The Effect of Phosphatidylinositol 4,5-bisphosphate Depletion on the Internalization of G Protein-coupled Receptors Dániel J Tóth^{1,2}, József T Tóth¹, Bernadett Tallósy¹, László Hunyady^{1,2}, Péter Várnai^{1,2} ¹Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary, ²Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary Phosphatidylinositol 4,5-bisphosphate (PtdIns P_2) has been shown to be critical for many endocytic processes including the internalization of G protein-coupled receptors (GPCRs). Our aim in this study was to compare the effect of different plasma membrane PtdIns P_2 depletion methods on GPCR internalization. We used bioluminescence resonance energy transfer (BRET) to follow the internalization of the luciferase-tagged β_2 adrenergic receptor (β_2AR) in HEK 293 cells. To reduce PtdIns P_2 levels, we applied either the rapamycin-inducible recruitment of a 5-phosphatase domain to the plasma membrane, or a truncated form of type 1 angiotensin receptor (AT₁R) which activates phospholipase C β . We determined the rate of PtdIns P_2 degradation using the PH domain of phospholipase C δ_1 which binds PtdIns P_2 specifically, and found it to be comparable for the two depletion methods. While PtdIns P_2 depletion by our rapamycin-based system inhibited the internalization of β_2AR , PtdIns P_2 depletion by AT₁R had no effect on it, measured by the same method. Our data suggest that the effect of plasma membrane $PtdInsP_2$ depletion on the internalization of β_2AR can be different depending on the method by which the lipid is degraded. Further investigation is needed to determine whether this discrepancy is due to degradation of distinct $PtdInsP_2$ pools of the plasma membrane or other factors are responsible for it. Support: OTKA K105006