2)vi+1ψ(vi+1)v has the same length as Pφ, so it is also a
longest path. Moreover, since v 6= x, we get a contradiction by Case 1.

If ψ(vi+1) contains a vertex vk ∈ {v1, v2, . . . , vl−r−1} then one can see that the Berge
cycle vkψ(vk)vk+1ψ(vk+1) . . . vl−1ψ(vl−1)vk is of length r + 1 or longer, a contradiction.
Therefore, we have ψ(vi+1) ⊂ {vl−r, vl−r+1, . . . , vl}. But we defined ψ(vi+1) = φ(vi), proving
the claim.

Note that Claim 6 shows that r − 1 hyperedges of H are contained in a set S :=
{vl−r, vl−r+1, . . . , vl−1, vl} of size r + 1. The following claim shows that if we can find one
more hyperedge of H contained in S, then S must induce a block of ∂2(H).

Claim 7. Suppose r ≥ 3. If a set S of size r+ 1 contains r hyperedges of H then it induces

a induces a block of ∂2(H).

Proof. Since the set S contains at least 3 hyperedges every pair x, y ∈ S is contained in some
hyperedge. Thus ∂2(H[S]) = Kr+1. Consider a (maximal) block D of ∂2(H) containing S.

Suppose D contains a vertex t 6∈ S. Then since D is 2-connected, there are two paths
P1, P2 in ∂2(H) between t and S, which are vertex-disjoint besides t. Let V (P1) ∩ S = {u}
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and V (P2) ∩ S = {v}. For each edge xy ∈ E(P1) ∪ E(P2), fix an arbitrary hyperedge hxy of
H containing xy. It is easy to see that a subset of the hyperedges {hxy | xy ∈ E(P1)∪E(P2)}
forms a Berge path P between u and v.

On the other hand, by Lemma 1, there is a Berge path P ′ of length r between u and
v consisting of the r hyperedges contained in S. Note that P and P ′ do not share any
hyperedges (indeed, each hyperedge of P contains a vertex not in S, while hyperedges of P ′

are contained in S). Therefore, P together with P ′ forms a Berge cycle of length r + 1 or
longer, a contradiction. Therefore, D contains no vertex outside S; thus S induces a block
of ∂2(H), as required.

We will use the above claim several times later. At this point we need to distinguish the
cases r = 3 and r ≥ 4, since Lemma 2 only applies in the latter case.

The case r ≥ 4

Since r ≥ 4, by Claim 6 and Lemma 2 there is a Berge path of length r− 1 between any two
vertices of S = {vl−r, vl−r+1, . . . , vl−1, vl}. This will allow us to show the following.

Claim 8. φ(vj) ⊂ {vl−r, vl−r+1, . . . , vl−1, vl} = S

Proof. Suppose for a contradiction that φ(vj) contains a vertex v 6∈ S. The hyperedge φ(vj)
contains at least two vertices from S, namely vj and vj+1. By property (2), φ(vj) is not
a cut-hyperedge of H. So after deleting φ(vj) from H, the hypergraph H \ {φ(vj)} is still
connected – so there is a (shortest) Berge path Q in H \ {φ(vj)} between v and a vertex
s ∈ S (note that the hyperedges of Q are not contained in S). The vertex s is different from
either vj or vj+1, say s 6= vj, without loss of generality. By Lemma 2, there is a Berge path
Q′ of length r − 1 between s and vj (consisting of the hyperedges contained in S). Then
Q,Q′ and φ(vj) form a Berge cycle of length at least r + 1 in H, a contradiction.

Claim 6 and Claim 8 together show that there are at least r hyperedges of H contained
in S. If all r + 1 subsets of S of size r are hyperedges of H, then S induces Kr

r+1 and it is
easy to show that it contains a Berge cycle of length r + 1, a contradiction. This means S
contains exactly r hyperedges of H. Then by Claim 7, we know that S induces a block of
∂2(H).

Let D1, D2, . . . , Dp be the unique decomposition of ∂2(H) into 2-connected blocks. Claim
7 shows that one of these blocks, say D1, is induced by S. Let us contract the vertices of
S to a single vertex, to produce a new hypergraph H′. Then it is clear that the block
decomposition of ∂2(H

′) consists of the blocks D2, . . . , Dp. So H′ does not contain any Berge
cycle of length r+1 or longer, as well; moreover, |V (H′)|= |V (H)|−r and e(H′) = e(H)− r.
By induction, we have e(H′) ≤ |V (H′)|−1. Therefore,

e(H) = e(H′) + r ≤ (|V (H′)|−1) + r = (|V (H)|−r − 1) + r = |V (H)|−1.

If e(H) = |V (H)|−1, then we must have e(H′) = |V (H′)|−1 and S must contain exactly
r hyperedges. Moreover, since equality holds for H′, by induction, ∂2(H

′) is connected and

10



for each block Di (with 2 ≤ i ≤ p) of ∂2(H
′), Di = Kr+1 and H′[Di] contains exactly r

hyperedges. This means that for every block D of ∂2(H), we have D = Kr+1 and H[D]
contains exactly r hyperedges, completing the proof in the case r ≥ 4.

The case r = 3

Recall that using Claim 6 we can find a set S of size 4 which contains 2 hyperedges of H. Let
S = {x, y, a, b} and the two hyperedges be xab and yab. By property (2), xab is not a cut-
hyperedge of H. So after deleting xab from H, the hypergraph H \ {xab} is still connected
– so there is a (shortest) Berge path Q between x and {y, a, b}. If Q is of length at least 2,
then it is easy to see that Q together with yab and xab form a Berge cycle of length at least
4, a contradiction. So Q consists of only one hyperedge, say h.

Our goal is to find a set of vertices which induces a block of ∂2(H), so that we can apply
induction.

If |h ∩ {y, a, b}| = 2 then h, xab, yab are 3 hyperedges of H contained in S, so by Claim 7,
we can conclude that S induces a block of ∂2(H). (Notice that S contains exactly |S|−1 = 3
hyperedges of H, otherwise it is easy to find a Berge cycle of length 4; this will be useful
later.) So we can suppose |h ∩ {y, a, b}| = 1. We consider two cases depending on whether
h is either xat or xbt, or whether h is xyt for some t 6∈ S.

Case 1. First suppose without loss of generality that h = xat for some t 6∈ S. Consider
the set D of all hyperedges of H containing the pairs xa, ab or xb and let D be the set of
vertices spanned by them. For each pair of vertices i, j ∈ {x, a, b}, let Vij = {v | ijv ∈
H} \ {x, a, b}. We claim that the sets Vxa, Vab, Vxb are pairwise disjoint. Suppose for the
sake of a contradiction that t′ ∈ Vxa ∩ Vab. Then the hyperedges xat′, abt′, xab are contained
in a set of 4 vertices {x, a, b, t′}. Thus by Claim 7, this set induces a block of ∂2(H) and
we are done (we found the desired block!). Thus we can suppose Vxa ∩ Vab = ∅. Similarly
Vab ∩Vxb = ∅ and Vxa∩Vxb = ∅. This shows that |D| = 3+ |Vxa|+ |Vxb|+ |Vab|. On the other
hand, D consists of 1 + |Vxa|+ |Vxb|+ |Vab| hyperedges, so |D| = |D| − 2.

We will now show that D induces a block of ∂2(H). Let D′ be a (maximal) block of ∂2(H)
containing D and suppose for the sake of a contradiction that it contains a vertex p 6∈ D.
Then since D′ is 2-connected, there are two paths P1, P2 in ∂2(H) between p and D, which
are vertex-disjoint besides p. Let V (P1) ∩ D = {u} and V (P2) ∩ D = {v}. For each edge
xy ∈ E(P1) ∪ E(P2), fix an arbitrary hyperedge hxy of H containing xy. It is easy to see
that a subset of the hyperedges {hxy | xy ∈ E(P1)∪E(P2)} forms a Berge path P between u
and v. If uv 6∈ {xa, ab, xb}, then it is easy to see that there is a path P ′ of length 3 between
u and v consisting of the hyperedges of D. Then P together with P ′ forms a Berge cycle of
length at least 4 in H, a contradiction. On the other hand if uv ∈ {xa, ab, xb}, then P must
contain at least two hyperedges of H because otherwise P = {puv} but then puv should have
been in D (since by definition D must contain all the hyperedges of H containing the pair
uv); moreover, it is easy to check that between u and v there is a Berge path P ′ of length 2
consisting of the hyperedges of D. Then again, P together with P ′ forms a Berge cycle of
length at least 4 in H, a contradiction. Therefore, D′ contains no vertex outside D; so D
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induces a block of ∂2(H) (which contains |D| − 2 hyperedges of H), as desired.

Case 2. Finally suppose h = xyt for some t 6∈ S. Let D be the set of all hyperedges of
H containing the pair xy plus the hyperedges xab and yab, and let D be the set of vertices
spanned by the hyperedges of D. Let Vxy = {v | xyv ∈ H}. We claim that a 6∈ Vxy and
b 6∈ Vxy. Indeed suppose for the sake of a contradiction that a ∈ Vxy. Then the hyperedges
xab, yab, xya are contained in a set of 4 vertices {x, y, a, b}. So by Claim 7, this set induces a
block of ∂2(H), and we are done. So a 6∈ Vxy. Similarly, we can conclude b 6∈ Vxy. Therefore,
|D| = |Vxy|+ 4. On the other hand, |D| = |Vxy|+ 2, so |D| = |D| − 2.

We claim that D induces a block of ∂2(H). The proof is very similar to that of Case 1,
we still give it for completeness. Let D′ be a (maximal) block of ∂2(H) containing D and
suppose for the sake of a contradiction that it contains a vertex p 6∈ D. Then since D′ is
2-connected, there are two paths P1, P2 in ∂2(H) between p and D, which are vertex-disjoint
besides p. Let V (P1) ∩D = {u} and V (P2) ∩D = {v}. For each edge xy ∈ E(P1) ∪ E(P2),
fix an arbitrary hyperedge hxy of H containing xy. It is easy to see that a subset of the
hyperedges {hxy | xy ∈ E(P1) ∪ E(P2)} forms a Berge path P between u and v.

If uv 6= xy, then it is easy to see that there is a path P ′ of length 3 or 4 between u and
v consisting of the hyperedges of D. (Indeed if u, v ∈ Vxy, then P ′ is of length 4, otherwise
it is of length 3.) Then P together with P ′ forms a Berge cycle of length at least 4 in H, a
contradiction. On the other hand if uv = xy, then P must contain at least two hyperedges
of H because otherwise P = {puv} but then puv should have been in D (since by definition
D must contain all the hyperedges of H containing the pair uv); moreover, it is easy to check
that between u and v there is a Berge path P ′ of length 2 consisting of the hyperedges of D.
Then again, P together with P ′ forms a Berge cycle of length at least 4 in H, a contradiction.
Therefore, D′ contains no vertex outside D; so D induces a block of ∂2(H) (and contains
|D| − 2 hyperedges of H), as desired.

Let D1, D2, . . . , Dp be the unique decomposition of ∂2(H) into 2-connected blocks. In
Case 1 and Case 2 we showed that one of these blocks, (say) D1 = D is such that H[D1]
contains |D1|−2 hyperedges ofH, otherwise, D1 is a set of 4 vertices such thatH[D1] contains
exactly |D1| − 1 = 3 hyperedges of H. In all these cases, note that e(H[D1]) ≤ |D1| − 1.

Let us contract the vertices of D1 to a single vertex, to produce a new hypergraph H′.
Then it is clear that the block decomposition of ∂2(H

′) consists of the blocks D2, . . . , Dp.
So H′ does not contain any Berge cycle of length 4 or longer, as well; moreover, |V (H′)|=
|V (H)|−|D1|+1 and e(H′) = e(H) − e(H[D1]). By induction, we have e(H′) ≤ |V (H′)|−1.
Therefore,

e(H) = e(H′)+e(H[D1]) ≤ |V (H′)|−1+|D1|−1 = (|V (H)|−|D1|+1)−1+|D1|−1 = |V (H)|−1.

If e(H) = |V (H)|−1, then we must have e(H′) = |V (H′)|−1 and H[D1] must contain
exactly |D1| − 1 hyperedges. As noted before, this is only possible if D1 has 4 vertices and
induces exactly 3 hyperedges of H. Moreover, since equality holds for H′, by induction,
∂2(H

′) is connected and for each block Di (with 2 ≤ i ≤ p) of ∂2(H
′), Di = K4 and H′[Di]

contains exactly 3 hyperedges. This means for every block D of ∂2(H), we have D = K4 and
H[D] contains exactly 3 hyperedges of H, completing the proof in the case r = 3.
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