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a b s t r a c t 

As a key player in bearing service life, the lubricant chemistry has a profound effect on 

bearing reliability. To increase the reliability of bearings, an Industrial Analytics solution 

is proposed for proactive condition monitoring and this is delivered via a Reliability-as-a- 

Service application. The performance predictions of bearings rely on customized algorithms 

with the main focus on digitalizing lubricant chemistry; the principles behind these pro- 

cesses are outlined in this study. Subsequently, independent testing is performed to con- 

firm the ability of the presented Industrial Analytics solution for such predictions. By de- 

ciphering the chemical compounds of lubricants and characteristics of the interface, the 

Industrial Analytics solution delivers a precise bearing reliability assessment a priori to pre- 

dict service life of the operation. Bearing tests have shown that the classification system of 

this Industrial Analytics solution is able to predict 12 out of 13 bearing failures (92%). The 

described approach provides a proactive bearing risk classification that allows the operator 

to take immediate action in reducing the failure potential during smooth operation - pre- 

venting any potential damage from occurring. For this purpose, a mathematical model is 

introduced that derives a set of classification rules for oil lubricants, based on linear binary 

classifiers (support vector machines) that are applied to the chemical compound’s mixture 

data. 
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1. Introduction 

Digitalization of processes play a dominant role in nearly all aspects of life. This has led to the development of a new

way on how humans and technology interact, most frequently referred to as the Internet-of-Things (IoT); in industrial ap-

plications it is often referred to as Industrial IoT (IIoT) and is part of the 4 th Industrial Revolution (Industry 4.0) [1] . Thus,
List of abbrevations used in the paper: SVM , support vector machine; IIoT , Industrial IoT (Internet-of-Things); RaaS , Reliability-as-a-Service; WEC , white- 

etching crack; XFA , X-ray fluorescence analysis; IR , infrared techniques; SRR , slip-roll-ratio; k 4 LF , dimensionless risk factor; SIF , surface-induced failure; SCC , 

stress corrosion cracking; CCI , chemical compound interaction; QP , quadratic program; ANN , artificial neural networks. 
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there is an ever-increasing push to digitalize applications and knowledge with the goal to create avatars/digital twins that

enhance global economic growth, productivity, and competitiveness for financial benefits. In essence, the future belongs to

those who can combine existing knowledge with digital tools to strategically transform data into action. 

At the core of IIoT applications, algorithms are created, utilized, and interconnected in order to increase system efficiency

through predictions and further providing actions; these types of digital solutions are part of the rapidly growing market,

referred to as Industrial Analytics; it is the process of collecting, analyzing, and using data generated from industrial op-

erations with the simultaneous goal of increasing cost savings and enhancing reliability. This process is highly valuable to

a wide range of asset-intensive applications in order to better understand their industrial operations and ensuring their

economic viability. As of recent [2] , it is expected that the global Industrial Analytics market will grow from USD 11.29

billion in 2017 to USD 25.51 billion by 2022, at a CAGR of 17.7%. Industrial Analytics can include software solutions, such

as operational and risk monitoring and analytics for various industrial verticals. Thus, it comes as no surprise that predic-

tive maintenance is an integral part of Industrial Analytics to reduce operational downtime, production costs, and increase

system reliability [3] ; in 2018, the predictive maintenance market was valued at USD 3.3 billion and is expected to reach

USD 23.50 billion by 2024, at a CAGR of 39% between 2018 and 2024, whereas much of the growth is anticipated in IIoT

applications [4] . 

Increasing bearing reliability is an essential part of enhancing the service life of moving machine elements. The per-

formance of bearings is largely governed by the tribological behaviour within the application; tribology is the science of

friction, lubrication, and wear, and has led to large cost savings since its introduction during the 1960’s [5] . Consequently,

the main parameters affecting the tribology of machine elements (i.e., the tribosystem) is defined by the interactions be-

tween the mating surfaces (e.g., material, roughness, etc.), the characteristics of the lubricating medium (e.g., type of oil

and additives, viscosity, oxidation, etc.), the adjacent environment (e.g., temperature, contamination, etc.), and the applied

mechanical factors (e.g., load and motion) [6] . 

The type of bearing used in an application plays a major role on the longevity of machine elements. In particular, roller

bearings are widely used to allow the operation of machine elements being used in a wide range of areas such as trans-

portation, wind and marine applications. During the design phase of machine elements, the service life of a roller bearing is

estimated by assessing the most relevant standard (DIN ISO 281) that defines the methods of calculating the basic dynamic

load rating of rolling bearings within a given size range. Further, DIN ISO 281 provides guidance to the design engineer

on calculating the basic rating life - which is the life associated with a 90% reliability considering many of the previously

mentioned system parameters [7] . Once the estimated bearing life is exhausted, the bearings usually fail due to material fa-

tigue, referred to as rolling-contact fatigue. Of particular interest are the bearing failures that occur irregularly and suddenly

which are then associated with massive operational and maintenance costs due to repairs not being able to be scheduled

effectively. 

The most prominent, irregular and sudden bearing failure is the failure due to white-etching cracks (WECs). This type of

failure is associated with a vast financial burden for the operator as scheduled/calendar-based maintenance principles do not

apply [8–13] . Thus, it is essential to define pathways that allow condition monitoring of the most detrimental parameters

that lead to WECs. Extensive research on WECs has been conducted to date but there is still a clear need for proactive

condition monitoring as part of predictive maintenance initiatives to detect early and critical changes in the operation [8] .

With such early-warning systems, the operation and maintenance manager would be able take immediate action, before

damage occurs, to return the operation back to the specification as per design (i.e., conduct immediate actions to return the

operation back to bearing life as per DIN ISO 281). 

In this study, a Software-as-a-Service application is presented to provide the operator with a classification alert system

when the reliability of roller bearing application deviates from DIN ISO 281 life estimate. By combining knowledge in bearing

tribology, lubricant chemistry and advanced data processing, various mathematical models have been successfully applied to

different classification challenges, such as clustering methods, classifying with the usage of centrality measures, or support

vector machines (SVMs). Measurements on performance and systematic behaviour of oil lubricants typically yield continuous

data (i.e., data points in the Euclidean space R 

n ) and therefore, we rely on SVMs, as opposed to clustering and data coming

from a discrete space. The advantage of using SVMs is that they allow us to derive linear (binary) classification rules, that are

easy to interpret, robust against outliers and they carry sufficient distinguishing power by maximizing the gap a classifier

hyperplane yields towards two sets of data points to be separated (i.e., training sets). To the best of our knowledge, this is

the first occasion that SVMs are being incorporated in the classification of oil lubricants. Subsequently, the principles of the

proposed bearing risk assessment approach are explained, followed by an example on the analytical steps performed, the

bearing tests conducted, as well as the application of SVMs to confirm the presented risk classification system. 

2. Methods 

2.1. Reliability-as-a-Service (RaaS) 

In the age of IIoT, data is usually collected through sensors, stored in the cloud, and processed by algorithms that can

be based on scientific knowledge and human expertise to make processes more reliable and thus, more efficient. In this

study, this type of process is provided through proprietary algorithms of a Software-as-a-Service application tailored to

bearing reliability (i.e. Reliability-as-a-Service (RaaS)). This RaaS application takes a holistic approach on tribology and per-
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mits a proactive approach in assessing a tribological application during smooth operation prior to any damage occurring. In

practical terms, the operation and maintenance manager can take immediate action, before damage occurs, to return the

operation back to the specifications as per design (i.e., return the operation back to bearing life as per DIN ISO 281). In the

following, the high-level principles and processes used in the RaaS application (SeerWorks TM Reliability, 4LinesFusion, Inc.,

London, ON, Canada) are outlined. 

One of the greatest challenges in predicting tribological events is to have fast algorithms. Over the past decade, the

approaches of across-scale modeling initiatives have proposed methods that allow faster computations. Coming from the

molecular perspective with a size of 10 −9 meters it takes great computational power to interpret effects on 10 −9 to 10 −3

meters (e.g., magnitudes of 10 6 in length scale). These across-scale effects are critical to understand and to model as the

interactions of relevant parameters determine the reliability of contacts in relative motion (dry and lubricated). Consid-

erable progress in multi-scale modeling have been made in recent years [14] ; in order to use these multi-scale models

it is necessary to create interfacial descriptors and predictors to investigate systemic effects. Basically, predicators are ob-

tained by the properties of a molecule (e.g., coming from the chemical structure given by the nature of bonding, energy

and surface of the molecules). Exploring molecules by Quantitative Structure Property Relationship [15] and the molec-

ular properties by the use of density functional theory has become widely used [16] and some of these pathways have

been considered in the present study; here, the interactions of molecules with themselves and with surfaces is part of

molecular dynamics and ab initio methods. The tribological behaviour of any lubricated contact is strongly governed by

the chemical composition and mechanical characteristics of the lubricant at the interface. In the following, the principle

procedure that allows embedding molecular properties of lubricants into classical thermodynamics is introduced as an

integral part of the applied tribological model for the present study. It is considered that this model is particularly rel-

evant to the type of bearing failure addressed in this present study as it is largely driven by the lubricant composition

and its interactions with electrical and electromagnetic fields at the interface. As part of this present model, the Arrhe-

nius equation has been considered to be a crucial component; it provides insight on how fast a molecular process moves

from A to B in a given environment. This process is affected by the presence of temperature changes and is generally

expressed as: 

k = M ∗ e −Ea 

RT 
(1)

Ea is the activation energy (J/mol) for the process of shifting the state from A to B ; R is the gas constant (8.314 J/K 

∗mol)

and T the absolute temperature. The factor M depends on how often the molecular specie collides and at which chemical

orientation it occurs. The collisions are assumed to be purely elastic; however, molecules, especially organic compounds,

are not rigid in these elastic interactions due to their inherent structure and their properties. Structures of molecules are

expressed by their topology (i.e., spatial arrangement of molecular bonding) and their movement is mainly expressed by

thermal stress, pressure or shearing. The relaxation time of such a system is an important factor on how the collisions and

stresses can be uptaken and released by the molecules. Thus, an expansion of the understanding of the pre-exponential fac-

tor M and the activation energy Ea is presented by the use of descriptors derived through molecular modeling. Transforming

the Arrhenius equation leads to: 

ln 

(
k 

M 

)
= −

(
Ea 

RT 

)
(2)

We now compare this relationship with the chemical potential (i.e., the enthalpy of a component in solution). The chemical

potential ( μi ) of a constituent i and the chemical potential ( μj ) of a component j is given by: 

μi = μi (0) + RT ln (a i ) 

μ j = μ j (0) + RT ln (a j ) (3)

R is the gas constant, T the absolute temperature and a i, j the activity of the components i and j given as the activity coeffi-

cient times the molar concentration. 

While in equilibrium, the factor D ij is zero, expressing that all chemical potentials μi , μ j , μk , . . . are equal to: 

D i j = μ j − μi = 0 (4)

D ij values > 0 reflect the imbalance (i.e., the inherent enthalpy not in equilibrium). The temperature independent factor D i j

is given by the imbalance of the system and may be compared to the relationship Ea / RT , meaning that: (
k 

M 

)
= −

(
a j 

a i 

)
(5)

In general terms, it is then assumed that the processes from A to B are governed by the activity of the components i and j .

The exponential factor A transforms the Arrhenius equation and this can be expressed as: 

Ea = −RT ln 

(
a i 
a j 

)
(6)
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Within a molecular system, the activity is attributed to an attraction property, such as dipole moments or polarizability,

by scaling it with the molecular mass to a molecular property (i.e., the specific dipole moment or the specific polarizability).

The volume in the tribological contact is almost never constant; hence, the lubricant passing through a contact is frequently

exposed to high pressure as matter of the reduced volume. As the contact area approaches zero, the activation energy Ea

increases as the lubricant volume decreases: 

Ea ( j) = −T ∗
(

(cm i j + ln (ψ( j)) 

V 

)

Ea ( j) 

T 
= −

(
1 

V 

)
∗ (cm i j + ln (ψ( j))) , (7) 

where cm ij is related to a specific molecular property of constituent i or j , i.e. the specific polarizability, p; (cm i j = ln (p i /p j ) .

The reaction rate A to B increases if the spatial distribution of the j -th component decreases (e.g., the j -th component gets

denser in the given volume). As lubricants possess the ability to solidify in the contact zone (i.e., create a higher spatial

density to decrease the activation energy), the transformation from A to B is facilitated and reaction rates are suggested

to increase. The ability of molecules to self-order, expressed as a degeneration capability, is an important factor for the

lubricated contact. As the change of the volume in a contact is transient, the lubricant components require sufficient time

for self-ordering; here, dipole moments act as recognition functions between molecules and polarizability as a recognition

function for electrical charge. 

The probability of molecular degeneration in the contact zone will increase if the accessibility of the function is high,

by the fact that the density at the surface is high and the symmetry gain is also high (i.e., the symmetry increases in the

degenerated state compared to the non-degenerated state). All factors are molecular properties and shall be determined

by molecular modeling. The degeneration factor is high if the molecules possess the ability for long-range coupling. Under

tribological conditions, the ability of a molecular system to create self-assemblies is considered an important property; these

properties are closely related to the structure of lubricant components where the dipole moments and the polarizability are

key players in molecular recognition. 

Coming to the reduction of energy density, it is also obvious that these properties are closely related to the degeneration

ability of such systems and may act as suitable descriptors for lubricants under technical conditions. This is related to the

electron population in the highest occupied molecular state and the distance to the lowest unoccupied state. Once excited,

the molecules completely relax over time; thus, the relaxation time is a measure of a molecular system to accommodate

shear stress frequency; if the relaxation time is quick, the molecules are capable to uptake a higher shear frequency, whereas

if the relaxation time is slower, the molecular systems will tend to accumulate more energy. 

Reactivity in a tribosystem is accompanied by high rates of charge transfer (i.e., shearing molecules against each other

and the creation/decay of electrical and electromagnetic fields during a tribological process. The response of a molecular

system is dedicated to the dipole moment and the induced dipole moments (i.e., polarizability) as the main properties of a

system. The driving force of a tribological reaction is explained by the gain of energy during the process (i.e., the difference

of the free energy of the educts and the products). In a tribosystem, the lubricant involved may be written as a vector of all

components and molecular digits may address the properties of the individual components of the lubricant. The individual

properties may be given by the relaxation time, the ability to degenerate, the dipole moment as a molecular recognition

digit, and the polarizability as a molecular reactivity digit that refers to the ability of the molecule to react via transient

electrical fields within the contact. The dipole moment and polarizability are key players in molecular recognition and these

parameters are closely related to the degeneration ability of such systems and may act as suitable descriptors for lubricants

under tribological conditions. 

Observing bearing failure through a classical view, the reliability is given by the load capacity of the component (e.g., the

bearing) and the loading (i.e., the forces present in the tribosystem) [7] . In the classical view, lubricants act as a supporting

element, that are mainly responsible for separating mating surfaces to reduce or eliminate friction and wear. Lubricant

interactions and its degradation can have a profound effect on machine elements, altering the load capacity (e.g., corrosion,

stress-corrosion cracking, sludge build-up, and a more recent phenomenon - WECs). Looking more specifically at WECs, it

may not be the lubricant itself acting on changes in load capacity but its sub-components (i.e., base oil and additives),

foreign elements (e.g., water, detergents, etc.), and also the interactions of all of these constituents that pass through the

interfaces. Chemical structures and the complexity of their interactions render assessing WEC risk difficult for an end-user of

a product. End-users rely on sending oil samples to a lab for an element and chemical analysis. Unfortunately, lab analytics

do not go far enough in assessing the complexities of the chemical interactions. This leaves the end-user lost in assessing

complex issues, like WECs, and thus, they have to manage with the uncertainty of failures. 

The aformentioned principles and processes of SeerWorks TM Reliability are applied to determine WEC risk classes. At

the core, this RaaS application deciphers the main tribological parameters that define the bearing articulation [17] . More

specifically, the physical, chemical and dynamic parameters of the interface are described in digital form; these parame-

ters include lubricant constituents l i ( l i −1 , . . . , l i −n ), the anisotropic, physical properties of the mating surfaces ( s i , s j ), their

inhered dynamics ( d ij ), the inherent structure of the materials surface ( m si , m sj ), the bulk properties ( b i , . . . , b n ), under con-

siderations of intrinsic or imposed electrical fields ( e i , . . . , e n ). These parameters comprise the tribosystem and serve as the

foundation of the algorithms. Their second derivative describes the magnitude of the curvature of the hyperplane in specific

locations that indicate the likelihood of bearing failure. The associated unreliability of the tribological application is then
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Fig. 1. Schematic showing the process flow to generate an application/situation-specific dimensionless risk coefficient, k 4 LF , that is then subjected to a 

classification system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

directly linked to the extent of the discontinuity in the hyperplane. Dimensionless parameters describe, for every given in-

cident in the hyperplane, the conditions that have shown to lead to bearing failure due to WEC. Lubricants are mixtures of

functional components that are mainly based on organic chemistry, and thus are extremely difficult to describe in respect

to their conjoint interactions in a tribosystem (e.g., surfaces, viscosity, temperature, and others). As an integral part of the

SeerWorks TM Reliability, lubricants are defined as a component vector; within SeerWorks TM Reliability each lubricant compo-

nent is modeled in respect to their transient activities, covering their reactivity in a defined tribosystem. These calculations

provide valuable information of lubricant compounds, and the combinations thereof, that contribute to bearing failures due

to WEC, among other bearing failures. 

SeerWorks TM Reliability alleviates the uncertainty of failures due to the lubricant and gives the end-user an understand-

able risk assessment and concrete recommendations for reducing the risk of complex issues, like WEC. This is accomplished

through an analysis of the media (e.g., lubricants, their sub-components, foreign elements, the system components and the

entirety of the interactions between all these constituents). Starting with information about the current state of the lubricant

using X-ray fluorescence analysis (XFA) and Infrared (IR) techniques, SeerWorks TM Reliability reduces the lubricants to their

possible best-fit chemical structures by using several molecular modeling systems. Once the possible chemical structures are

known, SeerWorks TM Reliability virtually simulates the structures property relationships combined with the known technical

data. More specifically the simulations look at the molecules and their exposure to mechanical energy (e.g., Slip-Roll-Ratio,

SRR), electrical energy and/or a combination of the two. Furthermore, SeerWorks TM Reliability also considers the mechanical

system’s activity of a given surface (from low roughness to high roughness) and phase deviations of the rotating parts (i.e.,

in-phase movement is represented with lower values and out-of-phase movement with higher values). 

In principle, the known parameters that define the system serve as the input into SeerWorks TM Reliability and are sub-

jected to algorithms that are based on various principles ( Fig. 1 ). The output is the dimensionless risk factor, k 4 LF ; k 4 LF de-

scribes attributes in relation to the input parameters/components in an applied system. With respect to WECs, it is known

that both chemical and mechanical systems play a role in the reliability of a system, thus SeerWorks TM Reliability creates a

dimensionless k 4 LF risk coefficient that incorporates key parameters. 

To generalize the risk assessment, SeerWorks TM Reliability takes the analysis and reduces it down to a simple set of

generalized classes that can be used to more easily assess the risk of the system. In the present study, three (3) risk classes

have been generalized: 

– Class I indicates that the lubricant, its’ components and mixtures create a low risk with respect to mechanical and

electrical exposure. If a failure occurred, then it is unlikely that the failure was due to the lubricant as a prime cause. 

– Class II indicates that the lubricant shows a pronounced risk due to the sensitivity of the components toward mechanical

(SRR) and electrical impact. If the impact is high, then this would be considered to be critical. Class II could lead to

further issues if the end-user does not reduce the risk levels (e.g., stress corrosion cracking (SCC), surface-induced failure

(SIF) or white-etching cracks (WECs). 

– Class III indicates that the lubricant, its’ components, and/or foreign elements contribute to a high risk of a system

failure. It is most likely that the risk being observed is of a WEC nature but the risk could also lead to other failure

modes (e.g., SCC, SIF, or WECs). 

In a real-life environment, sparingly available data can be gathered and analyzed with respect to the structures and their

properties. The reliability assessment in this circumstance can only be as accurate as its inputs and data as provided. Even
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Fig. 2. (a) A general FE-8 test rig schematic and (b) cylindrical roller bearing (adopted from [19] ) 

Table 1 

Showing three possible variant structures of a determined lubricant 

consisting of base oil and additives ( C 1 , . . . , C 8 ). 

Chemical Variant Variant Variant 

Compound Structure 1 (%) Structure 2 (%) Structure 3 (%) 

C 1 0.37 0.00 0.00 

C 2 0.00 0.67 0.67 

C 3 0.35 0.00 0.00 

C 4 0.00 0.64 0.64 

C 5 0.08 0.08 0.08 

C 6 0.28 0.00 0.00 

C 7 0.00 0.31 0.00 

C 8 0.00 0.00 0.44 

Base Oil 98.92 98.29 98.16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with the most advanced systems the end-user is faced with a lack of precision due to the lack of information available for

the assessment. SeerWorks TM Reliability begins to reduce this uncertainty and for the first time the end-user has a real-time

assessment tool. 

2.2. Simplified Analytical Steps 

A brief description of the analytical steps is provided in the following. It is assumed that the lubricant being used is

unknown (Note: when information is unknown SeerWorks TM Reliability performs an analysis using a best-fit approach which

can reduce the precision of the risk analysis). As an example, the XFA breakdown has been supplied through an oil sample

analysis: 

– Calcium = 388 ppm 

– Magnesium = 229 ppm 

– Phosphorus = 3 ppm 

– Sodium = 53 ppm 

– Sulfur = 854 ppm 

– Zinc = 365 ppm 

SeerWorks TM Reliability uses the XFA data to render it into three (3) possible lubricant variants in terms of chemi-

cal structures of each component (chemical structure components’ names are obfuscated; see Fig. 1 , input parameters:

C 1 , C 2 , . . . , C n ), likely one of which is near to the true composition lubricant (e.g., from the above XFA data we get Table 1 ).

Additional precision can be added when the lubricant being used is provided. For the purpose of this study, SeerWorks TM 

Reliability is not aware of the lubricant in use. SeerWorks TM Reliability then performs analytics, through various statistical

tools and proprietary algorithms, on each of the Chemical Compound Interactions (CCI) and the known surface material

(Note: if the surface material is not known, then a non-stochiometric oxide, Fe-Fe 3 O 4 , is assumed as the default material).

SeerWorks TM Reliability then creates a k 4 LF risk coefficient and a corresponding SRR (indication of where the threat is likely

to occur) for each of the CCIs for phases 0.1 through 0.9, reflecting the phase distortion between the moving parts and

activity 0.1 through 0.9. For example, using phase 0.1 and activity 0.1, the output for just the 1 st variant from the above



J.-M. Brandt, M. Benedek and J.S. Guerin et al. / Internet of Things 11 (2020) 100178 7 

Table 2 

Showing various combinations of a variant 

structures and their corresponding k 4 LF and 

SRR. 

Variant Structure 1 

CCI k 4LF SRR 

CC A CC B 

C 1 C 5 0.96 3.09 

C 1 C 6 .016 11.17 

C 1 C 7 0.55 1.56 

C 1 C 8 0.63 1.73 

C 5 C 6 0.49 −1.35 

C 5 C 7 0.31 0.73 

C 5 C 8 0.84 −2.63 

C 6 C 7 0.33 0.89 

C 6 C 8 0.89 −2.84 

C 7 C 8 1.26 5.19 

Table 3 

Showing Class categorization of each CCI for each of the three possible lubricant variants. 

Variant Structure 1 Variant Structure 2 Variant Structure 3 

CCI Class CCI Class CCI Class 

CC A CC B CC A CC B CC A CC B 

C 1 C 5 I C 2 C 4 I C 2 C 3 I 

C 1 C 6 I C 2 C 6 I C 2 C 6 I 

C 1 C 7 I C 2 C 7 I C 2 C 7 I 

C 1 C 8 I C 2 C 8 I C 2 C 8 I 

C 5 C 6 I C 4 C 6 I C 3 C 6 I 

C 5 C 7 I C 4 C 7 I C 3 C 7 I 

C 5 C 8 I C 4 C 8 I C 3 C 8 I 

C 6 C 7 I C 6 C 7 II C 6 C 7 I 

C 6 C 8 I C 6 C 8 I C 6 C 8 I 

C 7 C 8 II C 7 C 8 I C 7 C 8 I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lubricant variants is as in Table 2 . The information supplied in Table 2 can be useful to the end-user but we perform several

simplifications to assist the end-user in interpreting their overall risk. To simplify the communication of the risk, a general

classification system is used. A risk class is assigned to each CCI in each of the three variants (it is important to understand

that the risk classes are soft rules and not hard lines of classifying the risk. Each CCI risk should be considered and reviewed

carefully). For example, based on the k 4 LF and SRR for each CCI above is shown in Table 3 . To further simplify the risk level,

the predominant class for all CCIs, within a variant, dictate the risk class for that variant. However, if there is a CCI risk class

III identified then the variant is automatically assigned a risk class III. For example, the predominate CCI classes from above

are as follows: 

– Variant 1 = Class I 

– Variant 2 = Class I 

– Variant 3 = Class I 

Each variant will then have its own risk class as the variants are independent of each other. However, we can reduce the

complexity even further. That is, if all three variants have the same risk class then it is safe to assume that the lubricant, no

matter of the variant, is the risk class that they are all assigned. For example, all variants above are risk class I; therefore,

this lubricant is a risk class I. However, if the variants differ in classes then one must consider them carefully. A conservative

approach is to assume that the highest risk level across all three variants is the risk class for that lubricant but it does not

necessarily indicate the true risk. Although, if the client knows the true variant being utilized then the proper risk can be

assessed using the risk class for that variant (SeerWorks TM Reliability can assist in determining the true variant if details on

the additives and base oils used are provided). As part of SeerWorks TM Reliability, the following assumptions are made: 

• Risk is defined as the activity at the surface as a combination of the interfacial medium (e.g., lubricant, all components

and their permutations) and the surface (e.g., bearing material) attributed to the lubricant and its constituents. 

• Risk does not comment on SRR but rather uses a virtual SRR as a threshold for determining where, within the construc-

tion, the risk coming from the lubricant could play a significant role. 

• The Risk Classes are soft rules for helping to determine the magnitude of risk levels with respect to either the lubri-

cant or the construction. However, the detailed k 4 LF for all the compounds and variance comparisons along with the

corresponding SRR values should be considered carefully. 
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• It is important to understand that the k 4 LF is calculated to give a simplified general risk based on the lubricant.

SeerWorks TM Reliability uses small amounts of data to perform these calculations. However, with more accurate data

from the end-user SeerWorks TM Reliability can be more precise with assessing the risk level. 

• Typically, data for phase 0.1 and activity 0.1 are used for the general classification unless the construction model and

surface roughness are known; surfaces that slide in tune with each other are considered of being in-phase (in-phase =
0 and out of phase unequal zero). The greater the phase the more the activity is out of phase. 

• Each chemical compound interaction (CCI) is rated using the general classes. 

• Count the number for each class across the CCIs and the predominate class then defines the variant class. However, if a

class III is observed in any of the CCIs then the variant is automatically considered a class III (this must be performed on

each of the three possible lubricant variants). 

• If all three Variants have the same risk class then that defines the risk class for the lubricant. However, if the variants

differ in classes then conservatively one must choose the highest risk class to define the risk for the lubricant. 

2.3. Bearing Life Testing 

As previously mentioned, sudden, irregular bearing failures that do not follow classical calculations defined in DIN ISO

281 [7] , WECs in particular, are of great interest to manufacturers of bearings and the end-users. In order to evaluate the

performance of bearings prior to their use in the field, bearing life tests are frequently performed. One of the most frequent

tests is the FE-8 bearing test following DIN 51819-3 [18] . The FE-8 test is a standardized bearing test that is widely used in

the industry to evaluate bearing life in the laboratory setting under predefined conditions (Fig. 2) . 

The bearings tested were cylindrical roller bearings (type 81212, brass cage at κ < 1 (explanation: κ >> 1 then full

fluid film lubrication; κ << 1 mixed/boundary lubrication) at a speed of 750 rpm, an axial force 30 – 60 kN (1700 – 2000

MPa), and temperature set constant to 90 ◦C at the oil circuit to simulate a typical WEC failure mode. The lubricants used

consisted of the following constituents and various combinations: poly- α-olefine, ISO VG 46, ISO VG 68, ISO VG 100; zinc-

/molybdenum- alkylphosphate as antiwear additives; corrosion preservatives on sulfonate base, amine phosphates; boronic 

acid esters; VI improvers on PMMA base; magnesiumsulfonate; antioxidants on the base on alkylated diphenylamines. This

present test setup and lubricant compositions were selected to specifically create test environments that are known to

facilitate lubricant-mediated WECs. 

As part of the FE-8 bearing test post analysis, the bearing materials were assessed using common metallurgical tech-

niques to investigate whether the indications for WECs were present. After cutting the samples perpendicular to the race-

way, the surface was etched with nital solution (2% nitric acid in ethanol) to reveal the white areas to confirm the presence

of WECs [20] , [8] , [10] . The raceway was also assessed for wear using scanning electron microscopy to determine early signs

of surface-induced failure (SIF) and crack networks below the raceway; SIF together with surface-near crack networks are

known to be a precursor of WECs. In particular, SIFs occur in bearings that have been tested for extended periods ( >> 50h).

2.4. Support Vector Machine (SVM) for Binary Linear Classification 

Let us start by noting that there are numerous classification methods one can use, such as logistic regression, decision

trees, random forests, neural networks and SVMs. The main driving force of one being more suitable than the other lies

in the nature of the considered application and the available data. We considered (binary and multiclass) decision trees

[21] as a good starting point, however the data available (cf. Sections 3.2 and 3.3 ) proved insufficient for these methods, as

these provided overly simplistic classification rules. Accordingly, random forest methods seem excessive for the application

considered, while regarding neural networks one has to worry about overfitting. Our attention naturally focused on SVMs

and, to some degree, logistic regression, therefore the remainder of this section is devoted to very briefly introduce the

methodology that the main conclusions rely on, followed by the presentation of the results. 

Among the above mentioned and in general, one of the most widespread mathematical tools for binary linear classifi-

cation is the support vector machine (SVM) ( [22] , [23] , [24] ). At a given data set of n data points x 1 , x 2 , . . . , x n ∈ X , all of

them belong to a m -dimensional vector space X ⊆ R 

m . This is the case of n measurements on a system described by m

characteristics were performed. Suppose that for each of the n measurements x i , i = 1 , . . . n, there is a corresponding binary

indicator y i ∈ {−1 , 1 } (e.g. indicating success (1) or failure ( −1 )). 

If the convex hulls of { x i : y i = 1 } and { x i : y i = −1 } are disjointed, then there exists a linear binary classifier defined by

w ∈ R 

m and b ∈ R : w 

� x i + b > 0 ⇐⇒ y i = 1 . In order to find the separating hyperplane that carries the largest discrimina-

tory power we define b such that d := min y i =1 w 

� x i + b = max y i = −1 w 

� x i + b. 

With the choice of d we have w 

� x i + b ≥ d for all y i = 1 and w 

� x i + b ≤ −d for all y i = −1 , determining two hyperplanes,

called the hard margin , around the classifier, the hyperplane lying in between the sets equidistantly from their convex hulls.

These hyperplanes are supported by data points that are located exactly on them, called support vectors (hence the name

SVM), as shown in Fig. 3 . 

The method is indicative of how it is computed as well: maximizing the distance, defined by 2 d /|| w ||, subject to keeping

the points on the correct side with at least a given distance. Since for a given instance d is fixed, we maximize the distance

by minimizing || w ||. Correct classification is forced by linear constraints 

y i 
(
w 

� x i + b 
)

≥ d ∀ x i ∈ N, (8) 
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Fig. 3. SVM hard margin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

while minimizing || w || over (8) is a convex quadratic program (QP) that can be solved efficiently. 

However, if the convex hulls are not linearly separable, the hard margin does not exist and the possibilities are embed-

ding the data into a larger dimensional space (at the expense of less tractable computations), or consider the soft margin

balancing, through parameter μ, the maximum distance || w || and misclassification errors z i := max (0 , d − y i (w 

� x i + b)) , the

smallest non-negative number satisfying y i 
(
w 

� x i + b 
)

≥ d − z i . Consequently, the soft margin classifier can be computed us-

ing the convex QP 

min 

∑ n 
i =1 z i + μ|| w || 

s.t. y i 
(
w 

� x i + b 
)
+ z i ≥ d ∀ x i ∈ N 

z ≥ 0 

(9)

3. Results 

3.1. Bearing Tests 

The XFA and IR data of 24 different oil lubricants were analyzed independently using SeerWorks TM Reliability to be able

to identify which lubricants would lead to bearings with WECs or SIF. Out of the 24 oils, 13 oils were tested on the FE-8

bearing test rig and each test was suspended if the maximum test period of 10 0 0 h was reached - regardless of bearing

survival status. The SeerWorks TM Reliability risk classifications performed prior to the FE-8 tests were compared to the

actual results from the 13 FE-8 tests; 12 out of the 13 tests matched to their results ( Table 4 ). 

3.2. k 4LF and SRR 

An experimental data set covering 24 lubricants collected in a sample size of more than 43,0 0 0 was available for this

study. The data sample was focused on two parameters that were virtually expressed by the SeerWorks TM Reliability: the

WEC coefficient k 4 LF and the slip-roll-ratio SRR. We also used the risk class assessment by SeerWorks TM Reliability as an

ex ante classification for 13 lubricants out of 24 as in Table 4 , the remaining 11 being unclassified, using the general rules

of risk classification as above. In terms of the parameter values, this means the following: if k 4 LF > 2 and 0 < SRR < 30,

then the corresponding sample record likely leads to WEC; if 1 < k 4 LF < 2 and 0 < SRR < 30, then SIF; while k 4 LF < 1 and

SRR > 30 typically leads to no breakdown. Table 5 and Fig. 4 show the distribution of the sample data, with the empirical

classification rules depicted on the latter as rectangular areas in the k 4 LF / SRR space. 

The first things that can be noted from Table 5 and on Fig. 4 is the sizeable classification error between the ex ante

classification and the empirical rules, as well as the significant noise in the SRR values. It is apparent that the sample data

in terms of the latter is not suitable to deduce classification rules from, and as for the former, classifying the sample in

terms of the k 4 LF values rather simply just by grouping them based on shape of the data set, we can already reduce the

error by 1.5% compared to the classification provided. In any case, there is room for improvement, therefore we focus on

the components of the tested lubricants in order to derive classification rules. 

3.3. Lubricant Component Analysis 

In the present study, the calculations were applied to the composition of the 24 oil lubricants: altogether the tested lu-

bricants consisted of 18 different components. That means for each oil i there is an x i ∈ X ⊆ R 

18 , describing the components

of the oil such that X = [ 0 , 1 ] 
18 and 

∑ 18 
j=1 (x i ) j = 1 , i.e. the j -th coordinate of x i , ( x i ) j shows what is the ratio of component
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Table 4 

Risk class assessment using SeerWorks TM Reliability in relation to the 

outcome from physical laboratory tests. 

Oil Lubricant Overall Lubricant FE-8 Results 

Variant b Risk Class (SIF, WEC; hours) a 

2 I I I I No Failure ( > 1000) 

3 II I III III Failure (SIF; 1000) c 

4 III III III III Failure (SIF; 100) 

7 III I I III Failure (WEC; 100) c 

9 III III III III Failure (SIF; 100) 

10 III I I III Failure (WEC) c 

11 I I I I No Failure 

13 I I I I Failure (SIF; 1000) d 

15 III I I III Failure (SIF/WEC; 100) 

16 I I I I No Failure (1000) 

17 III III III III Failure (WEC; 100) 

22 I I I I No Failure (1000) 

24 III III III III Failure (WEC; 37.5) 

a SIF = surface-induced failure; WEC = white-etching cracks; not match 

for oil number 13 
b If class III only present once in the list of variants, worst case of Class 

III is assumed for Overall Risk Class 
c Risk level dependent on Lubricant variant (further study required) 
d Test suspended at max hours and bearing failed late (Oil 13 was pre- 

dicted a “class I” and failed late but due to SIF). 

Table 5 

Experimental data summary of k 4 LF and SRR parameters. 

Sample size Min Max Mean Var 

k 4 LF 43484 0.0018 16.5607 1.2339 2.6848 

SRR 43389 −99.9998 97.2387 −1.2627 370.65 

Fig. 4. Sample data of oil lubricants ( k 4 LF / SRR dimension) 

 

 

 

 

 

 

 

j in oil i . Furthermore, there are y WEC , y SIF , y Susp and y Unc in {−1 , 1 } , indicating with value 1 whether each oil is classified as

WEC , SIF , Suspended or otherwise Unclassified in the ex ante classification (training set). 

Using the component data as an input for the SVMs, classification rules are derived from much less noisy samples com-

pared to the experiments above, but the 18 components means that the dimension of X is still relatively low enough that

allowed the analysis and interpretation of the results. 

As previously described, the SVM method was applied to repeat the same process with the same x i , i = 1 , . . . , 24 data

points finding 4 binary classifiers for each y identifier. Starting with classifiers for y WEC and y SIF , it was found in both cases

that the WEC (SIF) lubricants can be clearly separated by a (classifier) hyperplane from the non-WEC (non-SIF) lubricants,

with corresponding distances of d W EC = 0 . 0 0 0175 and d SIF = 3 . 5178 ∗ 10 −6 . The separating hyperplanes were given by b W EC =
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Table 6 

Binary classifier hyperplane coefficients for WEC and SIF. 

Comp. 129 130 131 132 133 134 135 136 137 

w 

WEC −0 . 001 0.0019 0.0032 0.0034 0.0008 −10 −9 0.0004 0.0013 −10 −5 

w 

SIF 0.0003 −10 −4 −10 −4 −10 −4 0.0006 −10 −6 0.0009 0.0004 0.0005 

Comp. 138 141 142 143 144 145 146 154 155 

w 

WEC 0.0008 0.0002 0.0009 0.001 −0 . 0069 −0 . 0 0 07 10 −4 −0 . 001 −0 . 003 

w 

SIF −0 . 0 0 03 −10 −6 −10 −7 −0 . 0 0 02 0.0002 −10 −6 0.0003 −10 −5 −0 . 0 0 04 

Fig. 5. Binary classifier hyperplane coefficients for WEC and SIF 

Table 7 

Binary classification consistency for each lubricant. 

Lubricant Ex ante WEC SIF Suspended 

2 Susp. ? 

3 SIF SIF 

4 SIF 

7 WEC WEC 

9 SIF SIF 

10 WEC WEC 

11 Susp. 

13 SIF SIF 

15 SIF SIF 

16 Susp. 

17 WEC WEC 

22 Susp. ? 

24 WEC WEC 

 

 

 

 

 

 

 

 

 

 

0 . 0 0 0175 , b SIF = 3 . 5178 ∗ 10 −6 and the coefficients of w 

WEC and w 

SIF for each of the components are shown in Table 6 and

Fig. 5 . 

The same tests were conducted for the remaining y Susp and y Unc with the only difference that in these cases the data

points were not linearly separable, hence it was relied on the soft margin formulation. Once the separate binary classifier

hyperplanes were determined, their consistency needed to be evaluated. Therefore, it was investigated whether the sets of

lubricants classified as WEC and SIF were disjointed, while all of them being classified as non-Suspended at the same time

( Table 7 ). 

As shown in Table 7 , the blank cells are classified as non-WEC (-SIF, -Suspended) for the WEC (SIF, Suspended) classifier,

“?” denotes lubricants that violated (8) for the non-separable y Susp case, while the remaining 11 blank rows of lubricants

that were not classified ex ante (as in Table 7 ) were omitted. It can be seen that the binary classifiers that were generated

for WEC and SIF were consistent with each other and the computed WEC and SIF classifying hyperplanes can be used as

stand-alone lubricant classifiers, as an input for learning algorithms or for further analysis. For the latter purposes, it is of



12 J.-M. Brandt, M. Benedek and J.S. Guerin et al. / Internet of Things 11 (2020) 100178 

Table 8 

Most influential components for WEC 

and SIF classifiers. 

Component w 

WEC w 

SIF 

130 0.0019 

131 0.0032 

132 0.0034 

144 −0.0069 

155 −0.003 

133 0.0006 

135 0.0009 

Fig. 6. Multiclass decision tree for classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

particular interest to highlight the (relatively) most influential components for each classifier in Table 8 . For each classifying

hyperplane, these are the defining coefficients with the largest absolute value, relative to the other defining coefficients of

the hyperplane. Therefore, the coefficients have no stand-alone meaning, rather their magnitude indicates the influence each

lubricant component has in the classification process. Thus, ideally, for the WEC and SIF binary classifiers, we would like to

find different com ponents that are most influential, the com ponents mainly determining whether the lubricant will lead to

WEC or not, or whether it will lead to SIF or not. Indeed, these formed two disjointed sets of components, indicating that

the key lubricant components that are of increased risk for WEC and SIF have been identified. 

3.3.1. Logistic Regression and Decision Trees 

To provide a more complete understanding of the quality of the method used, the SVM methodology was compared with

two other classification approaches, i.e. decision trees and logistic regression. Due to the lack of sufficient data, only overly

simplistic classification rules were achieved for decision trees ( Fig. 6 ) 

In the case of logistic regression, parameters were estimated to achieve the highest probability of correct classification

by maximizing the logarithm of the odds of correct classification. Hence, we consider the task of a maximum log-likelihood

parameter estimation that requires solving a non-linear, but unconstrained optimization problem. Since in these problems

most gradient search algorithms do not converge, Newton’s method is used to obtain the estimated parameters, again, fo-

cusing on obtaining binary classifiers for each lubricant outcome category (e.g., WEC, SIF, etc.). It is of no surprise that the

classification using logistic regression is completely in line with what was found using SVMs ( Table 7 ). However, SVMs are

not only less prone to outliers than logistic regression, interpreting the estimated parameters in the latter is far less straight-

forward compared to the case of SVMs with the soft and hard margin ( Fig. 3 ) hyperplanes (coefficients in Tables 6 and 8 ),

because these estimated parameters ( Table 9 ) have no geometrical meaning 1 . 
1 Moreover, Newton’s method did not even converge to obtain a binary classifier for the ’Unclassified’ class. 
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Table 9 

Logistic regression estimated parameters for WEC and SIF binary classifier. 

Comp. - 129 130 131 132 133 134 135 136 137 

WEC 8875 −89 5754 30176 −25228 −84 −97 900 −91 −73 

SIF −517800 5183 12872 803 3015 5280 5118 13443 5143 5080 

Comp. 138 141 142 143 144 145 146 154 155 

WEC −128 10817 −3041 −1152 −136 −1222 −89 −79 −89 

SIF 5694 41256 −4551 −3773 5342 −3098 5178 5235 5400 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

It has become increasingly important to preserve energy and material resources around the globe to boost sustainability.

As part of industrial analytics, the rapidly growing predictive maintenance market has already shown to provide vast savings.

These concepts are being used in a wide range of industrial applications by reducing failures and downtime while increasing

longevity of machine elements. SeerWorks TM Reliability, as a RaaS application, has proven to provide the user with stress

points of an application that relates to events when the present lubricated contact is at risk for various types of failures

and WECs in particular. In today’s digital world, monitoring sensors are becoming increasingly connected as part of IIoT and

the collected data can then be stored and processed on-premise or in the cloud. SeerWorks TM Reliability processes data in

a hardened private cloud (with third-party penetration testing grade of “exceeding best practices”) that has been collected

by sensors, or related equipment, either in real-time or offline. SeerWorks TM Reliability simulates the lubricant interactions

with the type of bearing surface to provide systemic risk assessment of a lubricated contact; therefore, the risk assessment

is governed by the lubricant constituents (i.e., base oil and additives; lubricant changes due to e.g., water, detergents, sump

residue and other degradation compounds), type of bearing surface materials, roughness, adjacent electricity and the inter-

actions thereof. It needs to be noted that SeerWorks TM Reliability provides a risk assessment for very early WEC failure that

is mediated by the lubricant; it does not assess risk factors that can originate from material inclusions or other sources [8] .

SeerWorks TM Reliability, as a proactive condition monitoring application as part of predictive maintenance permits

relationships to evolve – as in the case of real-life applications that are characterized by cascading events (e.g., tribology).

While others teach machines based on data from past events, SeerWorks TM Reliability uses deterministic approaches

for these evolving/cascading events [25–28] . Thus, SeerWorks TM Reliability can be applied to any type of system where

cascading events play a role as in most real-world situations. SeerWorks TM Reliability can show significant abnormalities

early on, i.e. a risk class I lubricant changing to a risk class II/III lubricant as machine operating time progresses. As part of

this process, lubricant samples are drawn, analyzed following industry-standard protocols on an ongoing basis where then

SeerWorks TM Reliability uses that standard data to report about significant abnormalities. This RaaS application deciphers

the chemical compounds of the lubricant and the characteristics of the interface to provide proactive recommendations to

guarantee machine reliability long before any major damage/root-cause initiates. 

Bearing life can be separated into two phases: the time frame when the application is in smooth operation and the

time frame when damage has been initiated, progresses and eventually leads to catastrophic failure; the latter is associ-

ated with the highest operational and maintenance cost as failure is inevitable (e.g., bearing replacements in an offshore

wind turbine can cost millions of USD and reduce its availability to generate power). SeerWorks TM Reliability manages the

threats in smooth operation by reducing the uncertainty through recommendations that will eliminate damage initiation

( Fig. 7 ). 

There are plenty of monitoring sensors available that are able to detect damage and estimate the remaining useful life

[29,30] , e.g. including industry-standard lubricant analyses, acoustic, vibration, and particle contamination sensors. The risk

classes that are created within SeerWork TM Reliability have shown highly effective in providing proactive WEC alerts. There-

fore, this permits the operator to perform evidence-based rather than calendar-based maintenance and implement counter

measures that will extend the service life of the operation. The greater challenge is to predict how the application is per-

forming during smooth operation, where no damage has yet developed, and there lies the greatest amount of uncertainty.

The best time for reducing threats of damage exists in the smooth operation period; this is where proactive condition mon-

itoring has its greatest value. Based on the holistic tribological approach, SeerWorks TM Reliability provides a risk assessment

and recommendations to reduce the uncertainty, reduce threats of damage, prolong the smooth operation period and extend

availability. 

Among the most widely used classification methods, e.g. neural networks, random forests, decision trees, logistic re-

gression and SVMs, we applied the latter three and found that SVMs are the most suitable for the limited amount of data

one can gather on the performance and effect of lubricant oils on bearing failure. The general classification generated by

SeerWorks TM Reliability has proven to be in line with the findings of FE-8 lab experiments, as shown by Table 4 . According

to Table 7 , summarizing the classification with the binary classifiers generated by SVMs, it was found that these classi-

fiers are consistent with each other: whenever a lubricant was classified as WEC (SIF) by their according classifier, it was

classified as non-SIF (non-WEC) by the other corresponding classifier, as well as distinctively not being classified with the

lubricant tests that were suspended. Additionally, comparing Tables 4 and 7 , it was found that the SVM classifiers were in

line with the findings of SeerWorks TM Reliability and FE-8 bearing tests. Therefore, it is worthwhile to look into the co-

efficients of these binary classifiers that allowed us to identify the key lubricant compounds reliable for WEC and SIF, as
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Fig. 7. Typical life-to-failure curve that is defined by a smooth operation interval (no/minor damage) and the interval that leads to failure where damage 

has been initiated (RCA, root-cause analysis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 shows a distinct set of compounds for each class. As with most data processing tools, the results can be complex

to interpret in order to create meaningful end-user knowledge in order to know what actions to take. Creating actionable

knowledge is where the generalized classifications from SeerWorks TM Reliability extends its role. The use of SVMs to verify

the accuracy of SeerWorks TM Reliability has shown that it is a very advanced and useful tool in monitoring bearing life in

smooth operation. 

Wear tests are inherently expensive to conduct and only provide one wear data point at a time. Thus, it is crucial to

use methods that are able to accommodate small amounts of data points; as shown in the present study, SVM have shown

to be very useful for this purpose. When large amounts of data points are available, different methods such as machine

learning techniques are more favorable [31] . An additional analysis on the classification system of SeerWorks TM Reliability

was performed by Azzam et al. [32] ; they applied state-of-the-art ANNs to isolate critical components in 700 oil samples and

investigated their relationship with the WEC risk classes that were determined using SeerWorks TM Reliability. The lubricant

additive compounds were blinded and labeled by identification numbers to provide neutral dimensionless values for ANN

processing. Firstly, the ANN processing was to evaluate the WEC risk classification levels based on the oil identity and

percentage of constituting compounds and secondly, to identify oil compounds that affect the WEC risk in gearbox bearings.

The key outcome from this study was the ability of ANN models to identify 8 out of 21 oil compounds as highly influential

on WEC risk. Several ANN models were developed which gradually increased the classification accuracy on test oils to 99.8%

by altering the networks architecture. 

As a final comment, it is undisputable that digitization has penetrated all aspects of life. In the coming years, the digital

transformation will further advance in waves and will present exciting opportunities for new technologies and innovations.

While earlier digital waves have already occurred in automotive and logistics, followed by advancements in engineering, en-

ergy generation, healthcare and electrical engineering, future waves will follow in aerospace and in chemistry. Digitalization

is not a new process and massive advancements in computing power, connectivity, and related technologies have solidi-

fied its presence over the past two decades; analog technologies will increasingly become a display of nostalgia – without

compromising the essential need for human intelligence. 

5. Conclusion 

Proactive lubricant condition monitoring plays an important role in predictive maintenance. It allows the detection of

miniscule system changes before damage has occurred and this is of much greater value than reactive measures. The proac-

tive RaaS application presented in this study has proven to predict bearing failure due to white-etching cracks. It is also

able to provide a classification system that allows the end-user to take immediate action to prevent further damage. In an

industrial Analytics environment, this RaaS application is able to accommodate relatively small data sets to provide highly

valuable information to the end-user. At its core, this technology is diametrical to the widely used artificial intelligence ap-

proaches. It is deterministic in nature and further supported by SVMs that confirmed the efficacy of the presented lubricant

risk classification system. 
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