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Abstract

The most important rule to determine payments in real-life bankruptcy problems

is the proportional rule. Many such bankruptcy problems are characterized by net-

work aspects and the values of the agents’ assets are endogenous as they depend on

the extent to which claims on other agents can be collected. These network aspects

make an axiomatic analysis challenging. This paper is the first to provide an axioma-

tization of the proportional rule in financial networks. Our main axiom is invariance

to mitosis. The other axioms are claims boundedness, limited liability, priority of

creditors, continuity, and impartiality.
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1 Introduction

The principle of proportionality plays an important role in bankruptcy law across the globe.

The EC Council Regulation on insolvency proceedings states that1

Every creditor should be able to keep what he has received in the course of

insolvency proceedings but should be entitled only to participate in the distri-

bution of total assets in other proceedings if creditors with the same standing

have obtained the same proportion of their claims.

The principle of proportionality is also important for American bankruptcy law, according

to which claimants of equal status should receive payments proportional to the value of

their liabilities, see Kaminski (2000).

Given the prominence of the proportional rule in practice, it is important to understand

its crucial features by finding an axiomatization. Starting with the seminal paper of O’Neill

(1982), the literature that takes an axiomatic approach to the bankruptcy problem assumes

there is a single bankrupt agent while the other agents have claims on its estate. We refer

to this class of problems as claims problems. The central question is how this estate should

be divided over the claims and the axiomatic approach has provided firm underpinnings

for a number of well-known division rules. See Thomson (2013) and Thomson (2015) for

an overview of this stream of the literature.

Notable axiomatizations of the proportional rule for claims problems are given by Young

(1988), de Frutos (1999), Moreno-Ternero (2006), and Ju, Miyagawa, and Sakai (2007).

The main axioms used by these papers are self-duality, composition up, composition down,

non-manipulability, and merging- and splitting-proofness. For related axiomatizations,

see Tasnádi (2002) on probabilistic rationing methods and Moulin (2016) on proportional

assignment and rationing of goods with different characteristics.

Recent crisis on financial markets related to the Lehman bankruptcy as well as sovereign

debt problems of European countries have spurred an extensive literature on systemic risk

that takes a network perspective to the bankruptcy problem, starting with the contribution

by Eisenberg and Noe (2001). The literature that is based on this model, either extending

it (Cifuentes, Ferrucci, and Shin, 2005; Shin, 2008; Rogers and Veraart, 2013; Schulden-

zucker, Seuken, and Battiston, 2019), or using it to relate the number and magnitude of

defaults to the network topology (Gai and Kapadia, 2010; Elliott, Golub, and Jackson,

2014; Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015; Glasserman and Young, 2015; Cap-

poni, Chen, and Yao, 2016), or measuring systemic risk (Chen, Iyengar, and Moallemi,

2013; Demange, 2018) uses the proportional rule to determine the mutual payments by the

1Council Regulation (EC) No 1346/2000 of 29 May 2000 on insolvency proceedings: http://eur-lex.

europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02000R1346-20140709&qid=1471509284560
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agents. For an overview of this stream of the literature, we refer to the excellent survey by

Glasserman and Young (2016).

The aim of this paper is to provide axiomatic foundations for the use of the proportional

rule for bankruptcy problems in financial networks defined by Eisenberg and Noe (2001).

A financial network consists of a set of agents, with each agent being characterized by its

endowments and its liabilities towards the other agents. A bankruptcy rule determines the

actual payments of agents to each other, collected in a payment matrix. More technically,

a bankruptcy rule is simply a function that assigns to each financial network a payment

matrix. To clearly distinguish concepts, we use the terminology bankruptcy rule for finan-

cial network problems and division rule for the simpler context of claims problems with a

single bankrupt agent.

An agent is in fundamental default if it cannot fully pay its liabilities, even if it receives

full payments on all its claims on the other agents. In a network setting, a default can

also result from contagion, where an agent defaults only because other agents are not fully

paying their liabilities. Because of these mutual dependencies, it is not trivial to define the

proportional rule in a financial network. We follow the seminal contribution by Eisenberg

and Noe (2001) and proceed as follows. First, one determines the asset value of an agent,

the value of its endowments together with the payments as collected from the other agents.

Under the proportional rule, an agent spends its asset value in a proportional way over

its liabilities, up to the value of those liabilities. Subtracting the payments as made by an

agent from its asset value yields an agent’s equity. Because of the mutual dependencies

caused by the network aspect, one has to solve a system of equations to determine the

actual payments. Under the proportional rule, the agents’ asset values and equities are

therefore determined endogenously in a financial network.

Agents in financial networks may engage in spin-offs and mergers. When such activities

do not generate added value, they should not influence the payments made to and received

from agents not involved in them. The axiom which requires that the split of an agent

into multiple agents or the merger of a set of agents should not affect the payment matrix

is called non-manipulability in the literature. The proportional rule does not satisfy non-

manipulability. As an example, one expects the merger of a bankrupt and a solvent agent

to affect the payment matrix generated by the proportional rule, since part of the assets of

the solvent agent that were not seized before can now be used for making payments related

to claims on the bankrupt agent. The other way around, if an agent is allowed to create

a new entity that receives all its liabilities but none of its claims or endowments, then the

agent is clearly going to benefit since it will end up in paying none of its liabilities. This

kind of manipulation is illegal in reality, since in winding up or in insolvency proceedings,

the borrower is not allowed to do anything that would threaten directly or indirectly
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the payments to its lenders. We show that non-manipulability is incompatible with any

reasonable bankruptcy rule in financial networks.

We, therefore, want to restrict spin-offs and mergers in financial networks to situations

that are balanced in the way endowments and claims are reshuffled. A spin-off which

receives liabilities should receive a corresponding amount of endowments and claims. The

simplest way to achieve this is to restrict attention to manipulations involving identical

agents.2 Agents are identical if they have the same endowments, claims, and liabilities,

which implies, for instance, that mutual liabilities between them are equal to zero. The

axiom called invariance to mitosis requires that the split of an agent into multiple identical

agents or the merger of a group of agents that are identical should not affect the payment

matrix. This is clearly a very weak axiom.

We show that invariance to mitosis together with claims boundedness, limited liability,

priority of creditors, continuity, and impartiality axiomatize the proportional rule in finan-

cial networks. Claims boundedness expresses that no agent pays an amount in excess of

its liabilities. A bankruptcy rule satisfies limited liability if it leads to a payment matrix

such that none of the agents ends up with negative equity. Priority of creditors is satisfied

if the only circumstance under which an agent is allowed to default is when its equity is

equal to zero. Continuity implies that small changes in the financial network imply small

changes in the resulting payment matrix. Impartiality requires that two agents with the

same claim on a third agent should receive the same payment from it. We show that the

axioms are independent. Although the very weak requirement of invariance to mitosis is

sufficient to pin down the proportional rule, the proportional rule can be shown to satisfy

non-manipulability for a much wider range of situations. It holds whenever all agents in-

volved in a split remain solvent, which corresponds exactly to those cases that are legally

allowed.

The way Eisenberg and Noe (2001) extend the proportional rule for claims problems

to the set-up of financial networks can be used to extend any division rule for claims

problems to the set-up of financial networks. The resulting bankruptcy rule for financial

networks consists of computing each agent’s asset value and then making payments in

accordance with the given division rule for claims problems. Such a bankruptcy rule is

called a division rule based bankruptcy rule. Groote Schaarsberg, Reijnierse, and Borm

(2018) extend the Aumann-Maschler division rule for claims problems to a bankruptcy

rule for financial networks. Different from the approach in this paper, they consider the

resulting equity rather than the entire payment matrix. They restrict attention to the

class of division rule based bankruptcy rules and provide an axiomatization for the equity

2The idea to restrict manipulations to identical agents has also appeared in the literature on claims

problems when axiomatizing the class of priority division rules, see the axiom of restricted additivity in

Flores-Szwagrzak, Garćıa-Segarra, and Ginés-Vilar (2019).
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resulting from the bankruptcy rule based on the Aumann-Maschler division rule.

Not all bankruptcy rules are based on division rules. For instance, a bankruptcy rule

that consists of pairwise netting all mutual claims first and next applying the proportional

rule to the resulting liabilities is not in this class, since in this case payments do not only

depend on the asset value of an agent and its liabilities, but also on its claims towards other

agents. Our axiomatization of the proportional rule does not impose any a priori structure

on bankruptcy rules. Absence of pairwise netting, for instance, is therefore a consequence

of our axioms rather than an assumption.

Finally, we would like to mention an emerging literature on the extension of the

bankruptcy literature to network problems as appearing in operations research. Bjørndal

and Jörnsten (2010) analyze generalized bankruptcy problems with multiple estates as flow

sharing problems and define the nucleolus and the constrained egalitarian solution for such

problems. Moulin and Sethuraman (2013) consider bipartite rationing problems, where

agents can have claims on a subset of unrelated estates. They consider whether rules for

single resource problems can be consistently extended to their framework.

2 Financial networks and the proportional rule

Let N be the set of all potential agents and N the collection of non-empty, finite subsets

of N.
A financial network is a triple (N, z, L) with the following interpretation.

The set of agents in the financial network is given by N ∈ N . The vector z ∈ RN
++

represents the endowments of the agents, which are strictly positive real numbers. The

endowment of an agent includes all its tangible and intangible assets, but excludes the

claims and liabilities the agent has towards the other agents. The non-negative liability

matrix L ∈ RN×N
+ describes the mutual claims of the agents. Its entry Lij is the liability

of agent i towards agent j or, equivalently, the claim of agent j on agent i. We make the

normalizing assumption that Lii = 0. In general, it can occur that agent i has a liability

towards agent j and vice versa, so it may happen that simultaneously Lij > 0 and Lji > 0.

Let Π ∈ RN×N
+ denote the non-negative relative liability matrix, where for i, j ∈ N,

Πij =

{
0, if Lij = 0,

Lij∑
k∈N Lik

, otherwise.

The set of all matrices in RN×N
+ with a zero diagonal is denoted by M(N). The union

over all finite sets of agents of these matrices is denoted byM = ∪N∈NM(N). The partial

order ≤ on M(N) is defined in the usual way: For P, P ′ ∈ M(N) it holds that P ≤ P ′ if

and only if Pij ≤ P ′ij for all (i, j) ∈ N ×N. For P ∈M(N) and i ∈ N , let Pi ∈ RN denote
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row i of P . For Pi, P
′
i ∈ RN , we write Pi < P ′i if Pij ≤ P ′ij for all j ∈ N and there is k ∈ N

such that Pik < P ′ik. Column i ∈ N of the matrix P is denoted by P i.

The set of all financial networks is denoted by F .
Consider a financial network (N, z, L) ∈ F . A payment matrix P ∈ M(N) describes

the mutual payments to be made by the agents, that is, Pij is the monetary amount to be

paid by agent i ∈ N to agent j ∈ N . Given a payment matrix P ∈M(N), the asset value

ai(N, z, P ) of agent i ∈ N is given by

ai(N, z, P ) = zi +
∑
j∈N

Pji.

Subtracting the payments as made by an agent from its asset value yields an agent’s equity.

The equity ei(N, z, P ) of an agent i ∈ N is given by

ei(N, z, P ) = ai(N, z, P )−
∑
j∈N

Pij = zi +
∑
j∈N

(Pji − Pij).

It follows immediately from the above expression that the sum over agents of their equities

is the same as the sum over agents of their initial endowments.

A bankruptcy rule b associates to each financial network (N, z, L) ∈ F a payment

matrix P ∈M(N). More formally, we have the following definition.

Definition 2.1. A bankruptcy rule is a function b : F →M such that for every (N, z, L) ∈
F it holds that b(N, z, L) ∈M(N).

The proportional rule p : F → M is the bankruptcy rule where every agent propor-

tionally spends its asset value over its liabilities.

Definition 2.2. The proportional rule is the function p : F → M such that for every

(N, z, L) ∈ F it holds that p(N, z, L) = P, where the matrix P solves the following system

of equations:

Pij = min

{
Πij(zi +

∑
k∈N

Pki), Lij

}
, i, j ∈ N. (2.1)

It follows from Theorem 2 in Eisenberg and Noe (2001) that the system of equations

(2.1) has a unique solution. Lemma 4 in Eisenberg and Noe (2001) establishes that the

payment matrix generated by the proportional rule can also be found as the solution to a

linear programming problem. Let (N, z, L) ∈ F be a financial network and let the matrix

P ∗ solve the following linear programming problem, where 1 denotes a vector of ones in
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RN :

maxP∈RN×N
+ ,λ∈RN

+

∑
i∈N
∑

j∈N Pij,

subject to

Pij = λiLij, i, j ∈ N,
λi ≤ 1, i ∈ N,
z + P>1− P1 ≥ 0.

(2.2)

Then it holds that p(N, z, L) = P ∗. The first and second constraint in the linear program

(2.2) guarantee that payments are proportional to the liabilities and that no agent receives

more than its claim. The third constraint ensures that no agent ends up with negative

equity. The fact that P ∗ maximizes the objective function implies that no agent is allowed

to default when having positive equity. Otherwise, it would be possible to increase the

value of the objective function by having the defaulting agent make additional payments.

In Example 2.3, we illustrate financial networks and the proportional rule in a numerical

example, whereas in Example 2.4 we explain how the model has been used to assess the

systemic financial stability of the Austrian banking system.

Example 2.3 (The proportional rule in a numerical example). Consider the financial

network (N, z, L) ∈ F with three agents N = {1, 2, 3} and endowments and liabilities as in

the first two blocks of Table 1. Moreover, Table 1 presents the payment matrix P resulting

from the proportional rule p and the induced asset values and equities.

z L P a(N, z, P ) e(N, z, P )

9 0 0 0 0 0 0 52 52

19 20 0 60 7 0 21 28 0

24 40 10 0 36 9 0 45 0

52 52

Table 1: The endowments, the liabilities, the payment matrix, the asset values, and the

equities resulting from the proportional rule p in Example 2.3.

Notice that agent 2 is in fundamental default, since its endowment of 19 cannot fully

pay its liabilities of 20 and 60 to agents 1 and 3, respectively, even if agent 2 receives the

payment of 10 from agent 3. However, the default of agent 3 results from contagion. In

the absence of default by agent 2, agent 3 would have an asset value equal to 84, which is

more than sufficient to pay the total value of 50 of all its liabilities. Under the proportional

rule, agent 2 pays 35% and agent 3 pays 90% of its liabilities.

7



Example 2.4 (An application to the Austrian banking system). Elsinger, Lehar, and

Summer (2006) use a financial network (N, z, L) to assess the systemic financial stability

of the Austrian banking system. The set N consists of 881 Austrian banks that report

monthly to the Austrian Central Bank. The endowment zi of bank i ∈ N is given by

the portfolio holdings of bank i, i.e., the value of its loans, bonds, and stocks minus its

liabilities to nonbanks, and is netted by its interbank positions. For j ∈ N, the number

Lij is given by the exposures of bank i towards bank j, i.e., the total nominal liabilities of

bank i against bank j. The values of z and L are determined for September 2002 on the

basis of the monthly reports to the Austrian Central Bank and the Austrian Central Bank

major loans register. Total endowments
∑

i∈N zi of the banks equal 575 billion euros and

total interbank liabilities
∑

i∈N
∑

j∈N Lij amount to 161 billion euros.

To use the model for risk analysis, it is extended to a framework with uncertainty by

assuming that future endowments are determined by the realization of a random variable

z̃. To determine the distribution of z̃, separate estimates are made of both market risk and

credit risk the banks are exposed to, where a ten day horizon is taken for market risk and

a three month horizon for credit risk. Each realization z′ of z̃, called a scenario in Elsinger,

Lehar, and Summer (2006), leads to a financial network (N, z′, L). Scenarios are analyzed

both from a short-run and a long-run perspective. The short-run perspective assumes

that there are no interbank payments following a bank’s default in the financial network

(N, z′, L). The long-run perspective uses the proportional rule to determine the payment

matrix and to calculate the number of banks subject to fundamental and contagion default.

As discussed in Example 2.4, the use of the proportional rule implicitly takes a long-run

perspective by assuming that the entire endowments of a defaulting bank can be used to

make payments to its creditors. This assumption is less restrictive than it may seem at first

sight as it follows from the analysis in Csóka and Herings (2018) that the final payment

matrix is not sensitive to the exact timing of the payments. It is therefore not needed that

the liquidation of a bankrupt bank takes place immediately and the model is consistent

with the case where the unwinding of a defaulting bank’s assets can take a substantial

amount of time.

Upper (2011) presents a survey of 15 applied studies that use the Eisenberg and Noe

(2001) framework to assess the frequency and severity of contagion in interbank markets

for a number of countries. This survey puts particular emphasis on the way the matrix L

can be estimated on the basis of, often limited, available data.

3 Basic axioms

In this section, we define and discuss five basic axioms for bankruptcy rules b : F →M.
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Axiom 3.1 (Claims boundedness). For every F ∈ F , it holds that b(F ) ≤ L.

Axiom 3.2 (Limited liability). For every F ∈ F , for every i ∈ N, it holds that ei(N, z, b(F )) ≥
0.

Axiom 3.3 (Priority of creditors). For every F ∈ F , for every i ∈ N, if bi(F ) < Li, then

it holds that ei(N, z, b(F )) = 0.

Axiom 3.4 (Continuity). It holds that b is continuous.

Axiom 3.5 (Impartiality). For every F ∈ F , for every i, j, k ∈ N, if Lij = Lik, then it

holds that bij(F ) = bik(F ).

Claims boundedness expresses that no agent needs to pay an amount in excess of its

liabilities.

A bankruptcy rule satisfies limited liability if it leads to a payment matrix such that

none of the agents ends up with negative equity.

A bankruptcy rule satisfies priority of creditors if the only circumstance under which an

agent is allowed to default is when its equity is equal to zero. The axioms of limited liability

and priority of creditors are closely related to the notions of limited liability and absolute

priority as introduced in Eisenberg and Noe (2001). In Eisenberg and Noe (2001), these

notions are not formulated as properties of bankruptcy rules, but as requirements on the

payment matrix, restricted to the case where each agent settles its liabilities proportionally.

To define continuity, we endow F with the standard topology, based on the dis-

crete topology for N and the Euclidean topology for endowments and liabilities. Let

(F n)n∈N = (Nn, zn, Ln)n∈N be a sequence of financial networks of F . Notice that this se-

quence converges to the financial network F = (N, z, L) of F if and only if there is n′ ∈ N
such that for every n ≥ n′ it holds that Nn = N, limn→∞ z

n = z, and limn→∞ L
n = L.

Continuity is an attractive property of a bankruptcy rule since it implies that small changes

in the financial network imply small changes in the resulting payment matrix.

Impartiality requires that two agents j and k with the same claim on agent i should

receive the same payment from i. Note that impartiality applies to payments made by

an agent to its creditors, but not to payments received. Since one of the debtors could

be bankrupt, such an axiom would make little sense. All bankruptcy rules for financial

networks that are based on the well-known division rules for claims problems, like the

proportional rule, the constrained equal awards rule, or the Talmud rule to name a few,

satisfy impartiality. In most real-life bankruptcy cases, the principle of impartiality is

satisfied, which is in accordance with the EC Council Regulation on insolvency proceedings,

requiring that creditors with the same standing should obtain the same proportion of their

claims, and with American bankruptcy law, requiring that claimants of equal status should
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receive payments proportional to the value of their liabilities. In both legal systems, the

repayment capacity of claimants is not taken into account.

Notwithstanding the dominance of impartiality in real-life bankruptcy cases, the prin-

ciple of impartiality is applied somewhat differently in over-the-counter derivatives trades,

see Duffie and Zhu (2011). First, claims are revised by doing one round of pairwise netting.

Next, the proportional rule is applied to the revised claims. The revised claims have the

property that for every pair of agents i, j ∈ N it holds that Lij = 0 or Lji = 0. To capture

this situation, we define the pairwise netting proportional rule.

Definition 3.6. The pairwise netting proportional rule pnp : F →M is defined by

pnp(N, z, L) = min{L,L>}+ p(N, z, L−min{L,L>}), (N, z, L) ∈ F .

Under the pairwise netting proportional rule, first pairwise mutual payments are made

resulting in pairwise netting of the liabilities and next the remaining liabilities are settled

using the proportional rule. The pairwise netting proportional rule is an example of a

bankruptcy rule that is not based on a division rule for claims problems, since in this case

payments do not only depend on the asset value of an agent and its liabilities, but also on

its claims towards other agents. We use the pairwise netting proportional rule to show the

independence of our axioms in Appendix B. The following example shows that the pairwise

netting proportional rule violates impartiality.

Example 3.7 (The pairwise netting proportional rule does not satisfy impartiality). Con-

sider the financial network (N, z, L) ∈ F with three agents N = {1, 2, 3} and endowments

and liabilities as in the first two blocks of Table 2. Moreover, Table 2 presents the pair-

wise netting amounts min{L,L>}, the payment matrix resulting from the proportional

rule applied to the revised problem P ′ = p(N, z, L − min{L,L>}), the payment matrix

P = pnp(N, z, L), asset values a(P ), and equities e(P ).

z L L′ min{L,L>} P ′ P a(N, z, P ) e(N, z, P )

12 0 12 12 0 6 12 0 6 0 0 4 8 0 10 8 18 0

6 6 0 0 0 0 0 6 0 0 0 0 0 6 0 0 16 10

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 14

L′ = L−min{L,L>}
P ′ = p(N, z, L−min{L,L>})

Table 2: The endowments, the liabilities, the pairwise netting amounts min{L,L>}, the

payment matrix of the revised problem P ′ = p(N, z, L−min{L,L>}), the payment matrix

P = pnp(N, z, L), asset values a(P ), and equities e(P ) in Example 3.7.
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Notice that impartiality is not satisfied by the pairwise netting proportional rule, since

agent 1 makes a payment of 10 units to agent 2 and of 8 units to agent 3, even though

both agents hold the same claim against agent 1.

4 Invariance to mitosis and the axiomatization

For claims problems, non-manipulability has been used by de Frutos (1999), Moreno-

Ternero (2006), and Ju, Miyagawa, and Sakai (2007) to axiomatize the proportional rule.

In that setting, non-manipulability says that no group of agents can increase their total

awards by merging their claims and that no single agent can increase its award by splitting

its claim among dummy agents and itself. This axiom was introduced as strategy-proofness

by O’Neill (1982) for the class of simple claims problems, which are claims problems where

no agent has a claim exceeding the estate. Strong non-manipulability, introduced as the

additivity of claims property by Curiel, Maschler, and Tijs (1987) for simple claims prob-

lems, says that if an agent splits its claim and appears as several different claimants, or a

group of agents merge their claims and appear as a single claimant, nothing changes for

the other agents involved in the problem.

A straightforward way to generalize strong non-manipulability for claims problems to

the setting of financial networks is to require that the split of an agent into multiple agents

or the merger of a group of agents should not affect the payment matrix. We will show in

Theorem 5.3 that non-manipulability defined in such a way is too demanding in a network

setting. The main problem is that a bankrupt agent can gain by allocating liabilities to a

spin-off while keeping its endowments and claims. In real life, this kind of manipulation is

illegal, since in winding up or in insolvency proceedings, the borrower is not allowed to do

anything that would threaten directly or indirectly the payments to its lenders.

We therefore want to restrict splits and mergers to situations that are balanced in the

sense that a spin-off which receives liabilities should also receive a corresponding amount

of endowments and claims. The simplest way to achieve this is to restrict attention to

manipulations involving identical agents, having the same endowments, claims, and liabil-

ities. A split of an agent into identical agents is very common in real life. It occurs in

case of a divorce when married in community of property. It turns out that this very weak

requirement, called invariance to mitosis, together with the basic axioms, is sufficient to

axiomatize the proportional rule.

Axiom 4.1 (Invariance to mitosis). For every F = (N, z, L) ∈ F , for every j ∈ N, for
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every K ⊂ N \N, the payments in the financial network F ′ = (N ′, z′, L′) ∈ F , where

N ′ = N ∪K,
z′k = zj/(|K|+ 1), k ∈ {j} ∪K,
z′i = zi, i ∈ N \ {j},
L′ki = Lji/(|K|+ 1), k ∈ {j} ∪K, i ∈ N \ {j},
L′ik = Lij/(|K|+ 1), k ∈ {j} ∪K, i ∈ N \ {j},
L′k` = 0, k, ` ∈ {j} ∪K,
L′hi = Lhi, h, i ∈ N \ {j},

satisfy∑
k∈{j}∪K bki(F

′) = bji(F ), i ∈ N \ {j},∑
k∈{j}∪K bik(F

′) = bij(F ), i ∈ N \ {j},
bhi(F

′) = bhi(F ), h, i ∈ N \ {j}.

We have formulated invariance to mitosis as the requirement that splitting an agent

arbitrarily into multiple, but identical, agents should not affect the payments made to

and received from the agents that are not involved in the split. Equivalently, we could

have used the formulation that the merger of an arbitrary set of identical agents should

not affect the payments made to and received from the agents that are not involved in

the merger. Under a rule satisfying invariance to mitosis, the identical agents involved do

neither benefit from a split nor from a merger, giving two weak inequalities from which

the first two equalities related to the payment matrix in Axiom 4.1 can be derived. The

feature that also mutual payments between agents not involved in the split or merger

do not change, the last equation in Axiom 4.1, makes this notion of non-manipulability

particularly robust, since it rules out the possibility that agents outside a split or merger

would benefit from it and would be willing to make side-payments to induce it. To sum

up, invariance to mitosis requires that the split of an agent into multiple, but identical,

agents or the merger of a group of agents that are identical should not affect the payment

matrix.

We now turn to our axiomatization of the proportional rule.

Theorem 4.2. The proportional rule p is the unique bankruptcy rule satisfying the axioms

of claims boundedness, limited liability, priority of creditors, continuity, impartiality, and

invariance to mitosis.

The proof of Theorem 4.2 can be found in Appendix A. We show the axioms to be

independent in Appendix B.

Although invariance to mitosis applies to cases where an agent is split in identical

agents, the proportional rule is easily verified to satisfy non-manipulability in a much

12



wider range of situations. It holds whenever all agents involved in a split remain solvent,

which is not the case for bankruptcy rules for financial networks based on well-known

division rules for claims problems like the constrained equal awards rule or the Talmud

rule. For instance, under the constrained equal awards rule, agents benefit from splitting

even when they all remain solvent, since this increases the joint payments they receive from

bankrupt agents. One can therefore conclude that non-manipulability of the proportional

rule applies exactly to those cases that are legally allowed, whereas because of Theorem 4.2

all other rules satisfying the basic axioms are manipulable even when only splits in identical

agents are considered. The proportional rule is therefore optimal when minimization of

manipulation is the main concern. Other relevant concerns are how different bankruptcy

rules affect the incentives to create profitable enterprises or influence welfare more generally.

Such concerns are outside the framework that we consider here.

5 Non-manipulability

In this section, we give a formal result on non-manipulability being incompatible with the

other basic axioms, even when one does not insist on continuity and impartiality.

Non-manipulability requires the arbitrary split of an agent into multiple agents or the

merger of a set of agents not to affect the payment matrix, formally defined as follows.

Axiom 5.1 (Non-manipulability). For every F = (N, z, L) ∈ F , for every j ∈ N, for every

K ⊂ N \N, the payments in every financial network F ′ = (N ′, z′, L′) ∈ F such that

N ′ = N ∪K,∑
k∈{j}∪K z

′
k = zj,

z′i = zi, i ∈ N \ {j},∑
k∈{j}∪K L

′
ki = Lji, i ∈ N \ {j},∑

k∈{j}∪K L
′
ik = Lij, i ∈ N \ {j},

L′hi = Lhi, h, i ∈ N \ {j},

satisfy∑
k∈{j}∪K bki(F

′) = bji(F ), i ∈ N \ {j},∑
k∈{j}∪K bik(F

′) = bij(F ), i ∈ N \ {j},
bhi(F

′) = bhi(F ), h, i ∈ N \ {j}.

We argue next that the requirement of non-manipulability is too strong in financial

networks. First, we show that it is not satisfied by the proportional rule.

13



z L P a(N, z, P ) e(N, z, P )

12 0 12 12 0 9 9 18 0

6 6 0 0 6 0 0 15 9

6 0 0 0 0 0 0 15 15

Table 3: The endowments, liabilities, payment matrix, asset values, and equities resulting

from the proportional rule p in Example 5.2 for the financial network F = (N, z, L).

Example 5.2 (The proportional rule is manipulable). We start from the financial network

F = (N, z, L) ∈ F of Example 3.7 and calculate the payment matrix, asset values, and

equities resulting from the proportional rule p in Table 3.

Consider a split of agent 1 into agents 1 and 4, resulting in the financial network

F ′ = (N ′, z′, L′) = (N ∪ {4}, z′, L′). In the split, agent 1 allocates half of its endowment

and all of its liabilities to agent 4, but none of its claims. The financial network F ′ is

presented in Table 4, as well as the payment matrix P ′ resulting from the proportional rule

p.

z′ L′ P ′ a(N ′, z′, P ′) e(N ′, z′, P ′)

6 0 0 0 0 0 0 0 0 12 12

6 6 0 0 0 6 0 0 0 9 3

6 0 0 0 0 0 0 0 0 9 9

6 0 12 12 0 0 3 3 0 6 0

Table 4: The endowments, liabilities, payment matrix, asset values, and equities resulting

from the proportional rule p in Example 5.2 for the financial network F ′ = (N ′, z′, L′).

Clearly, the proportional rule violates non-manipulability, since P12 = 9 6= 3 = P ′12+P ′42
and P13 = 9 6= 3 = P ′13+P ′43. Agent 4 has no claims and its liabilities exceed its endowment,

so is sure to default on its liabilities. On the other hand, agent 1 has no liabilities, a

positive endowment, and positive claims, so will be solvent for sure. Agent 1, who defaults

in financial network F and has e1(N, z, p(F )) = 0, has split into a solvent agent 1 and a

defaulting agent 4 in financial network F ′ with resulting equity e1(N
′, z′, p(F ′)) = 12 and

e4(N
′, z′, p(F ′)) = 0. Obviously, if a bankrupt agent is allowed to allocate all its liabilities

to a spin-off and keeps its endowment and claims to itself, it will end up with positive

equity itself and a bankrupt spin-off.

We can generalize the findings of Example 5.2 to the following impossibility result.

Theorem 5.3. There is no bankruptcy rule satisfying claims boundedness, limited liability,

priority of creditors, and non-manipulability.
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The proof of Theorem 5.3 can be found in Appendix A. The proof considers the financial

network of Example 5.2 and shows that any bankruptcy rule with the stated properties

requires agent 1 to make no payments and agent 4 to make a total of 6 units of payments in

financial network F ′. Non-manipulability can then be invoked to infer that agent 1 makes a

total of 6 units of payments in financial network F. Agent 1 therefore ends up with positive

equity in financial network F, which implies total payments equal to total liabilities of 24

units, leading to a contradiction.

6 A bankruptcy rule that violates invariance to mito-

sis

In this section, we present a bankruptcy rule that satisfies all the axioms, except invariance

to mitosis.3 In Appendix B, we present bankruptcy rules that violate exactly one of the

other axioms. This demonstrates the independence of the axioms.

We construct a bankruptcy rule that is identical to the proportional rule for all financial

networks with N different from {1, 2, 3}. In case N = {1, 2, 3}, agents 1 and 2 still use the

proportional rule to pay their liabilities, but agent 3 will pay agents 1 and 2 according to

a division rule d′ : R+ ×R2
+ → R2

+, where d′j(A3, (L31, L32)) is the amount agent 3 pays to

agent j ∈ {1, 2} if agent 3 has an asset value A3 ∈ R+ and liabilities towards agents 1 and

2 equal to (L31, L32) ∈ R2
+. The division rule d′ is defined as follows.

If L31 + L32 < A3, then define d′1(A3, (L31, L32)) = L31 and d′2(A3, (L31, L32)) = L32. If

L31 +L32 ≥ A3 and L31 = 0, then define d′1(A3, (L31, L32)) = 0 and d′2(A3, (L31, L32)) = A3.

If L31 + L32 ≥ A3 and L32 = 0, then define d′2(A3, (L31, L32)) = 0 and d′1(A3, (L31, L32)) =

A3. Finally, in case L31 + L32 ≥ A3 and (L31, L32) � 0, let d′1(A3, (L31, L32)) ≥ 0 and

d′2(A3, (L31, L32)) ≥ 0 solve

d′2(A3, (L31, L32)) =
L32(
L

L31
L32
31

)d′1(A3, (L31, L32))
L31
L32 , (6.1)

A3 = d′1(A3, (L31, L32)) + d′2(A3, (L31, L32)). (6.2)

Note that equation (6.1) implies that d′2(A3, (L31, L32)) is strictly increasing as a func-

tion of d′1(A3, (L31, L32)), hence there exists a unique solution to (6.1) and (6.2). For

fixed (L31, L32) � 0, it holds that d′1 and d′2 are strictly increasing in A3. Moreover, if

d′1(A3, (L31, L32)) = L31, then it holds that d′2(A3, (L31, L32)) = L32 by (6.1). We can use

these facts to conclude that d′1(A3, (L31, L32)) ≤ L31 and d′2(A3, (L31, L32)) ≤ L32. It is

easy to verify that the division rule d′ is continuous.

3We thank an anonymous reviewer for insisting to give this example a more prominent place in the

discussion.
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Figure 1: The division rule d′ for (L31, L32) = (20, 40), (L31, L32) = (40, 40), and

(L31, L32) = (80, 40) for all levels of the asset value A3.

The division rule d′ is illustrated in Figure 1. Note that claimant 1 gets higher than

proportional payments if L31 > L32, proportional payments if L31 = L32, and below pro-

portional payments if L31 < L32.

Let b′ : F →M be the bankruptcy rule defined as follows.

If N 6= {1, 2, 3}, then b′(N, z, L) = p(N, z, L).

If N = {1, 2, 3}, then b′(N, z, L) = P , where P solves the following system of equations:

P1j = min{Π1j(z1 +
∑

k∈N Pk1), L1j}, j ∈ N,
P2j = min{Π2j(z2 +

∑
k∈N Pk2), L2j}, j ∈ N,

P3j = d′j(z3 +
∑

k∈N Pk3, (L31, L32)), j = 1, 2,

P33 = 0.

The uniqueness of the solution P follows along the same lines as the proof for the propor-

tional rule as given in Theorem 2 of Eisenberg and Noe (2001). The bankruptcy rule b′

coincides with the proportional rule, except when N = {1, 2, 3}. In this case, when agent 3

is bankrupt, it makes higher than proportional payments to agent 1 if L31 > L32, propor-

tional payments to agent 1 if L31 = L32, and below proportional payments to agent 1 if

L31 < L32. It is easily verified that b′ satisfies the axioms of claims boundedness, limited

liability, priority of creditors, continuity, and impartiality.

The bankruptcy rule b′ does not satisfy invariance to mitosis. For instance, let F ′ =

(N ′, z′, L′) be a financial network where N ′ = {1, 2, 3, 4}, agents 1, 2, and 4 are identical,

and agent 3 is in fundamental default with positive liabilities to agents 1, 2, and 4. Assume

that there are no other positive liabilities. Since agents 1, 2, and 4 are identical, L′31 =

L′32 = L′34, and b′31(F
′) = b′32(F

′) = b′34(F
′) = z3/3. Now consider the financial network
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F = (N, z, L) with N = {1, 2, 3} that results after a merger between agents 1 and 4.

Since L31 = L′31 + L′34 = 2L′32 = 2L32, the use of the bankruptcy rule b′ results in above

proportional payments by agent 3 to agent 1 in financial network F, so b′31(F ) > 2z3/3,

and invariance to mitosis is violated.

7 Conclusion

Many real-life bankruptcy problems are characterized by network aspects, meaning that

the default of one agent can potentially snowball and lead to a chain of contagion defaults

of other agents. As a consequence, the estates to be divided are endogenously determined,

which makes the problem quite different from the typical case as studied in the axiomatic

bankruptcy literature. The most important bankruptcy rule from a practical perspective

is the proportional rule. This makes an axiomatic analysis of the proportional bankruptcy

rule in financial networks imperative.

An important aspect of actual bankruptcy problems is that entities can create spin-offs

or merge. When such activities do not generate added value, they should not influence

the payments to and from other entities and the payments between other entities. Such a

property is known as non-manipulability. An unrestricted ability to create spin-offs or form

mergers clashes with non-manipulability. Intuitively, an entity would have incentives to

create a spin-off that contains all liabilities, while keeping all assets for itself. To avoid such

unbalanced situations, we consider a much less demanding non-manipulability property,

called invariance to mitosis. In this case, it is required that the split of an entity into a

number of identical ones or mergers of identical entities does not affect payments.

We show that invariance to mitosis leads to the proportional rule when complemented

by the basic axioms of claims boundedness, limited liability, priority of creditors, continuity,

and impartiality. We show all axioms to be independent. It is possible to drop the axiom

of continuity when assuming that all liabilities are represented by rational numbers rather

than reals. Although the very weak axiom of invariance to mitosis is sufficient to obtain the

proportional rule, the proportional rule is robust to manipulations for a much wider range

of situations. Whenever all agents involved in a split remain solvent, which corresponds to

standard legal requirements, manipulation is not possible under the proportional rule.

We believe that the widespread use of the proportional rule in bankruptcy situations

across countries and over time, see Engle (2012) for a historical account of the popularity

of the proportional rule, is intimately related to the attractiveness and simplicity of the

axioms characterizing it.

There are many possibilities for further research. The proportional rule and other

bankruptcy rules in financial networks could be axiomatized using different sets of ax-
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ioms. It is far from straightforward to extend the results from claims problems to network

problems by generalizing, for instance, no advantageous reallocation (Moulin, 1987) or con-

sistency (Young, 1988). No advantageous reallocation would be attractive since it does not

require the variable population context used in this paper. The problem is that realloca-

tions can only be expected not to be advantageous if these reallocations are proportional,

similar to our axiom of invariance to mitosis. But in a fixed population context, two agents

with proportional characteristics may not exist, and the axiom loses its bite. Consistency

requires that in case one agent settles its affairs with the other agents and leaves the finan-

cial network, then an application of the rule to the reduced financial network leads to the

same payments between the agents as before. The problem is that the reduced financial

network may be outside our domain of financial networks, since agents may end up with

negative initial endowments in the reduced financial network.

A Proofs

The proof of Theorem 4.2 has two parts. In part I, we show that the proportional rule

satisfies claims boundedness, limited liability, priority of creditors, continuity, impartiality,

and invariance to mitosis. In part II, we prove that the proportional rule is the only rule

satisfying these axioms. To prove this part, an important step is the insight that the

axioms of impartiality and invariance to mitosis together imply that payments by agent i

to liabilities that are rational multiples of one another are proportional to these liabilities.

This fact, together with the other axioms, except the axiom of continuity, is then used

to show that the payment matrix satisfies equation (2.1) in case all liabilities are rational

numbers. The axiom of continuity is then invoked to extend this result to all financial

networks.

Proof of Theorem 4.2, Part I: The proportional rule p satisfies claims bound-

edness, limited liability, priority of creditors, continuity, impartiality, and in-

variance to mitosis.

Consider the system of equations (2.1).

Claims boundedness and impartiality follow immediately.

For limited liability, consider any creditor i ∈ N . If, for every j ∈ N, Lij = 0, then

ei(N, z, P ) = zi +
∑
j∈N

(Pji − Pij) = zi +
∑
j∈N

Pji > 0.

Otherwise, we have that
∑

j∈N Πij = 1, so

ei(N, z, P ) = zi +
∑
j∈N

(Pji − Pij) ≥ zi +
∑
j∈N

(Pji − Πij(zi +
∑
k∈N

Pki)) = 0,
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where the last equality follows from
∑

j∈N Πij = 1.

Next, we show priority of creditors to hold. Take any financial network F = (N, z, L) ∈
F and any agent i ∈ N such that pi(F ) < Li. Then we have that, for every j ∈ N,

pij(F ) = Πij(zi +
∑
k∈N

Pki) = Πijai(N, z, p(F )),

so using
∑

j∈N Πij = 1 we get that∑
j∈N

pij(F ) =
∑
j∈N

Πijai(N, z, p(F )) = ai(N, z, p(F )),

implying that ei(N, z, p(F )) = 0.

Next, we show continuity to hold. Let (F n)n∈N = (Nn, zn, Ln)n∈N be a sequence of

financial networks in F , which converges to the financial network F = (N, z, L) in F . We

have to show that the sequence of payment matrices (p(F n))n∈N converges to the payment

matrix p(F ). For n ∈ N, we denote the relative liability matrix of F n by Πn and the

payment matrix p(F n) by P n. The relative liability matrix of F is denoted by Π.

Without loss of generality, we can assume that, for every n ∈ N, Nn = N. Using the

boundedness of the sequence (P n)n∈N, we can assume without loss of generality that it has

a limit P ∈M(N). For every n ∈ N, for every i, j ∈ N, it holds by definition of p that

P n
ij = min{Πn

ij(z
n
i +

∑
k∈N

P n
ki), L

n
ij}.

If Lij = 0, then

P ij = lim
n→∞

P n
ij ≤ lim

n→∞
Lnij = Lij = 0 = min{Πij(zi +

∑
k∈N

P ki), Lij}.

If Lij > 0, then

P ij = lim
n→∞

P n
ij = lim

n→∞
min{Πn

ij(z
n
i +

∑
k∈N

P n
ki), L

n
ij} = min{Πij(zi +

∑
k∈N

P ki), Lij}.

We have shown that P is a solution to the system of equations (2.1) corresponding to

the financial network F . Since this solution is unique by Theorem 2 of Eisenberg and Noe

(2001), it follows that P = p(F ) as desired.

Finally, to show invariance to mitosis holds, take any financial network F = (N, z, L) ∈
F , j ∈ N, and K ⊂ N \ N . Consider the financial network F ′ = (N ′, z′, L′) with relative

liability matrix Π′ that results after the split of agent j into identical agents in {j} ∪K.
We show that the payment matrix P ′ ∈M(N ′) defined by

P ′ki = pji(F )/(|K|+ 1), k ∈ {j} ∪K, i ∈ N \ {j},
P ′ik = pij(F )/(|K|+ 1), k ∈ {j} ∪K, i ∈ N \ {j},
P ′k` = 0, k, ` ∈ {j} ∪K,
P ′hi = phi(F ), h, i ∈ N \ {j},

(A.1)
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is a solution to the system of equations (2.1) for F ′.

We have three cases.

Case 1 : L′ih = 0, i, h ∈ N ′.
It follows immediately from the definition of P ′ in (A.1) that P ′ih = 0.

Case 2 : L′ih > 0, i ∈ N \ {j}, h ∈ N ′.
It holds that

ai(N
′, z′, P ′) = z′i +

∑
`∈N ′

P ′`i = zi +
∑
`∈N

p`i(F ) = ai(N, z, p(F )).

For every h ∈ N \ {j} we have

P ′ih = pih(F ) = min{Πihai(N, z, p(F )), Lih} = min{Π′ihai(N ′, z′, P ′), L′ih}.

For every h ∈ {j} ∪K we have

P ′ih = pij(F )/(|K|+ 1) = min{Πijai(N, z, p(F )), Lij}/(|K|+ 1)

= min{Πij/(|K|+ 1)ai(N, z, p(F )), Lij/(|K|+ 1)} = min{Π′ihai(N ′, z′, P ′), L′ih}.

Case 3 : L′kh > 0, k ∈ {j} ∪K, h ∈ N \ {j}.
It holds that

ak(N
′, z′, P ′) = z′k+

∑
`∈N ′

P ′`k = zj/(|K|+1)+
∑
`∈N

p`j(F )/(|K|+1) = aj(N, z, p(F ))/(|K|+1).

We have

P ′kh = pjh(F )/(|K|+ 1) = min{Πjhaj(N, z, p(F )), Ljh}/(|K|+ 1)

= min{Πjhaj(N, z, p(F ))/(|K|+ 1), Ljh/(|K|+ 1)} = min{Π′khak(N ′, z′, P ′), L′kh},

where the last equality follows from

Πjh =
Ljh∑
`∈N Lj`

=
Ljh/(|K|+ 1)∑
`∈N Lj`/(|K|+ 1)

=
L′kh∑
`∈N ′ L

′
k`

= Π′kh.

2

To show that the axioms of claims boundedness, limited liability, priority of creditors,

continuity, impartiality, and invariance to mitosis imply the proportional rule, we will

use the following lemma, where one liability of an agent is a positive rational multiple of

another liability.

Lemma A.1. Let F = (N, z, L) ∈ F be a financial network and let i, j, k ∈ N and q, r ∈ N
be such that Lij = (q/r)Lik. Let b be a bankruptcy rule satisfying impartiality and invariance

to mitosis. Then we have bij(F ) = (q/r)bik(F ).
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We first consider the case r = 1. Let F ′ = (N ′, z′, L′) ∈ F be the financial network

where agent j is split into q identical agents j and `1, . . . , `q−1 ∈ N \N, more precisely

N ′ = N ∪ {`1, . . . , `q−1},
z′j = z′`1 = · · · = z′`q−1

= zj/q,

z′h = zh, h ∈ N \ {j},
L′jh = L′`1h = · · · = L′`q−1h

= Ljh/q, h ∈ N \ {j},
L′hj = L′h`1 = · · · = L′h`q−1

= Lhj/q, h ∈ N \ {j},
L′hh′ = 0, h, h′ ∈ {j, `1, . . . , `q−1},
L′hh′ = Lhh′ , h, h′ ∈ N \ {j}.

We have that

bij(F ) = bij(F
′) + bi`1(F

′) + · · ·+ bi`q−1(F
′) = qbik(F

′) = qbik(F ),

where the first equality follows by invariance to mitosis, the second equality by impartiality,

and the third equality again by invariance to mitosis.

We next consider the general case. Without loss of generality, we assume q < r. Let

F ′ = (N ′, z′, L′) ∈ F be the financial network where agent k is split into r identical agents

k and `1, . . . , `r−1 ∈ N \N, more precisely

N ′ = N ∪ {`1, . . . , `r−1},
z′k = z′`1 = · · · = z′`r−1

= zk/r,

z′h = zh, h ∈ N \ {k},
L′kh = L′`1h = · · · = L′`r−1h

= Lkh/r, h ∈ N \ {k},
L′hk = L′h`1 = · · · = L′h`r−1

= Lhk/r, h ∈ N \ {k},
L′hh′ = 0, i, j ∈ {k, `1, . . . , `r−1},
L′hh′ = Lhh′ , h, h′ ∈ N \ {k}.

We have that

bik(F ) = bik(F
′) + bi`1(F

′) + · · ·+ bi`r−1(F
′) = rbik(F

′) = r
q
bij(F

′) = r
q
bij(F ),

where the first equality follows by invariance to mitosis, the second equality from impar-

tiality, the third equality from the first step in the proof since L′ij = qL′ik, and the fourth

equality again by invariance to mitosis. 2

Proof of Theorem 4.2, Part II: If the bankruptcy rule b satisfies claims

boundedness, limited liability, priority of creditors, continuity, impartiality,

and invariance to mitosis, then b = p.

Let F = (N, z, L) ∈ F be a financial network and let b be a bankruptcy rule satisfying

claims boundedness, limited liability, priority of creditors, continuity, impartiality, and
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invariance to mitosis. We show that b(P ) is a solution to the system of equations (2.1).

We first assume all the liabilities to be rational numbers.

We consider two main cases.

Case 1: i, j ∈ N, Lij = 0.

By claims boundedness we have that bij(F ) ≤ 0 and from b(F ) ∈ M(N) we get that

bij(F ) = 0.

Case 2: i, j ∈ N, Lij > 0.

We have to show that

bij(F ) = min

{
Πij(zi +

∑
k∈N

bki(F ), Lij

}
.

Case 2a: zi +
∑

k∈N bki(F ) = ai(N, z, b(F )) ≥
∑

k∈N Lik.

We have to show that bij(F ) = Lij. Suppose, on the contrary, that bij(F ) 6= Lij. Then by

claims boundedness we have that

bij(F ) < Lij. (A.2)

By priority of creditors, the assumption of Case 2a, claims boundedness, and (A.2) we get

that

0 = ei(N, z, b(F )) = ai(N, z, b(F ))−
∑

k∈Nbik(F ) >
∑

k∈NLik −
∑

k∈NLik = 0, (A.3)

a contradiction. Consequently, it holds that bij(F ) = Lij.

Case 2b: zi +
∑

k∈N bki(F ) = ai(N, z, b(F )) <
∑

k∈N Lik.

We have to show that

bij(F ) = Πijai(N, z, b(F )). (A.4)

Since the liabilities are rational numbers, they are all rational multiples of one another, so

we can use Lemma A.1 to conclude that there exists a real number ri ≥ 0 such that

bik(F ) = riLik, k ∈ N. (A.5)

Thus we have to show that

ri =
ai(N, z, b(F ))∑

k∈N Lik
. (A.6)

By limited liability we have that∑
k∈N

bik(F ) ≤ ai(N, z, b(F )). (A.7)
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Suppose that∑
k∈N

bik(F ) < ai(N, z, b(F )). (A.8)

Then ei(N, z, b(F )) > 0 and priority of creditors implies that
∑

k∈N bik(F ) =
∑

k∈N Lik,

a contradiction to the assumption of Case 2b and (A.8). Consequently, (A.7) holds with

equality and by (A.5) we have that

ai(N, z, b(F )) =
∑
k∈N

bik(F ) =
∑
k∈N

riLik = ri
∑
k∈N

Lik, (A.9)

implying (A.6).

We have shown that b(F ) = p(F ) when all liabilities in F are rational numbers.

We now consider the case where the liabilities in F are real-valued. Let (F n)n∈N be a

sequence of financial networks where all liabilities are rational numbers, converging to F .

We have that

b(F ) = lim
n→∞

b(F n) = lim
n→∞

p(F n) = p(F ),

where the first equality follows from the axiom of continuity, the second follows since the

liabilities in F n are all rational numbers, and the third since p satisfies continuity by The-

orem 4.2. 2

Proof of Theorem 5.3.

Suppose b is a bankruptcy rule satisfying claims boundedness, limited liability, priority

of creditors, and non-manipulability. Let F and F ′ be the financial networks as defined in

Example 5.2. We define P = b(F ) and P ′ = b(F ′).

By claims boundedness it holds that

P ′1 = (0, 0, 0, 0) (A.10)

and

e4(N
′, z′, P ′) = z′4 +

∑
i∈N ′

P ′i4 −
∑
i∈N ′

P ′4i = 6−
∑
i∈N ′

P ′4i.

If P ′4 = L4, then evidently e4(N
′, z′, P ′) < 0, which would violate limited liability. It

therefore holds that P ′4 6= L4 and by claims boundedness that P ′4 < L4. Priority of creditors

now implies that
∑

i∈N ′ P
′
4i = 6. Claims boundedness implies P ′41 = 0.

We now apply non-manipulability to derive that

P12 = P ′12 + P ′42,

P13 = P ′13 + P ′43,
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so ∑
i∈N

P1i = P11 + P12 + P13 = 0 + P ′12 + P ′42 + P ′13 + P ′43 =
∑
i∈N

P ′1i +
∑
i∈N

P ′4i = 6, (A.11)

where the last equality comes from (A.10). It follows that

e1(N, z, P ) = z1 +
∑
i∈N

Pi1 −
∑
i∈N

P1i ≥ 12 + 0− 6 = 6 > 0,

so priority of creditors and claims boundedness yield P1 = L1 and∑
i∈N

P1i =
∑
i∈N

L1i = 24,

a contradiction to (A.11). 2

B Independence of the Axioms

In this section, we show the independence of the axioms claims boundedness, limited lia-

bility, priority of creditors, continuity, impartiality, and invariance to mitosis by providing

six examples of bankruptcy rules satisfying all the axioms except one.

Example B.1 (All except claims boundedness). Consider the following bankruptcy rule

based on the proportional rule but pretending that the liabilities are twice the actual

liabilities. Let b1 : F → M be defined by setting b1(N, z, L) = p(N, z, 2L) for every

(N, z, L) ∈ F .
Then b1 obviously does not satisfy claims boundedness.

Recall that the proportional rule p satisfies limited liability, priority of creditors, con-

tinuity, and impartiality by Theorem 4.2. It follows almost immediately that b1 satisfies

those properties. Since merging identical agents and then doubling the liability matrix

leads to the same liability matrix as doubling the liability matrix first and then merging

identical agents, invariance to mitosis for b1 follows from invariance to mitosis for p.

Example B.2 (All except limited liability). Consider the bankruptcy rule where all li-

abilities are paid. Let b2 : F → M be defined by setting b2(N, z, L) = L for every

(N, z, L) ∈ F .
Then b2 clearly does not satisfy limited liability. Moreover, b2 obviously satisfies claims

boundedness, priority of creditors, continuity, impartiality, and invariance to mitosis.

Example B.3 (All except priority of creditors). Consider the bankruptcy rule where

nothing is paid. Let b3 : F → M be defined by setting b3(N, z, L) = 0N×N for every

(N, z, L) ∈ F .
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Then b3 clearly does not satisfy priority of creditors. Moreover, b3 obviously satisfies

claims boundedness, limited liability, continuity, impartiality, and invariance to mitosis.

Example B.4 (All except impartiality). Consider the pairwise netting proportional rule

pnp. We have shown in Example 3.7 that it does not satisfy impartiality.

Claims boundedness and continuity is obviously satisfied by pnp.

To check that pnp satisfies limited liability, consider a financial network F = (N, z, L) ∈
F and any agent i ∈ N . Then

ei(N, z, pnp(F )) = zi +
∑

j∈N pnpji(F )−
∑

j∈N pnpij(F )

= zi +
∑

j∈N min{Lji, Lij}+
∑

j∈N pji(N, z, L−min{L,L>})
−
∑

j∈N min{Lij, Lji} −
∑

j∈N pij(N, z, L−min{L,L>})
= ei(N, z, p(N, z, L−min{L,L>})) ≥ 0,

(B.1)

since the proportional rule p satisfies limited liability. Thus pnp satisfies limited liability.

To verify that pnp satisfies priority of creditors, consider a financial network F =

(N, z, L) ∈ F and any agent i ∈ N such that pnpi(F ) < Li, implying that

pi(N, z, L−min{L,L>}) < Li −min{Li, (L>)i}. (B.2)

Since p satisfies priority of creditors, (B.2) implies that

ei(N, z, p(n, z, L−min{L,L>})) = 0.

Using the same argument as in (B.1), it follows that ei(N, z, pnp(F )) = 0, thus pnp satisfies

priority of creditors.

To verify that pnp satisfies invariance to mitosis, we define the bankruptcy rules b4 :

F → M and b5 : F → M by setting, for F = (N, z, L) ∈ F , b4(F ) = min{L,L>} and

b5(F ) = p(N, z, L − min{L,L>}). It holds that pnp(F ) = b4(F ) + b5(F ). We show that

both b4(F ) and b5(F ) satisfy invariance to mitosis, from which it follows that pnp satisfies

invariance to mitosis.

It follows from the definition that b4 satisfies invariance to mitosis, since merging iden-

tical agents will not change what they pay or receive in total by pairwise netting, and the

liabilities within pairs of the other agents are not affected.

To show that b5 satisfies invariance to mitosis, observe that merging identical agents

first and executing pairwise netting next leads to the same liability matrix as pairwise

netting first and merging identical agents next. Since p satisfies invariance to mitosis, it

follows that b5 satisfies invariance to mitosis.

Example B.5 (All except continuity). Let dirr be the division rule for claims problems

that gives priority to claims that belong to R \Q over claims that belong to Q and makes
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proportional payments within each of the two priority classes. So first all claimants with an

irrational claim are paid in a proportional way. If after honoring their claims in full there

is still some estate left, then we turn to the claimants with rational claims and pay them

in a proportional way. Let b6 : F →M be the bankruptcy rule defined as b6(N, z, L) = P ,

where P is the greatest solution to the following system of equations:

Pij = dirrj (ai(N, z, P ), Li), i, j ∈ N.

The fact that a greatest solution exists follows from an extension of arguments in Eisenberg

and Noe (2001) and Csóka and Herings (2018) that are based on an application of Tarski’s

fixed point theorem. The bankruptcy rule b6 obviously satisfies claims boundedness, limited

liability, priority of creditors, and impartiality.

The division rule dirr is not continuous in the vector of claims. For instance, consider

the case where one entry of a given vector of claims is a positive rational number and

another entry is a positive irrational number. For a sequence of claims vectors with only

rational entries that converges to the given vector of claims, it is only at the limit that the

irrational claim gets priority. It now follows easily that the bankruptcy rule b6 does not

satisfy continuity.

Invariance to mitosis for b6 is satisfied, since merging identical agents does not affect

the priority classes of the claims and liabilities of the merged agent. Technically, the

multiplication of a rational number by a natural number results in a rational number and

the multiplication of an irrational number by a natural number results in an irrational

number. To verify that b6 satisfies invariance to mitosis then follows the reasoning as for

p.

Example B.6 (All except invariance to mitosis). Consider the bankruptcy rule b′ defined

in Section 6, where we showed that b′ does not satisfy invariance to mitosis. It is easy to

check that b′ satisfies claims boundedness, limited liability, priority of creditors, continuity,

and impartiality.
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