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DOORS [deafness, onychodystrophy, osteodystrophy, intellectual disability (mental

retardation), and seizures] syndrome can be caused by mutations in the TBC1D24

and ATP6V1B2 genes, both of which are involved in endolysosomal function. Because

of its extreme rarity, to date, no detailed neuropathological assessment has been

performed to establish clinicopathological relationships and, thereby, understand better

the neurobiology of this disease in aged cases. Accordingly, the aim of the current

study was to highlight the clinicopathological characteristics of a novel case with a

presumable de novo mutation in the ATP6V1B2 gene from a neuropathological point

of view. This Caucasian male patient, who died at the age of 72 years, presented

all the typical cardinal signs of DOORS syndrome. In addition, behavioral alterations,

pyramidal signs, and Parkinsonism were observed. The p.R506X pathogenic mutation

identified in the ATP6V1B2 gene was responsible for the clinical phenotype. The

detailed neuropathological assessment revealed a limbic-predominant tauopathy in the

forms of argyrophilic grain disease, primary age-related tauopathy, and age-related

tau-astrogliopathy. In summary, we present the first detailed clinicopathological report of a

patient with DOORS syndrome harboring a pathogenic mutation in the ATP6V1B2 gene.

The demonstrated tauopathy may be considered as a consequence of lysosomal and/or

mitochondrial dysfunction, similar to that found in Niemann–Pick type C disease, which

is another lysosomal disorder characterized by premature neurodegenerative disorder.
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INTRODUCTION

DOORS syndrome is an extremely rare condition that is
characterized by the combination of the core clinical features
of deafness, onychodystrophy, osteodystrophy, intellectual
disability (mental retardation), and seizures, in addition
to specific craniofacial anomalies (1). The most frequently
identified genetic cause of DOORS syndrome is homozygous
mutation in the TBC1D24 gene (2). However, overlapping
syndromes exist, including DDOD (dominant deafness and
onychodystrophy), with similar, albeit less severe, symptoms
and signs (3). The first report of another possible candidate
gene, ATP6V1B2 (p.Arg506X de novo heterozygous mutation),
in DDOD syndrome was published in 2014 (4). To date, a mere
27 cases of DDOD have been reported (5, 6), four of which have
genetic confirmation (4, 6). Furthermore, two patients harboring
a p.R485P heterozygous mutation were confirmed to have
Zimmermann–Laband syndrome (7). Interestingly, ATP6V1B2
gene mutations have also been identified in some patients
presenting with complete DOORS syndrome (unpublished
findings), or in clinical syndromes overlapping with the three
entities mentioned above in patients harboring the p.E374Q
or p.L398V mutations in a heterozygous state (8, 9), thus
widening the clinical picture of these syndromes (Table 1).
Although it has been revealed that the p.Arg506X mutation may
impair lysosome acidification in the brain (4, 10), there are no
detailed neuropathological reports of the clinicopathological
relationships associated with this mutation. Accordingly, the aim
of the current study was to provide a detailed clinicopathological
assessment of a novel case with a presumable de novo mutation
in the ATP6V1B2 gene, in accordance with the CARE (CAse
REport) guidelines (11), with special focus on the delineation of
the neuropathological signs of different tauopathies.

CASE REPORT

Case History and Neurological and Related
Alterations
The Caucasian male patient reported here was born at term
and his post-natal period was uneventful. Although the available
data are limited, in addition to deafness, intellectual disability,
and structural abnormalities (as detailed later), no other major
alteration was reported with regard to his early childhood. He
was not able to attend school, lived with his parents, and needed
some assistance in daily activities in his later life. His family
history was negative for the condition described above and no
consanguinity was reported in the family. His medical history
was relatively uneventful until the age of 52, when he was
admitted to the neurological department after two generalized
tonic–clonic seizures. No provoking factors could be identified.
Subsequently, he was free of seizures until the age of 55,
when he was admitted again to the neurological department
after two additional generalized tonic–clonic seizures. Although
electroencephalography (EEG) did not find any abnormalities, a
diagnosis of epilepsy was established based on the presence of
repeated unprovoked seizures, and carbamazepine treatment was
initiated accordingly. Thereafter, only one seizure was reported.

At the age of 63, resting tremor was identified during a regular
check-up. At the age of 65, he was admitted to the psychiatric
unit because of impulsive behavior and self-harm. Clonazepam
and risperidone were initiated, providing appropriate symptom
control. Between the ages of 65 and 70, he was admitted
several times to the surgical unit because of incomplete or
complete ileus events, which were managed conservatively, with
the exception of one occasion. At the age of 66, he was admitted
to the Department of Internal Medicine with the suspicion of
slight cardiac decompensation. Echocardiography demonstrated
a dilated aortic root, mitral prolapse, and minimal pericardial
fluid, but an overall good myocardial function. The leg edema
responded well to diuretics. At the age of 67, carbamazepine was
changed to valproic acid without any known reason (no medical
record is available regarding this switch). At the age of 69, he
was referred to the emergency department with a general malaise.
The patient was admitted to the neurological department for a
diagnostic workup of his unknown syndrome.

On inspection, craniofacial dysmorphism (coarse facies,
hypertrichosis, broad nasal bridge, wide mouth, smooth
philtrum, slightly hypertrophic gingiva, widely spaced
teeth, and large ears; Figures 1A,B), onychodystrophy,
and abnormal fingers and toes with small distal phalanges
(Figures 1E–H) could be observed. On neurological examination
(Supplementary Material 1), in addition to the well-known
deafness, he presented with pyramidal signs, including latent
left-sided hemiparesis with slight tetraspasticity (with left-sided
predominance), the presence of Wernicke–Mann posture,
brisk radial reflexes with clonus on the right side, inverted
radial reflex and Hoffmann’s sign bilaterally, and left-sided
Babinski sign with fanning of the toes. Furthermore, signs of
Parkinsonism including rigidity with left-sided predominance,
moderate symmetrical hypokinesia, lip tremor, hypomimia,
and occasional upper and lower limb resting tremor with slight
action component predominantly on the left side could also be
observed (bradykinesia could not be tested because of the lack of
appropriate cooperation). Unaided stance and gait could not be
achieved. Finally, because of the lack of appropriate cooperation,
a better characterization of his intellectual disability was not
possible and the age-related cognitive decline as a part of the
mental dysfunction could not be estimated.

The patient died at the age of 72 years because of respiratory
insufficiency caused by aspiration.

Imaging Studies
X-ray images of the limbs (Figures 1I–L) demonstrated a
triphalangeal left thumb, and a triphalangeal-like right thumb,
albeit with suspected synostosis of the distal phalanges. A similar
synostosis of the distal phalanges could be observed in the fifth
fingers. Regarding the feet, the middle phalanges could not be
distinguished, and the distal phalanges of the first toes were
smaller than normal.

Brain MRI revealed mild generalized supratentorial
and infratentorial atrophy predominantly affecting the
temporal lobes, including a moderate hippocampal atrophy
(Figures 1C,D). Brain Tc-99m single-photon emission
computed tomography (SPECT) performed at the age of 63
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TABLE 1 | Clinical characteristics of genetically identified cases with mutation in the ATP6V1B2 gene.

Our patient Yuan et al. (4) Kortüm et al. (7) Menendez et al. (6) Popp et al. (8) Shaw et al. (9)

No. of affected individuals 1 3 2 1 1 7

Diagnosis DOORS DDOD ZLS DDOD ID with hypotonia and

epilepsy

ZLS-like disease

Mutation p.R506X p.R506X p.R485P p.R506X p.E374Q p.L398V

Inheritance De novo De novo De novo De novo De novo Autosomal dominant

Deafness 1/1 3/3 1/2 1/1 – –

Absent/hypoplastic finger

or toe nails

1/1 3/3 2/2 1/1 – –

Thumbs Triphalangeal and

triphalangeal-like (1/1)

Finger-like (3/3) Long, finger-like (1/2) Triphalangeal (1/1) Normal (1/1) Normal (7/7)

Brachydactyly 1/1 3/3 2/2 1/1 – –

Scoliosis – NR 1/2 – NR –

Craniofacial dysmorphism 1/1 – 2/2 – NR 4/7

ID 1/1 – 2/2 – 1/1 4/7

Seizure 1/1 – – – 1/1 7/7

DDOD, dominant deafness and onychodystrophy; DOORS, deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures; ID, intellectual disability; NR, not reported;

ZLS, Zimmermann–Laband syndrome.

demonstrated a globally reduced cortical vascular reserve
capacity with the involvement of basal ganglia, in addition to
brain atrophy.

Neuropathological Assessment
Macroscopic Neuropathology

On macroscopic neuropathological evaluation, the external
examination revealed frontoparietal and parasagittal thickening
and opacity of the dura. The circle of Willis and the cranial
nerves were intact. The cortical ribbon and the sulci were
mostly retained, but a mild atrophy of the temporal lobes
could be observed. On coronal sections, a mild thinning of
the temporal gyri was accompanied by moderate symmetrical,
bilateral hippocampal atrophy (Supplementary Material 2A).
Accordingly, the lateral sulci and the temporal horns of the
lateral ventricles were moderately dilated, in line with the MRI
findings. Despite this regional atrophy, the total brain weight
was well-preserved, at 1,460 g. Small lacunes were detected
both in the putamen and in the surrounding deep white
matter, whereas the caudate and the thalamic nuclei were
unaffected (Supplementary Material 2B). The cerebellum and
the brainstem did not show any macroscopic alterations.

Microscopic Neuropathology

Light Microscopy
The midfrontal and cingulate cortices exhibited relatively
preserved neurons without reactive gliosis. There was a lack
of vascular lesions or inflammatory infiltrates. Immunostaining
for amyloid-beta (Aβ) did not show parenchymal or vascular
deposits (image not shown). Immunostaining for phospho-
tau (AT8) revealed few neurons with diffuse fine granular
immunoreactivity, similar to pretangles, and occasionally with
small fibrillar conglomerates, similar to early neurofibrillary
tangles (NFTs). Small amounts of neuropil threads were also
detected. In the cingulate, there were no ballooned neurons

and grain-like tau positivity was observed only occasionally.
In the temporal cortex, a more pronounced neuronal tau
pathology was detected and that was accompanied occasionally
by granular/fuzzy astrocytes in the gray matter and several
oligodendroglial coiled bodies in the white matter. A few grain-
like structures were also observed. The parietal cortex showed a
single neuronal tau pathology, whereas the occipital cortex did
not show any tau pathology. No Aβ deposition was detected in
these regions.

The hippocampus and amygdala showed a prominent tau
pathology in the form of NFTs (CA1 and entorhinal cortex),
pretangles (all hippocampal subregions, dentate gyrus, entorhinal
cortex, and inferior temporal gyrus), and neuropil threads and
grains (p62-immunopositive; mostly in the entorhinal cortex,
CA1, and amygdala), as well as granular/fuzzy astrocytes in
the gray matter (highest density in the amygdala), thorn-
shaped astrocytes in the white matter in the subependymal
(inferior horn of the lateral ventricle) and subpial areas, and
oligodendroglial coiled bodies and threads in the white matter
(Figures 2A–E). The amygdala showed reactive astrogliosis,
without prominent accumulation of ballooned neurons. There
were no signs of hippocampal sclerosis. Immunostaining for the
phosphorylated TAR DNA-binding protein 43 (phospho-TDP-
43) and α-synuclein was negative (images not shown).

Despite the presence of a reduced vascular reserve capacity
demonstrated by SPECT, the basal ganglia, and thalamus
did not exhibit prominent vascular lesions apart from
widened perivascular spaces; furthermore, there was a lack
of inflammatory infiltrations. In the nucleus accumbens, several
pretangles, and threads were observed, but no grains. Thorn-
shaped astrocytes accumulated in the frontobasal white matter.
The basal nucleus of Meynert showed a few NFTs.

In the brainstem and cerebellum, the anatomical structures
were well-preserved and there was no significant neuronal loss or
vascular lesions. With the exception of a few NFTs and pretangles
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FIGURE 1 | Clinical and radiomorphological characteristics of an aged case of DOORS syndrome. Craniofacial dysmorphism (coarse facies, hypertrichosis, broad

nasal bridge, wide mouth, smooth philtrum, slightly hypertrophic gingiva, widely spaced teeth, and large ears) could be observed distinctively (A,B). Brain MRI

revealed mild generalized supratentorial and infratentorial atrophy, predominantly affecting the temporal lobes, including moderate hippocampal atrophy [white arrows;

(C,D)]. Regarding limb alterations, onychodystrophy, and abnormal fingers and toes with small distal phalanges were detected (E–H). Accordingly, the X-ray

assessment demonstrated the presence of a triphalangeal left thumb [white arrow; (I)] and a triphalangeal-like right thumb, but with suspected synostosis of the distal

phalanges. A similar synostosis of the distal phalanges could be observed in the fifth fingers [gray arrows indicate these three synostosis; (I,J)]. Regarding the feet, the

middle phalanges could not be distinguished and the distal phalanges of the first toes were smaller than normal (K,L). Written informed consent was obtained from

the legal guardian of the participant in the study for the publication of photo materials with identifying information.

in the locus coeruleus, there was no tau pathology or α-synuclein
pathology. The regional distribution of tau pathology is presented
in Table 2.

Method used for immunohistochemistry. Formalin-fixed,
paraffin-embedded tissue blocks (2.5 × 2.0 cm) were applied.
The presence of astrogliosis/microgliosis/neuronal loss and the
degree of deposition of various proteins were semi-quantitatively
(none, mild, moderate, and severe) evaluated in the following
anatomical regions: frontal, temporal, parietal, occipital,
and premotor cortices; basal ganglia; cerebellum; thalamus;
amygdala; hippocampus; and the mesencephalon, pons, and

medulla oblongata in the brainstem. In addition to Hematoxylin
& Eosin and Luxol Fast Red staining, the following monoclonal
antibodies were used for immunohistochemistry: anti-phospho-
tau AT8 (pS202/pT205, 1:200; Pierce Biotechnology, Rockford,
IL, USA), anti-phospho-TDP-43 (pS409/410, 1:2,000, Cosmo
Bio, Tokyo, Japan), anti-α-synuclein (1:2,000, clone 5G4;
Roboscreen, Leipzig, Germany), anti-Aβ (1:50, clone 6F/3D;
Dako, Glostrup, Denmark), and anti-p62 (1:1,000; BD
Transduction, Lexington KY, USA). The Dako EnVision©

Detection System, Peroxidase/DAB, Rabbit/Mouse (Dako,
Glostrup, Denmark), was used for the visualization of
antibody reactions.
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FIGURE 2 | Microscopic postmortem neuropathological alterations of an aged patient with DOORS syndrome. Neurofibrillary tangles, pretangles, neuropil threads,

and grains in the hippocampal CA1 area [AT8; (A)]. Tangles and grains in the transentorhinal cortex [p62; (B)]. Tangles and pretangles in the dentate gyrus with

oligodendroglial coiled bodies in the white matter [bottom part; AT8; (C)]. Age-related tau-astrogliopathy (ARTAG) in the amygdala with granular-fuzzy astrocytes

(upper part) and thorn-shaped astrocytes [lower part; AT8; (D)]. ARTAG in the medulla oblongata with thorn-shaped astrocytes [AT8; (E)].

Electron microscopy
Although the postmortem delay resulted in a considerable
decrease in sample quality for transmission electron microscopy
(TEM), the images obtained demonstrated a relatively preserved
mitochondrial (Supplementary Material 3A) and synaptic
vesicle structure (Supplementary Material 3B). However, the
morphology and numbers of lysosomes and phagosomes could
not be assessed with appropriate quality.

Method used for electron microscopy. For ultrastructural
examination, tissue specimens were fixed with 2%
glutaraldehyde in phosphate-buffered saline containing
2.25% dextran (20 kD) overnight at 4◦C. After fixation,
the specimens were embedded in Embed 812 (EMS, USA)
using a routine TEM embedding protocol. Ultrathin
(70 nm) sections were prepared on an Ultracut S
ultramicrotome (Leica, Austria) for TEM examination.
After staining with uranyl acetate and lead citrate, the
sections were observed using a Jeol 1400 plus TEM (Japan).
Measurements of the largest diameter of mitochondria

and synaptic vesicles were obtained and the average size
was calculated.

Genomic Studies
The clinical picture suggested the presence of DOORS syndrome
underlying most of the alterations observed in the patient. After
obtaining written informed consent from the legal guardian,
genomic DNA was extracted from peripheral blood leukocytes
via a standard protocol. Sanger sequencing was performed to
screen for pathogenic mutations in the TBC1D24 gene, but no
alterations were detected. Mutations in the ATP6V1B2 gene were
assessed next, which led to the identification of the previously
reported p.R506X pathogenic mutation in a heterozygous form,
which is mainly known to cause DDOD syndrome (4). For
apolipoprotein E (ApoE) analysis, which we considered necessary
to provide context for the lack of Aβ pathology, genomic
DNA was extracted from peripheral blood using a standard
desalting method (12) and stored at −20◦C until further use.
The ApoE polymorphism was determined by polymerase chain
reaction (PCR) and restriction fragment-length polymorphism.
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TABLE 2 | Distribution of brain tau pathology in an aged case of DOORS

syndrome with mutation in the ATP6V1B2 gene.

Brain region Grade

Midfrontal cx +

Temporal cx +++

Parietal cx +

Occipital cx 0

Cingulate cx +

Entorhinal cx +++

Frontobasal white matter +

Hippocampus (CA1) +++

Dentate gyrus +++

Amygdala +++

Meynert nucleus +

Nucleus accumbens ++

Basal ganglia 0

Thalamus 0

Cerebellum 0

Subependymal white matter including that of brainstem ++

Locus coeruleus +

Other brainstem 0

cx, cortex; DOORS, deafness, onychodystrophy, osteodystrophy, mental retardation,

and seizures.

The following primers were used for amplification (13): forward
primer 5

′
-TCC AAG GAG CTG CAG GCG CA-3

′
and reverse

primer 5
′
-ACA GAA TTC GCC CCG GCC TGG TAC ACT

GCC A-3
′
. The amplified PCR products were digested using the

HhaI restriction enzyme (Thermo Fisher Scientific, Waltham,
MA, USA) and electrophoresed in a 4% agarose gel. Based on
this method, the ApoE genotype of the patient was determined
to be ε3/ε3.

DISCUSSION

Although the majority of cases of DOORS syndrome are
caused by mutations in the TBC1D24 gene (2), some cases
with mutations in the ATP6V1B2 gene have been identified
(unpublished results). Genetic alterations in both of these
genes may affect endolysosomal functioning, thus yielding a
similar pathological basis for these overlapping syndromes (4,
14). However, no detailed human neuropathological assessment
is available in patients with these mutations to compare
the alterations with those obtained from studies of other
lysosomal disorders.

Regarding the establishment of clinicopathological
relationships, the pyramidal signs observed were probably related
to the generalized atrophy observed on MRI, which evolved
with age as a part of the syndrome, or to the presence of small
lacunes, as demonstrated by macroscopic neuropathological
examination; however, their prominent role was not confirmed
by either MRI or microscopic neuropathological assessment.
No territorial ischemic stroke or any other reason was found to
underlie the slightly left-sided corticospinal symptomatology.

Drug-induced movement disorder (as a side effect of
risperidone or valproate), the functional consequence of the
reduced vascular reserve capacity of the basal ganglia, and
a late-onset symptom of DOORS syndrome may all account
for the observed Parkinsonism. If considering Parkinsonism
as a drug-induced movement disorder, the presence of resting
tremor before the known administration of possible initiating
agents represents a major contradiction. Nevertheless, the
halting of risperidone therapy (at the diagnostic admission,
the patient had not received valproate) led to a remarkable
improvement, with almost complete cessation of the tremor.
However, subsequently, the tremor recurred and the rigidity
worsened, and these signs could only be moderately controlled
by low-dose levodopa treatment (100mg t.i.d.). In line with the
SPECT findings, this may support a vascular etiology; however,
no prominent underlying vascular lesions were identified either
by MRI or by microscopic neuropathological assessment.
Regarding the etiology of the neurodegenerative presentation,
no α-synuclein or tau pathology could be demonstrated
by detailed neuropathological assessment of the nigrostriatal
system. Therefore, a combined secondary etiology (progressively
decreasing vascular reserve capacity of the basal ganglia and
drug-induced aggravation of signs) is suggested as an explanation
for the Parkinsonian syndrome, and its relationship with
DOORS syndrome cannot be proved. Of note, Parkinsonism was
reported previously to be associated with mutations in the most
common causative gene for DOORS syndrome (15). In addition,
individuals with TBC1D24 mutations were also noted to have
dystonia and other movement disorders (16).

Seizures are hallmarks of TBC1D24-related disorders (17, 18),
and the presence of seizures was also demonstrated in patients
harboring the heterozygous p.E374Q or p.L398V (a large Polish
family with seven affected members) mutations in theATP6V1B2
gene (8, 9). In these latter autosomal dominantly inherited cases
with positive EEG findings, the age of onset ranged from 3 to
16 years. In our case, surprisingly, a late-onset first seizure was
documented at the age of 52 years, and, in light of negative EEG
findings, a question may arise regarding whether this can be
designated as a specific clinical feature. However, the diagnosis
of epilepsy could be established based on the presence of two
unprovoked seizures occurring > 24 h apart, according to the
2014 definition provided by the International League Against
Epilepsy (19), even in the absence of support from EEG, the
sensitivity of which may be low regarding the detection of
interictal epileptiform discharges in certain cases (20). Although
primarily genetically determined epilepsy can be diagnosed,
the presence of medial temporal lobe atrophy may suggest a
structural origin, similar to that reported in Alzheimer’s disease
[AD; (21)]; however, this can also presumably be designated as a
disease-related phenomenon.

There is an ongoing debate regarding whether
neurodevelopmental alterations including intellectual disability
and neurodegeneration, e.g., accompanied by cognitive decline,
have a different pathological basis or share a common one
that yields a continuum regarding symptom evolution (22).
The latter hypothesis is strongly presumed in some lysosomal
disorders, including NPC (22). This may also be the situation in
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the current case. With a pathological background of intellectual
disability/cognitive decline and behavioral alterations, the
examined sections revealed a complex constellation of
prominent age-associated tau pathologies. We observed signs
of argyrophilic grain disease (AGD), the precise significance of
which in neurodegenerative disease remains debatable (23), with
pretangles and astrocytic and oligodendroglial tau pathology in
the limbic system. According to the stages of Saito et al. (24), this
patient had stage II disease. In addition, we observed NFTs in
the medial temporal lobes without apparent Aβ deposition. This
pathology is now called primary age-related tauopathy [PART
(25); formerly also called NFT-only dementia], which is not
necessarily associated with cognitive decline. The distribution
of NFTs corresponded to stage II of Braak et al. (26). Finally,
we detected a prominent tau-astrogliopathy in the basal brain
regions and medial temporal lobe in the frame of age-related
tau-astrogliopathy [ARTAG (27)]. The regional distribution of
this combined brain tau pathology is presented in Table 2 in a
semi-quantitative manner.

Endolysosomal dysfunction caused by mutations in the
ATP6V1B2 gene may provide a molecular background for the
present findings; however, it could not be unequivocally verified
in the current case because of sample quality and availability
issues resulting from an extended postmortem delay. It is well-
known that lysosomal dysfunction, in particular lysosomal lipid
storage disorders (including NPC disease), can initiate an NFT
pathology that resembles that detected in AD and in the present
case, albeit with a somewhat different regional distribution
pattern [(26, 28–30); Table 2]. In the case of NPC, there is
moderate involvement of basal ganglia, thalamus, and several
parts of the brainstem, in addition to the regions involved in
AD and in our case. Moreover, AGD without Aβ deposition
was observed in cerebrotendinous xanthomatosis (CTX), a
disorder that is characterized by the disturbance of cholesterol
homeostasis (31). The explanation behind this phenomenon
may be that lysosomal function is strongly affected by lipid
homeostasis (32); therefore, altered lipid processing may cause
secondary lysosomal dysfunction and vice versa. Accordingly,
it was demonstrated that the distribution of tau pathology
is strongly correlated with the intracellular accumulation of
cholesterol in NPC (30). Based on these observations, we
hypothesize that disturbance of the lysosomal system increases
neurite or glial vulnerability, which then manifest as tau
pathology, which is a common feature of these diseases. Of note,
Aβ pathology was absent in our case with DOORS syndrome,
similar to CTX and several reported cases of NPC. In fact, the
few cases of NPC that have been reported to have associated Aβ

pathology were exclusively ApoE ε4/ε4 homozygotes (33), which
is the strongest genetic risk factor for late-onset AD. In light of
these findings, the ApoE ε3/ε3 genotype of our patient appears to
be consistent with the complete lack of Aβ pathology. Although
the mitochondria were ultrastructurally normal, the literature
reports mitochondrial dysfunction in DOORS syndrome (34,
35), tauopathies, and NPC. Interestingly, tauopathies exhibit
secondary mitochondrial dysfunction (36), and reactive oxygen
species promote tau modifications (37) and are upregulated in
tauopathies. Mitochondrial dysfunction is also present in NPC

because of lysosomal–mitochondrial contacts (38), and flies that
are mutant for the TBC1D24 homolog are more sensitive to
reactive oxygen species (16).

CONCLUDING REMARKS

In conclusion, the current study was the first to present a detailed
clinicopathological relationship regarding p.R506X pathogenic
mutation in the ATP6V1B2 gene. The results of the current
work support the following conclusions: (1) the presence of age-
associated tauopathies is demonstrated in DOORS syndrome in
the forms of AGD, PART, and ARTAG, which may eventually be
a consequence of lysosomal and/or mitochondrial dysfunction as
discussed also in NPC, eventually in the frame of an accelerated
aging process; (2) the cognitive and behavioral alterations
that were present from childhood in the form of intellectual
disability may be augmented by the evolution of the limbic-
predominant tauopathy.

The limitation of this study was that only one case was
reported; therefore, the findings need to be confirmed in
additional cases. Accordingly, we propose future prospective
studies using a series of patients and controls (including
patients with AD and NPC) to elucidate the characteristics
of endolysosomal dysfunction at different levels including a
fine ultrastructural analysis and to obtain unbiased comparative
quantitative measures of subregional tau pathologies.
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