Involvement of serum retinoids and Leiden mutation in patients with esophageal, gastric, liver, pancreatic, and colorectal cancers in Hungary

Gyula Mózsik, György Rumi, Andráss Dömötör, Mária Figler, Beáta Gasztonyi, Előd Papp, Alajos Pár, Gabriella Pár, József Belágyi, Zoltán Matus, Béla Melegh

Gyula Mózsik, György Rumi, Andráss Dömötör, Beáta Gasztonyi, Előd Papp, Alajos Pár, Gabriella Pár, First Department of Medicine, Medical Faculty, Medical and Health Centre, University of Pécs, Hungary
Zoltán Matus, Department of Biochemistry and Medical Chemistry, Medical Faculty, Medical and Health Centre, University of Pécs, Hungary
Béla Melegh, Department of Medical Genetics and Child Development, Medical Faculty, Medical and Health Centre, University of Pécs, Hungary
József Belágyi, Department of Bioanalysis, Medical Faculty, Medical and Health Centre, University of Pécs, Hungary
Mária Figler, Department of Human Clinical Nutrition and Dietetics, Faculty of Health Sciences, Medical and Health Centre, University of Pécs, Hungary

Supported by the grant from the Hungarian Ministry of Health (ETT 598/2003)

Correspondence to: Professor. Gyula Mózsik, MD, First Department of Medicine, Medical and Health Centre, University of Pécs, Hungary. gyula.mozsik@ao.klte.hu
Telephone: +36-72-536-494 Fax: +36-72-536-495
Received: 2005-03-10 Accepted: 2005-08-03

Abstract

AIM: To analyze the serum levels of retinoids and Leiden mutation in patients with esophageal, gastric, liver, pancreatic, and colorectal cancers.

METHODS: The changes in serum levels of retinoids (vitamin A, α- and β-carotene, α- and β-cryptoxanthin, zeaxanthin, lutein) and Leiden mutation were measured by high liquid performance chromatography (HPLC) and polymerase chain reaction (PCR) in 107 patients (70 males/37 females) with esophageal (0/8), gastric (16/5), liver (8/7), pancreatic (6/4), and colorectal (30/21) including 9 patients suffering from in situ colon cancer) cancer. Fifty-seven healthy subjects (in matched groups) for controls of serum retinoids and 600 healthy blood donors for Leiden mutation were used.

RESULTS: The serum levels of vitamin A and zeaxanthin were decreased significantly in all groups of patients with gastrointestinal (GI) tumors except for vitamin A in patients with pancreatic cancer. No changes were obtained in the serum levels of α- and β-carotene, α- and β-cryptoxanthin, zeaxanthin, lutein in patients with GI cancer. The prevalence of Leiden mutation significantly increased in all groups of patients with GI cancer.

CONCLUSION: Retinoids (as environmental factors) are decreased significantly with increased prevalence of Leiden mutation (as a genetic factor) in patients before the clinical manifestation of histologically different (plano cellular and hepatocellular carcinoma, and adenocarcinoma) GI cancer.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Human gastrointestinal cancer; Leiden mutation; Retinoids; Vitamin A; Zeaxanthin


INTRODUCTION

The number of patients with different gastrointestinal (esophageal, gastric, liver, pancreatic, and colorectal) cancer has increased about two- to threefold in the last decades (except for gastric cancer which has decreased 50%) in Hungary. The number of patients who died of these malignant diseases represents the second highest population of the total mortality of patients in Hungary. The second highest mortality rate of gastrointestinal (GI) tumor takes place at the second place in our country.

The causes of GI tumors are not known. However, different genetic and environmental factors play a role in the development of GI cancer. It is generally accepted that different diseases such as acute and chronic inflammatory diseases, polypsis, can be taken as precancerous states of GI cancer.

Since the year of 1980, we have studied the role of retinoids in protecting gastrointestinal mucosa in animal experiments and human observations. Retinoids are chemical compounds of color materials from plants and are built up from C-20 and four isoprene units, while carotenoids are built up from C-40 and eight isoprene units located in about 600 plants, and about 50 from 600
isolated compounds are precursors of vitamin A.

Vitamin A and β-carotene (and other retinoids) have
gastric mucosal protective effects in rats provoked by
intragastric administration of 1 ml from 0.6 mol/L HCl,
25% NaCl, 0.2 NaOH, and 960 mL/L. ethanol, without
the presence of any inhibition of gastric acid secretion
Vitamin A has a higher ulcer healing effect than atropine,
cimetidine DE-NOL (tripotassium–dicarboxi) in patients with
gastric ulcer. The serum level of retinoids is decreased
in patients with inflammatory bowel disease. It was
also demonstrated that the serum levels of vitamin A and
zeaxanthin are also decreased in patients with GI cancer,
but the possible correlation between the changes in other
serum retinoids and the prevalence of Leiden mutation
has not been studied.

The presence of Leiden mutation (replacement of Arg
by Gln of residue 506 in the factor V molecule, FVR, 506
Q) has been proven in thrombophila as well as in
Cohen’s disease and ulcerative colitis, meanwhile no
higher prevalence of Leiden mutation has been obtained
in patients with acute gastritis and hepatitis. The significant
presence of Leiden mutation (APC) is responsible for
blood coagulation abnormality in thrombophilia.

The aims of our present study were to evaluate
the changes in serum levels of retinoids (as nutritional
components of vitamin A, β-carotene, α-carotene, α-
and β-cryptoxanthin, zeaxanthin, lutein) in patients with
different gastrointestinal (esophageal, gastric, liver,
pancreatic, and colorectal) cancer, to study the prevalence
of Leiden mutation in the above mentioned patients, to
find some correlation between the changes in Leiden
mutation and serum level of vitamin A and zeaxanthin
in GI cancer patients as well as between GI cancer
development and chemical structure of retinoids, to obtain
some correlation between serum levels of vitamin A and
zeaxanthin in patients with different GI tumors.

**MATERIALS AND METHODS**

Observations were carried in 107 patients with esophageal
(n = 8), gastric (n = 21), liver (n = 15), pancreatic (n =
10), colorectal (n = 53), and in situ colon (n = 9) cancer,
including 70 males (50±12 years) and 37 females (49±
10 years). Fifty-seven healthy persons (in matched group)
were used as control, and 600 healthy blood donors were
used for the control of Leiden mutation (Table 1). A total

<table>
<thead>
<tr>
<th>Types of tumors</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esophageal</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Gastric</td>
<td>16</td>
<td>5</td>
<td>21</td>
<td>Adenocarcinoma</td>
</tr>
<tr>
<td>Liver</td>
<td>8</td>
<td>7</td>
<td>15</td>
<td>Hepatocarcinoma</td>
</tr>
<tr>
<td>Pancreas</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>Adenocarcinoma</td>
</tr>
<tr>
<td>Colorectal</td>
<td>30</td>
<td>23</td>
<td>53</td>
<td>Adenocarcinoma</td>
</tr>
<tr>
<td>In situ carcinoma in colon polyps</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>Adenocarcinoma</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>57</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Healthy subjects</td>
<td>29</td>
<td>26</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

600 blood donors (healthy controls) for Leiden mutation study. *Age of patients (mean±SD).
samples to that of canthaxanthin was employed as a correction factor of the detector signals. The results were given in μmol/L, and expressed as mean±SE.

**Determination of Leiden mutation**

Leiden mutation was detected by polymerase-chain reaction (PCR)^21. The DNA was isolated from 3 mL EDTA blood.

**Statistical analysis**

The changes in serum levels of retinoids were detected by the method of ANOVA. The prevalence of Leiden mutation was statistically analyzed by χ² test. P<0.05 (in the changes of serum retinoids and prevalence of Leiden mutation) was considered statistically significant.

**RESULTS**

The serum levels of vitamin A were decreased in all groups of patients with esophageal, gastric, hepatocellular and colorectal cancer meanwhile its level remained normal in patients with pancreatic cancer. The serum levels of α- and β-carotene, as provitamins of vitamin A, were normal in different groups of patients with GI cancer. Zeaxanthin level (without presence of any vitamin A property) was decreased significantly in patients with esophageal, gastric, hepatocellular, pancreatic, and colorectal cancer. No changes were obtained in the serum levels of α- and β-cryptoxanthin and lutein in the studied cancer patients (Table 2).

Prevalence of Leiden mutation accounted for 5.56% in 600 healthy blood donors, which was significantly higher in patients with esophageal (P<0.05), gastric (P<0.01), liver (P<0.01), pancreatic (P<0.05), colorectal (P<0.001) cancer. The higher prevalence of Leiden mutation (55%) was found in situ colorectal cancer (P<0.001, Figures 1 and 2).

**DISCUSSION**

Retinoids are chemical compounds of color materials from plants. Increased intake of plant foods can prevent different types of GI cancer. We studied the possible role of different retinoids (vitamin A, α- and β-carotene, α- and β-cryptoxanthin, zeaxanthin, and lutein) in patients with different GI cancer based on previous studies^11,14,20,21.

The location of GI tumor differed in organs (esophagus, stomach, pancreas, liver, and colon), suggesting that different etiological factors are involved in the development of different GI cancer (Barrett’s esophageal metaplasia, chronic atrophic gastritis, viral infection in liver, chronic inflammatory bowel disease) in our everyday medical practice.

The serum levels of vitamin A and zeaxanthin were decreased significantly in all groups of GI cancer patients (not in patients with pancreatic cancer). Surprisingly the serum levels of provitamins were normal in patients with different GI tumor. These results indicate that transformation of provitamins into vitamin A is impaired by some factors at the level of liver, suggesting that the liver plays a key role in the development of tumor. Similar changes were observed in the serum levels of retinoids in patients with hepatocellular cancer, which offers a further proof for this hypothesis.

It is also interesting to evaluate the possible correlation between the terminal chemical structure, vitamin A activity and GI mucosal protection. Our results have clearly proved that there is no close correlation between the terminal chemical structure, vitamin A activity and GI mucosal protection (Table 3).

Similar results have been obtained in animal experiments^11,14,20,21 (Table 4). At present, no information is available on the correlation between the serum and tissue levels of retinoids in patients with different GI tumor. These observations cannot be done due to the obligatory necessity of histological evaluation of tumor tissues.

In animal experiments, β-carotene has been found in gastric mucosa of indomethacin-treated rats after
acuse surgical vagotomy, however, no gastric mucosal protection is found, indicating that intact vagal nerve is necessary for the development of β-carotene-induced gastric cytoprotection. The mechanism of retinoids is very complex. Our earlier observations indicate that the GI mucosal protective effect of retinoids depends on intact vagal nerve and adrenals as well as on gastric mucosal biochemical changes (retinoids produce a dose-dependent inhibition on the extent of ATP-transformation into ADP in association with a simultaneous increase in the transformation of ATP into cAMP), intact function of thiol groups and scavenger properties.

Retinoids-induced GI mucosal protection does not depend on the inhibition of gastric acid secretory responses, vitamin A activity, number of unsaturated double bonds, presence of a characteristic chemical structure of their terminal components and modification of vascular permeability. These results clearly indicate that the beneficial effect of retinoids is much more complex than that of their scavengers. The results of biochemical observations suggest that different CAMP-dependent cellular regulatory mechanisms exist (including the functions of retinoid receptors, gene expressions).

The involvement of vascular events is suggested in the development of different acute inflammatory processes in the GI tract. That is the reason why we studied the potential role of Leiden mutation in acute and chronic gastrointestinal inflammatory processes. The prevalence of Leiden mutation increased in chronic inflammatory bowel diseases, but no changes were obtained in gastritis and hepatitis. The prevalence of Leiden mutation was also significantly higher in patients with esophageal, gastric, hepatocellular, pancreatic, and colorectal cancer. These results indicate that only the increased prevalence of Leiden mutation does not take place directly in the tumor genesis of human GI cancer. We compared the different results in the examined parameters in patients with acute and chronic gastrointestinal inflammatory diseases, and found a time-sequence process between the inflammatory diseases and GI cancer in patients, suggesting that retinoids play a key role in the development of preneoplastic state to cancers state.

In conclusion, the prevalence of Leiden mutation is significantly correlated with decrease in serum levels of vitamin A and zeaxanthin, suggesting that retinoids play a role in the human GI tumor genesis.
ACKNOWLEDGMENTS

The authors express their thanks to Ms. Katalin Vincke and Ms. Enika Kispal for the careful preparation of the manuscript.

REFERENCES


