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Abstract: Silent Speech Interfaces (SSI) perform articulatory-to-acoustic mapping to 

convert articulatory movement into synthesized speech. Its main goal is to aid the speech 

handicapped, or to be used as a part of a communication system operating in silence-

required environments or in those with high background noise. Although many previous 

studies addressed the speaker-dependency of SSI models, session-dependency is also an 

important issue due to the possible misalignment of the recording equipment. In particular, 

there are currently no solutions available, in the case of tongue ultrasound recordings. In 

this study, we investigate the degree of session-dependency of standard feed-forward DNN-

based models for ultrasound-based SSI systems. Besides examining the amount of training 

data required for speech synthesis parameter estimation, we also show that DNN 

adaptation can be useful for handling session dependency. Our results indicate that by 

using adaptation, less training data and training time are needed to achieve the same 

speech quality over training a new DNN from scratch. Our experiments also suggest that 

the sub-optimal cross-session behavior is caused by the misalignment of the recording 

equipment, as adapting just the lower, feature extractor layers of the neural network 

proved to be sufficient, in achieving a comparative level of performance. 
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1 Introduction 

Over the past few years, there has been significant interest in articulatory-to-

acoustic conversion research, which is often referred to as “Silent Speech 

Interfaces” (SSI) [5]. The idea is to record the soundless articulatory movement, 

and automatically generate speech from the movement information, while the 

subject is not producing any sound. Such an SSI system might be very useful for 

the speaking impaired (e.g. after a laryngectomy), and for scenarios where regular 

speech is not feasible, but information should be transmitted from the speaker (e.g. 

extremely noisy environments and/or military situations). For this automatic 

conversion task, typically electromagnetic articulography (EMA, [3, 19, 20]), 

ultrasound tongue imaging (UTI, [4, 14, 18, 28]), permanent magnetic 

articulography (PMA, [10]), surface Electromyography (sEMG, [6, 16, 22]), lip 

video [1, 7] and multimodal approaches are used [5]. Current SSI systems mostly 

apply the “direct synthesis” principle, where speech is generated without an 

intermediate step, directly from the articulatory data. This approach has the 

advantage compared to Silent Speech Recognition (SSR) that there is a 

significantly smaller delay between articulation and speech generation, and there 

are fewer error possibilities than in the case of the SSR + TTS (Text-to-Speech) 

approach, where first the articulatory movement is translated to a phoneme or 

word sequence, and then it is used to generate the speech signal via standard TTS 

techniques. 

As Deep Neural Networks (DNNs) have become dominant in more and more 

areas of speech technology, such as speech recognition [9, 13, 26], speech 

synthesis [2, 21] and language modeling [23, 24, 29], it is natural that recent 

studies have attempted to solve the ultrasound-to-speech conversion problem by 

employing deep learning, regardless of whether sEMG [17], ultrasound video [18] 

or PMA [10] is used as an input. Our team used DNNs to predict the spectral 

parameter values [4] and F0 [12] of a vocoder using UTI as articulatory input; in a 

later study we extended our method to include multi-task training [28]. 

A recent study [25] has summarized the state-of-the-art results in silent speech 

interfaces. Although there are lots of research findings on generating intelligible 

speech using EMA, UTI, PMA, sEMG, lip video and multimodal data, all the 

studies were conducted on relatively small databases and typically with just one or 

a small number of speakers [25]; while all of the articulatory tracking devices are 

obviously highly sensitive to the speaker. Another source of variance comes from 

the possible misalignment of the recording equipment. For example, for tongue-

ultrasound recordings, the probe fixing headset has to be mounted onto the 
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speaker before use, and in practice it is impossible to mount it onto exactly the 

same spot as before. This inevitably causes the recorded ultrasound video to 

become misaligned compared to a video recorded in a previous session. Therefore, 

such recordings are not directly comparable. In the following, by “session” it is 

meant that the probe fixing headset is dismounted and mounted again onto the 

speaker. 

There have already been some studies that use multi-speaker and/or multi-session 

articulatory data for SSI and SSR. Kim et al. investigated speaker-independent 

SSR using EMA and compared Procrustes matching-based articulatory 

normalization, feature-space maximum likelihood linear regression and i-vector 

experimentally on 12 healthy and two laryngectomized English speakers [19, 20]. 

The best results were achieved with a combination of the normalization 

approaches. For EMG-based recognition, a variety of signal normalization and 

model adaptation methods were investigated, as experiments revealed an across-

sessions deviation of up to 5 mm [22]. From the nine different normalization and 

adaptation procedures, sharing training data across sessions and Variance 

Normalization and Feature Space Adaptation proved to be the most useful [22]. 

Janke et al. also studied session-independent sEMG: 16 sessions of a speaker were 

analyzed and the results indicated that the MCD (Mel-Cepstral Distortion) in the 

case of cross-session conversion is only slightly worse compared to the 500 

sentence session-dependent result from the same speaker, confirming that sEMG 

is robust even with minor changes in the electrode placement or other influence 

[16]. Wand et al. utilized domain-adversarial DNN training for session-

independent EMG-based speech recognition [30]. 

Unfortunately, for ultrasound-based SSI, there are no methods currently available 

for the alignment / adaptation / normalization of articulatory data recorded in 

different sessions or with different speakers. All the above-mentioned studies [16, 

20, 22, 30] used EMA or sEMG for tracking articulatory movements; and 

although e.g. Maier-Hein et al., state that even slight changes in electrode 

positions affect the myoelectric signal [22], Janke et al. found that their sEMG-

based framework employing GMMs virtually behaves session-insensitively 

without any form of adaptation [16]. In the ultrasound-based SSI systems, 

however, where slight changes in probe positioning can cause shifts and rotations 

in the image used as input (for an example, see Fig. 1), might not turn out to be 

ideal. 

To this end, in this study we focus on the session dependency of the ultrasound-

based direct speech synthesis process. Although we also consider speaker 

dependency to be a significant issue, here we will just concentrate on session 

dependency. Notice that using recordings from different speakers inevitably 

means using data from different sessions as well, but without the option of 

identifying and analyzing the negative effect of using different speaker data (e.g. 

F0, speaking style, oral cavity structure) and the effect of slight changes in the 

position of the recording equipment. To separate the effect from the two possible 
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error sources, in this study we shall focus on the session dependency of the 

ultrasound-based direct speech synthesis process. We will demonstrate 

experimentally, that a simple, yet, efficient, standard feed-forward DNN-based 

system displays clear signs of session dependency, to such an extent, that the 

synthesized utterances are practically unintelligible. Furthermore, we propose a 

simple session adaptation method, and show that it is more efficient than training 

a neural network from scratch using the adaptation data. We shall also examine 

the amount of training data required for successful DNN model adaptation. Of 

course, the applicability of the proposed approach for session adaptation (i.e. 

DNN model adaptation) is not necessarily limited to the UTI case, but it may be of 

interest for a broader audience as well. 

2 Methods 

2.1 Data Acquisition 

A Hungarian female subject with normal speaking abilities was recorded while 

reading sentences aloud. Tongue movement was recorded in midsagittal 

orientation using the “Micro” ultrasound system of Articulate Instruments Ltd. at 

82 fps. The speech signal was recorded with a Beyerdynamic TG H56c tan 

omnidirectional condenser microphone. The ultrasound data and the audio signals 

were synchronized using the tools provided by Articulate Instruments Ltd. (For 

more details, see our previous studies [4, 12, 28].) In our current experiments, the 

scanline data of the ultrasound recording was used. The original ultrasound 

images of 64×842 pixels were resized to 64×106 by bicubic interpolation, leading 

to 6784 features per time frame. To create the speech synthesis targets, the speech 

recordings (resampled to 22050 Hz) were analyzed using an MGLSA vocoder 

[15] at a frame shift of 1 / (82 fps), which resulted in F0, energy and 24-order 

spectral (MGC-LSP) features [27]. The vocoder spectral parameters (excluding 

F0) served as the DNN training targets. 

Our data was collected in four sessions. The headset and the ultrasound probe 

were fitted each time using the same procedure; however, it cannot be guaranteed 

that the orientation of the probe remained “exactly” the same, across each session. 

In the first session we recorded 200 individual sentences (about 15 minutes in 

total), while in sessions two, three and four, we recorded 50 different sentences 

(less than 4 minutes each). In addition, in each session, the subject read the 9-

sentence long Hungarian version of the short tale `The North Wind and the Sun'. 

We used the independent sentences for training purposes, while the utterances of 

“The North Wind and the Sun” were used as test sets. For more information about 

the four sessions, see Table 1. 
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Table 1 

Key properties of the recordings used in our experiments; duration is expressed in terms of min:sec 

 

Recording 

session 

Individual Sentences 

(Train) 

North Wind & Sun 

(Test) 

Count Duration Count Duration 

Session #1 200 14:48 9 0:50 

Session #2   50 3:44 9 0:49 

Session #3   50 3:53 9 0:47 

Session #4   50 3:41 9 0:48 

Fig. 1 shows sample images taken from the four sessions with similar tongue 

positions. Although all four images are similar, there are visible positioning 

differences among them, which might lead a DNN trained on the first session to 

perform sub-optimally on the other sessions. We will demonstrate this sub-

optimality experimentally in Section 3, and we will describe how we applied DNN 

adaptation to handle this issue in Section 4. 

 

Figure 1 

Sample ultrasound tongue images from the four sessions used. Note that all the images belong to the 

same speaker 

2.2 DNN Parameters 

We trained feed-forward, fully-connected DNNs with 5 hidden layers, each 

hidden layer consisting of 1000 ReLU neurons. The input neurons corresponded 

to the image pixels, while the output layer contained one linear neuron for each 

MGC-LSP feature and one for the gain (25 output parameters overall). To assist 

prediction, we presented a time slice of the ultrasound video (five consecutive 

frames) as input to the DNN, since in our previous studies [4, 12, 28] we found 

this technique to be beneficial. The input images consisted of 6784 pixels, 

meaning that the network had a total of 33920 input neurons. 
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2.3 Evaluation 

As estimating the parameters of the synthesizer is a simple regression problem, the 

most suitable evaluation metric is the Pearson correlation; or, in our case, as we 

have 25 speech synthesis parameters to predict, we will take the mean of the 25 

correlation values. In our earlier studies, [28], we also used this evaluation metric. 

In our last experiments, however, in order to determine which proposed system is 

closer to natural speech, we also conducted an online MUSHRA (MUlti-Stimulus 

test with Hidden Reference and Anchor) listening test [31]. The advantage of 

MUSHRA is that it allows the evaluation of multiple samples in a single trial 

without breaking the task into many pairwise comparisons. Our aim was to 

compare the natural sentences with the synthesized sentences of the baseline, the 

proposed approaches (various session adaptation variants) and a benchmark 

system (the latter being cross-session synthesis without adaptation). In the test, the 

listeners had to rate the naturalness of each stimulus in a randomized order relative 

to the reference (which was the natural sentence), from 0 (very unnatural) to 100 

(very natural). We chose sentences from 4-layer adaptation and full training, and 

tested two adaptation data sizes (20 and 50 sentences). Altogether 96 utterances 

were included in the test (12 sentences x 8 variants). In the MUSHRA evaluation, 

each configuration was evaluated by 12 native Hungarian speakers with normal 

hearing abilities. 

3 Results with Single-Session DNN Training 

3.1 The Effect of the Amount of Training Data 

In our first experiments, we examined how the amount of training data affects the 

performance of the DNN model. For this, we trained our neural network on the 

recordings of the same session that we used for testing. We used N = 1, 5, 10, 20 

and 50 sentences for training, and evaluated our models on the 9 sentences of `The 

North Wind and the Sun' from the same session. Since for Session #1 we had 

more utterances in the training data, there we also experimented with N = 100, 150 

and 200. 

The mean correlation values obtained this way have been plotted in Fig. 2. 

Clearly, the correlation scores vary to a great extent among the different sessions, 

though at this point we did not perform any cross-session experiments: DNN 

training and evaluation were performed by using recordings taken from the same 

session. We can also see that, by increasing the number of training sentences, the 

correlation values increased, as expected. Also note that, when we used more than 

N = 100 sentences (roughly 7 minutes of recordings), there is a slight 
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improvement only, although we had only one session with enough training data to 

confirm this. 

 

Figure 2 

Average correlation values obtained for the four sessions as a function of the number of sentences used 

for training 

Examining our sample images (see Fig. 1), it is hard to see any difference among 

the sessions which might explain the significant difference in the average 

correlation scores observed in Fig. 2. Perhaps the only exception is the large dark 

area in the posterior region (on the left hand side of the image) in session #4, 

where not only the hyoid bone blocked the ultrasound waves (as it did on the other 

images), but also there was probably insufficient amount of gel between the 

transducer and the skin, limiting the visibility in that particular direction. 

However, for session #2 we got similarly low correlation scores, while the 

ultrasound video contained no such artifact. Since we fitted the recording 

equipment following the same procedure for each session, these results alone, in 

our opinion, indicate that UTI-based SSI systems are session-sensitive even 

without using data taken from multiple speakers. 

3.2 Cross-Session Results 

In our next experiment, we sought to examine how the misalignment of input 

images affects the performance of the neural network. To this end, we trained our 

DNN on all the 200 sentences of the first session, and evaluated it on the 

utterances of `The North Wind and the Sun' recorded in the remaining three 

sessions. 
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Table 2 

Average correlation scores obtained for the recordings of `The North Wind and the Sun' depending on 

the DNN training data 

Training Data Average correlation for sessions 

Session Size #2 #3 #4 Avg. 

Session #1 200 0.075 0.100 0.143 0.106 

Same as test 50 0.501 0.616 0.418 0.512 

The first row of Table 2 shows the average correlation values obtained this way. 

We can see that the DNN predictions are practically worthless, as the average 

Pearson's correlation values fall between 0.075 and 0.143. (We also confirmed the 

low quality of these predictions by listening tests, and found the synthesized 

'utterances' unintelligible.) In contrast (see the second row), using just 50 

sentences for DNN training, but from the same session, we get average correlation 

scores in the range 0.418-0.616. This huge difference, in our opinion, also 

demonstrates that ultrasound-based DNN SSI approaches are quite sensitive to 

misalignments of the ultrasound images, even if these come from the same 

speaker, and this issue has to be handled if we intend to develop SSI systems for 

practical use. 

4 DNN Adaptation 

In the previous section we showed experimentally that DNN models trained on the 

recordings of one session cannot be utilized to predict speech synthesis parameters 

in another session, even when both sessions were recorded with the same speaker. 

Next, we will show that the issue of session-dependency can be handled 

effectively via the adaptation of the DNN model trained on data from a different 

session. In practice, adaptation means that we train the DNN further, using 

recordings taken from the actual session. For the general scheme of the proposed 

approach, see Fig. 3. Of course, to ease the use of our SSI equipment, this 

adaptation material has to be as short as possible, hence we simultaneously aim 

for high-quality spectral parameter estimation while keeping the amount of 

adaptation data to a minimum. To this end, we performed DNN adaptation 

experiments using N = 1, 5, 10, 20 and 50 sentences from each session; we used 

once again the 9 sentences of `The North Wind and the Sun' of the actual session 

for evaluation purposes. 

It is well known (e.g. [8, 11]) that the lower layers of a deep neural network are 

responsible for low-level feature extraction, while the higher layers perform more 

abstract and more task-dependent functions. As in our case session dependency 

appears as a change in the input image, while the task remains the same (i.e. to 

predict the spectral representation of the speech of the same speaker), it seems 
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reasonable to expect that it might be sufficient to train just the lower layers of the 

network instead of adapting all the weights. This way, we might achieve the same 

level of accuracy with faster training, or obtain better estimates [11]. Since in our 

experiments we employed DNNs with five hidden layers, we have six choices of 

which layers to adapt (i.e. only the weights between the input layer and the first 

hidden layer, adapt the weights among the input layer and the first two hidden 

layers, etc.). To test this, we also experimented with adapting just the first two and 

first four layers of the network. Furthermore, as a comparison, we also tried 

training a DNN from scratch using N = 1, 5, …, 50 sentences on data taken from 

the same session as our baselines. 

 

Figure 3 

The general workflow of the proposed DNN SSI model adaptation procedure 

4.1 DNN Adaptation Results 

4.1.1 Correlation Values 

Fig. 4 shows the average correlation values measured, as a function of the number 

of training sentences. The scores are averaged out for the three sessions (i.e. 

Session #2, #3 and #4); the error bars represent minimal and maximal values. We 

can see that, in general, if we used more sentences either for DNN training or for 

adaptation, the accuracy of the predictions improved. It is also quite apparent that 

when we have only a few sentences taken from the current session, adaptation 

leads to more accurate predictions than training a randomly initialized DNN. For 

the N = 20 and N = 50 cases, however, full DNN training resulted only in slightly 

lower correlation values than adaptation did. Still, even when we have a higher 

number of sentences, we can state that by using DNN adaptation, fewer sentences 

are needed to achieve the same performance as with full DNN training. For 

example, adapting 3 layers with 10 utterances (about 20-25 seconds) of training 

data from the given session leads to roughly the same averaged correlation score 

that can be achieved by using 20 sentences and full DNN training. 
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Figure 4 

Average correlation scores via full DNN training and DNN adaptation as a function of the number of 

sentences used 

Regarding the number of layers adapted, there are only slight differences in DNN 

performance. Although adapting only one layer (i.e. the weights between the input 

and the first hidden layer) led to the lowest correlation value in each case, the 

remaining five variations proved to be quite similar, and usually adapting the first 

four layers (for N = 10, three layers), proved to be optimal. 

Inspecting the minimal and maximal correlation scores for each configuration, 

these values usually behaved just like the mean correlation scores did: adapting 

only one layer resulted in a suboptimal performance, but when we adapted at least 

two layers, there were no large differences. However, it is quite apparent that for 

the case N = 50 and adapting at least two layers, the minimal correlation value 

greatly exceeded that of full training, while the maximal scores appeared to be 

roughly the same. For an SSI system used in everyday practice, where we have no 

guarantee of the precision of the current equipment positioning, the minimal 

performance of the (adapted or newly trained) DNN model might be just as 

important as the average one; and in this respect, DNN adaptation performed 

much better than full DNN training did. 

Table 3 lists the notable correlation scores for all three sessions and their average. 

These numeric values confirm our previous findings; namely, the average 

performance of full DNN training always falls closer to the best correlation score 

of DNN adaptation using fewer sentences than using the same amount of training 

data. Furthermore, for the case N = 50, full DNN training led to a correlation value 

of 0.418 as the worst score, while for adaptation it is never lower than 0.475. 
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Table 3 

Average correlation scores obtained for `The North Wind and the Sun' depending on the amount of 

DNN adaptation data 

No. of Train 

Sentences 

Adapted 

Layers 

Average correlation for sessions 

#2 #3 #4 Avg. 

10 

Full training 0.300 0.472 0.319 0.364 

Input to 2nd 0.471 0.470 0.392 0.444 

Input to 3rd 0.462 0.527 0.402 0.464 

All layers 0.481 0.501 0.356 0.446 

20 

Full training 0.426 0.573 0.411 0.470 

Input to 2nd 0.467 0.582 0.391 0.480 

Input to 3rd 0.476 0.577 0.429 0.494 

All layers 0.463 0.585 0.401 0.483 

50 

Full training 0.501 0.616 0.418 0.512 

Input to 2nd 0.475 0.604 0.482 0.520 

Input to 3rd 0.475 0.624 0.495 0.531 

All layers 0.484 0.611 0.501 0.532 

 

Figure 5 

Mean naturalness scores of the MUSHRA listening test; error bars show the 95% confidence intervals 

4.1.2 MUSHRA Listening Tests 

Fig. 5 shows the results obtained from the MUSHRA listening tests. (The samples 

used in the test can be found at http://smartlab.tmit.bme.hu/ 

actapol2019_ssi_session.) The naturalness of the synthesized utterances turned out 

to be somewhat low in each case, probably due to the small size of the training 

data (i.e. 20 or 50 sentences overall, equivalent to about 90 seconds and less than 

4 minutes of duration, respectively). Still, the effect of the number of sentences 

used for training or adaptation is clearly visible: using no adaptation led to 

unintelligible speech (a mean naturalness score of only 1.19), while using 20 

http://smartlab.tmit.bme.hu/%0bactapol2019_ssi_session
http://smartlab.tmit.bme.hu/%0bactapol2019_ssi_session
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sentences resulted in naturalness scores between 19.15 and 20.68, which increased 

to 22.61-22.77 for the case N = 50. The listening tests also reinforced our previous 

findings that for N = 20, DNN adaptation is a better approach, while for N = 50 

there is no observable difference among the output of the full DNN training and 

the DNN adaptation techniques. According to the Mann-Whitney-Wilcoxon 

ranksum test with a 95% confidence level, differences between variants c) to h) 

(i.e. the tested models with N = 20 and N = 50) were not statistically significant. 

 

Figure 6 

Average wall clock training times as a function of the number of sentences used for training 

4.1.3 DNN Training Times 

Fig. 6 shows the (wall clock) DNN training and DNN adaptation times expressed 

in seconds (averaged out for the three sessions), measured on an Intel i7 4.2 GHz 

PC with 32 GB RAM and an NVidia Titan X video card. From these values, it is 

clear that the DNN adaptation time is primarily affected by the size of the 

adaptation data: for N = 10, the average values fell between 3 and 5 seconds, 

which increased to 8-15 seconds for N = 20 and to 30-37 seconds for N = 50. In 

contrast, full DNN training took 17 seconds for N = 20 and 54 seconds for N = 50. 

From these values, however, we cannot confirm that adapting fewer layers leads 

to lower execution times; in our experience, DNN adaptation time is primarily 

affected by the size of the adaptation data. Full DNN training led to by far the 

highest training time in the N = 50 case, while for N = 20 its training time is much 

higher than those of most adaptation configurations. This indicates that DNN 

adaptation has a further advantage: it allows quicker convergence than training a 

DNN with random initial weights. Specifically, for the case N = 50, DNN 

adaptation required about two-thirds the time compared to DNN training from 

scratch did; and adapting a DNN with 20 sentences needed far less training time 

(17-29%) to achieve the same performance as full DNN training did with N = 50. 
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Overall, from these results, DNN adaptation with 20 sentences seems to be the 

best approach, since it requires significantly less training material than full DNN 

training in the case N = 50, and it was also much quicker to train. Furthermore, it 

led to a higher minimal correlation value, while the average correlation and 

MUSHRA naturalness scores appeared to be quite similar, and the difference was 

not statistically significant. 

Conclusions 

In this study, we focused on the session dependency of the ultrasound-based direct 

speech synthesis process, during articulatory-to-acoustic mapping. Similarly to 

studies using sEMG [16, 22] and EMA [19, 20], we investigated how the 

reattachment of the articulatory equipment affects the final output. For the first 

time in the scientific community, we used ultrasound tongue imaging for this 

purpose, building on our earlier single-session studies [4, 12, 28]. We expected 

that reattaching the probe would greatly diminish the accuracy of a previously 

trained system. 

We found that our hypothesis was supported by the following results: 

1) The synthesized speech was unintelligible if the network was trained on 

one session and evaluated on another session as-is (without the 

adaptation of the network weights) 

2) We found large differences even among the performance of DNN models 

used within the same session, depending on the actual session 

3) To create a DNN model for the actual session, DNN adaptation 

performed better than full DNN training did during UTI-to-spectral 

feature conversion 

Furthermore, DNN adaptation had the advantage of allowing quicker convergence 

than random DNN weight initialization did. 

The findings of our experiments are an important step within the articulatory-to-

acoustic research area, as the simple-yet-effective adaptation method proposed 

herein, should contribute to the development of practical and efficient Silent 

Speech Interfaces. For example, a DNN adaptation with 20 sentences takes 

roughly 15 seconds on a current computer (such as the Intel i7 4.2 GHz PC used in 

our experiments), after which, speech can be synthesized directly from ultrasound-

based articulatory data. However, the current study was conducted on regular 

speech and it is a future task to experiment with real silent (mouthed) speech. In 

the future we also plan to investigate the speaker-dependency of the ultrasound 

tongue imaging. 
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