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Abstract: Observing wetland areas and monitoring changes are crucial to understand hydrological
and ecological processes. Sedimentation-induced vegetation spread is a typical process in the
succession of lakes endangering these habitats. We aimed to survey the tendencies of vegetation
spread of a Hungarian lake using satellite images, and to develop a method to identify the areas of
risk. Accordingly, we performed a 33-year long vegetation spread monitoring survey. We used the
Normalized Difference Vegetation Index (NDVI) and the Modified Normalized Difference Water Index
(MNDWI) to assess vegetation and open water characteristics of the basins. We used these spectral
indices to evaluate sedimentation risk of water basins combined with the fact that the most abundant
plant species of the basins was the water caltrop (Trapa natans) indicating shallow water. We proposed a
12-scale Level of Sedimentation Risk Index (LoSRI) composed from vegetation cover data derived from
satellite images to determine sedimentation risk within any given water basin. We validated our results
with average water basin water depth values, which showed an r = 0.6 (p < 0.05) correlation. We also
pointed on the most endangered locations of these sedimentation-threatened areas, which can provide
crucial information for management planning of water directorates and management organizations.

Keywords: remote sensing; sedimentation; spectral indices; time-series analyses; vegetation change;
wetland monitoring

1. Introduction

Remotely sensed (RS) images provide efficient tools for rapid data collection, can be deployed
across extensive areas, and can also be effectively used to monitor changes in land cover and
vegetation [1–5]. Satellites produce consistent data over long periods of time, e.g., Landsat and
Satellite Pour l’Observation de la Terre (SPOT) [6–8]. The revisiting time of Landsat is 16 days,
while Sentinel-2A and 2B together ensure 5 days of revisiting time; furthermore, a combination
of Landsat and Sentinel data is possible and can be used in time series depending on the cloud
cover [9,10]. Moderate Resolution Imaging Spectroradiometer (MODIS) or Planet Labs products
provide daily acquisition [11–13]. Increased volumes, quality, and data coverage allow us to develop a
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better understanding of the natural and human factors that might affect land cover dynamics [14,15].
Although global-scale observations provide valuable results on land cover dynamics, studies specific
to sites that have unique thematic focus will also be essential, if the aim is to support spatial planners,
land managers, authorities, and decision makers.

Lakes and wetlands serve as important habitats for conservation. They have a considerable role in
biodiversity conservation and also provide a huge variety of ecosystem services for all of society [16–18].
Because of huge losses over past centuries, as well as the sensitivity of these sites to eutrophication,
and changes in land use and climate, wetlands are amongst the most endangered habitats globally.
In addition to monitoring changes in their species composition, up-to-date records of land cover
changes, as well as water quality and quantity (e.g., due to evaporation, precipitation, sedimentation,
agricultural pollution, or tourism) are also essential for their effective conservation [19–23]. Attributes
of a particular water basin can considerably influence its conservation potential and responses for
disturbances; accordingly, large and deep basins, small and shallow basins, or oxbows all behave
differently and have unique characteristics.

Lakes in Hungary are under threat for several reasons. On the one hand, aridity rates are increasing
due to global warming [24,25], and a large number of smaller lakes suffer from scarce water supply
and even can run dry at the end of the summer [26]. Although larger lakes can buffer the negative
effects related to the arid climate, other factors also threaten these habitats, including the infiltration of
nutrients and pollutants. Depending on the available nutrient surplus, lake succession and the spread
of vegetation can accelerate eutrophication [27,28]; such a situation can be observed at Lake Fertő and
Lake Kis-Balaton, which are already in a eutrophic state [29].

Deposited sediments can be the source of several problems in water management, including
aggradation of floodplains [30,31] and accelerated sedimentation of lakes [32]. Monitoring lake
sedimentation can be performed in several ways: analyzing sediment cores using radionuclides,
heavy metals [33], or bioindicators [34,35]. These investigations provide valuable information on
sedimentation but lack the spatial characteristic; only some points are sampled and the results are
extrapolated. A direct spatial method involves mapping the bottom of lakes, which can be conducted
using probe rods [36], sonar [37], or bathymetric LiDAR (Light Detection and Ranging) [38]. However,
all these methods have limitations. Probe rod-based assessments are labor-intensive, and the number
and distribution of surveyed points are related to the level of elaboration of the resulting map. Sonar
is an efficient tool, but, together with the probe rod, its limitation is the approachability of lakesides
(especially where water is shallow, i.e., <0.5 m, and the vegetation is dense); furthermore, sonar works
well in deeper water. Bathymetric LiDAR can be used only when the water body’s turbidity is low and
there is no vegetation cover, otherwise, emitted beams are adsorbed by suspended particles and are
not reflected; thus, there is no recorded echo or the echo is due to vegetation. The common limitation
of all techniques is uncertainty despite the high level of expenditure involved; furthermore, if the
desired outcome is monitoring, assessment should be repeated regularly. A possible solution can be
the application of optical remote sensing.

Satellite-based remote sensing using freely available data (Landsat, Sentinel) can be used to trace
several fields of land cover change [39,40]. In addition to the original bands of the satellites, the use
of spectral indices could enable more efficient monitoring [41–43]. Although spectral indices are
well-known and have been widely utilized since the 1970s, and can help to reveal changes in open
water area fluctuation, as well as the characteristics of water and vegetation, comprehensive long-term
studies have so far not been reported for the Lake Tisza area. Moreover, such studies in general are
scarce considering the large lakes of the world. In previous research, long-term lake monitoring has
been achieved using satellite images, but the main goal of these projects was to evaluate the water level
of Lake Victoria [44] and as the drought tendencies of a basin Salt Lake in Turkey [45]. Studies using
MODIS products usually have relatively low resolution (250 or 500 m [46,47]) or range across shorter
time periods using extremely high-resolution images [48]. Although Lake Tisza is endangered by the
large amount of sediment carried by the Tisza River, there has been no comprehensive investigation to
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identify the most endangered areas. Furthermore, no previous studies have emphasized the dynamics
of vegetation at the water surface over long time periods in the Lake Tisza area; nevertheless, vegetation
spread can be a good indicator. We therefore conducted a long-term analysis using spectral indices
(the Normalized Difference Vegetation Index (NDVI) and the Modified Normalized Difference Water
Index (MNDWI)) sourced from RS Landsat data.

Lake Tisza (Figure 1) is an artificial water body in Hungary. The water level of the lake is regulated,
and sedimentation and vegetation spread represent a continuous issue: differences in vegetation
coverage and water depth are seen at more-or-less the same water level. The aims of this research were
to reveal: (i) whether there any temporal trends in the spread of aquatic vegetation; and (ii) which
water basin types exhibit the fastest succession rate. We also aimed to develop a method to determine
the risk of vegetation spread by water basins of the lake using satellite images.

2. Materials and Methods

2.1. Study Area

The study area for this research was Lake Tisza, the second largest lake in Hungary (Figure 1).
This lake is artificial, established in 1973 to facilitate flood control. There is a dam at Kisköre that
is responsible for managing the water level. The area of the lake is 127 km2 and includes several
islands (43 km2) that fragment the water surface into partly separated water sub-basins. The largest
component of this lake consists of flooded former ploughed lands and orchards, and several flooded
oxbow lakes and deeper depressions are also present, which means that average water depth is just
1.3 m; the deepest point of the lake is 17 m within a former oxbow. The water level is artificially
regulated, depending partly on the discharge of the Tisza River (the lake is a buffer for floods, and thus
can mitigate the water level in the lower river section), and partly on the demand for irrigation and
nature conservation. Increasing the water operation level by 150 cm was planned in three stages
(1973, 1980, and 1995), but the third stage was cancelled due to concerns about the stability of affected
dykes and consideration of the additional disadvantages (e.g., raised groundwater and diminishing
valuable habitats). The raising of the water level is undertaken gradually during each year. Generally,
the water level is 2 m lower in the winter season (when gates are opened at the dam), and filling begins
in February and ends at the middle of April. During this period, flood management results in the
lake reaching its operation level and, thereafter, the water level is kept more or less stagnant (725 cm
at Kisköre). According to operational requirements, the water level has been changed three times
over the course of the period examined in this study: between 1984 and 1985 (675 cm; began in 1980
and ended in 1985); between 1986 and 2001 (727 cm); and between 2002 and 2017 (735 cm) (Figure 2).
KÖTIVIZIG (Water Directorate of Central Tisza Region) provided the water level data used in this
research. The zero points of the water level reported herein were collected at ‘Kisköre felső’ at 81.32 m
above sea level. This is the southernmost point of Lake Tisza at the Kisköre Dam; the data presented
here can therefore describe water level conditions across the whole lake.

Floodplain forests, herbaceous and aquatic vegetation, and open waterbodies [49,50] are the most
important land cover types of Lake Tisza. In spite of its artificial origin, Lake Tisza and surroundings
comprises one of the most important wetlands in Hungary because it provides several semi-natural
habitats for various species. This lake is a UNESCO World Heritage site as part of the Hortobágy
National Park, a Ramsar Site, and part of the Natura 2000 Network (Tisza-tó Special Areas of
Conservation). Long-duration floods leading to high water levels at the beginning of the vegetation
period hinder the sprouting of plants; this is most obvious in the case of aquatic vegetation, but also
affects other herbaceous plants and means that an open water surface will appear in commonly
vegetated areas [51,52].
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Figure 1. Map of Lake Tisza and sub-basins within the lake (numbers denote basins as in Table 1; 
basemap: Landsat 8 imagery). 

Figure 1. Map of Lake Tisza and sub-basins within the lake (numbers denote basins as in Table 1;
basemap: Landsat 8 imagery).
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the dominant species in the lake; this plant floats on the water surface and has roots that extend deep 
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Figure 2. Mean water levels for July each year between 1984 and 2017. (The water level zero points
reported here were collected at ‘Kisköre felső’ at 81.32 m above sea level).

A number of factors endanger the persistence of Lake Tisza. The most significant issue is
sedimentation, a consequence of high suspended sediment volumes. The presence of Kisköre
dam means that suspended materials settle in the water basin and, thus, water depth decreases and
provides more possibilities for the establishment of vegetation. Water caltrop (Trapa natans) is one
of the dominant species in the lake; this plant floats on the water surface and has roots that extend
deep under water. This plant is a protected and disappearing species across Europe [53] but in this
lake it poses a threat to biodiversity and accelerates sedimentation. Water caltrop abundance also
depends on water depth; when depth is greater than 2 m, plant density is suppressed but in shallow
water this species covers large water surface areas. Macrophyte patchiness also affects hydraulics
and, consequently, budgets of macroscale suspended particulate matter [54]. Thus, in shallow aquatic
habitats where macrophytes can become established, changes in near-bed velocity will influence
sediment transport and, as a result, lake bathymetry. These biogeomorphic feedback loops are
important for macrophyte development [55].

Officially, the lake has 4 basins. In this study, one, Abádszalók basin, was completely omitted as
it can be found in other paths of the Landsat imaging. However, as we intended to investigate local
processes, we divided the remaining 3 basins into 10 units (ignoring the official nomenclature) based
on physical properties rather than extent (i.e., larger flooded ploughlands—no. 1, 2, 5; or former oxbow
lakes—no. 7, 8, 10). This approach ensured a more detailed spatial analysis, which had more relevance
to the real circumstances as vegetation spread poses different risks in different basins (Figure 1; Table 1).
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Table 1. Basin types and descriptions.

Basin ID Area (ha) Type Description

1 1709 Large area with a high
open-water ratio

Basin has a large open water surface, a
high-water level with small vegetation cover

2 1136 Large area with a high
open-water ratio

Basin has a large open water surface, a
high-water level and coastal areas have moderate
vegetation cover

3 590 Medium area with high
vegetation cover

Basin has nearly 100% vegetation cover in most
years, open water is dominant along a deeper
ancient meander in the middle

4 274
Medium area with
permanent open water
coverage

Basin has a deeper long coastal part with a high
open-water ratio and high vegetation cover

5 658 Large area with a high
open-water ratio

Basin has a large open water surface and
high-water level. Coastal areas have moderate
vegetation cover

6 157 Medium area with high
vegetation cover

Basin has very high vegetation cover in most
years and open water is dominant in the northern
part of the basin

7 82 Small area with high
vegetation cover

Basin has nearly 100% vegetation cover in most
years

8 55
Small area with
permanent open water
coverage

Basin was an ancient meander with deep water
level and a high open-water ratio with small
vegetation cover in coastal areas

9 69
Small area with
permanent open water
coverage

Basin was part of an ancient meander with deep
water level and high open-water ratio in the
central part. There is high vegetation cover in
coastal areas.

10 31
Small area with
permanent open water
coverage

Basin was an ancient meander with deep water
level and high open-water ratio with small
vegetation cover in coastal areas

2.2. RS Images and Auxiliary Data

We used RS images from different Landsat sensors to observe land cover change across Lake Tisza,
specifically Landsat 4, 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+),
and Landsat 8 Operational Land Imager (OLI). All sensors have 30 m spatial resolution and similar
spectral ranges, so we were able to compare images and results. We downloaded surface reflectance
images (Level 2; L2) and NDVI composites (derived from L2 surface reflectance data) from the USGS
ESPA ordering interface [56] and we calculated MNDWI composites from L2-level atmospherically
corrected surface reflectance bands. KÖTIVIZIG (Water Directorate of Central Tisza Region) provided
a digital bathymetry model which was used in the validation phase to confirm results. The model is a
result of a 2-week field survey campaign in 2017, conducted with sonar devices mounted on boats,
and discrete point measurements with Real-Time Kinematic Global Positioning System (RTK GPS).
Then, the final model was generated with spatial interpolation of the data collected with the sonar
devices and GPS (natural neighbor algorithm).

2.3. Data Pre-Processing

We initially determined the most appropriate period for time series analysis. This necessitated
finding a year with the largest number of cloud-free images covering the vegetation period. We therefore
chose 2015 for analysis as six images were available with the most favorable characteristics between
May and September. We also sought the densest vegetation where the variance of NDVI values were
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smallest, i.e., the interquartile ranges of NDVI values showed the least variation, when restricted to the
vegetated area using MNDWI <0 to exclude open water surfaces. Thus, we were able to focus on the
vegetation density. On this basis, and taking into account revisiting times of Landsat satellites, we took
into consideration all of the spatially and temporally available imagery. This resulted in 20 cloud-free
images (based on visual selection and in case of Landsat 8 using the Cirrus band) captured between
1984 and 2017 that were used in this study (Figure 3, Table 2).
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Modified Normalized Difference Water Index; POW, Percentage of Open Water).

Table 2. Image acquisition dates.

One-Year Vegetation Period Long-Term Change Observation

Sensor Acquisition Date Sensor Acquisition Date

Landsat 8 OLI 2015.05.18 Landsat 5 TM 1984.07.31
Landsat 8 OLI 2015.06.03 Landsat 5 TM 1985.08.03
Landsat 8 OLI 2015.07.05 Landsat 5 TM 1986.07.30
Landsat 8 OLI 2015.07.21 Landsat 5 TM 1987.08.09
Landsat 8 OLI 2015.08.06 Landsat 4 TM 1992.07.29
Landsat 8 OLI 2015.09.23 Landsat 5 TM 1994.08.05

Landsat 7 ETM+ 2000.08.04
Landsat 7 ETM+ 2001.07.31
Landsat 5 TM 2003.08.05
Landsat 5 TM 2004.08.07
Landsat 5 TM 2005.08.10
Landsat 5 TM 2006.07.28
Landsat 5 TM 2007.07.31
Landsat 5 TM 2009.07.29
Landsat 5 TM 2010.08.01
Landsat 5 TM 2011.08.11
Landsat 8 OLI 2014.08.03
Landsat 8 OLI 2015.08.06
Landsat 8 OLI 2016.08.08
Landsat 8 OLI 2017.08.11
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2.4. Data Processing

We restricted our analysis to the lake area regardless of aquatic vegetation cover, excluding
terrestrial areas, and divided it into 10 water basins taking into account natural and artificial elements
(Figure 1) using high resolution aerial images and topographic maps. The separation enabled us to
reveal trends and the spatial distribution of changes in vegetation succession.

We utilized spectral indices to monitor aquatic vegetation spread over the open water surface and
applied the previously downloaded NDVI (Equation (1), [57,58]) to quantify the greenness of pixels
(i.e., green vegetation):

NDVI =
NIR−RED
NIR + RED

(1)

In this expression, RED denotes the red band (i.e., band 3 for Landsat 4, 5, and 7 but band 4 for
Landsat 8) while NIR denotes the infra-red band (i.e., band 4 for Landsat 4, 5 and 7 but band 5 for
Landsat 8).

We calculated the MNDWI (Equation (2) [59]) to delineate open water surfaces, as follows:

MNDWI =
SWIR−GREEN
SWIR + GREEN

(2)

In this expression, GREEN denotes the green band (i.e., band 2 for Landsat 4, 5 and 7 but band 3
for Landsat 8), while SWIR denotes the shortwave infra-red (i.e., band 5 for Landsat 4, 5, and 7 but
band 6 for Landsat 8).

Although NDVI was used to identify aquatic vegetation, MNDWI provided a better index
for determining open water surface [60,61]. Calculations were therefore performed in two steps.
We initially calculated the mean, lower quartile (q1), median (q2), and upper quartile (q3) values
for the NDVI in each year by water basin and then determined open water surfaces using MNDWI.
We used a threshold value 0, according to Xu [59], to extract water features (where MNDWI values were
greater than or equal to 0, negative values represented vegetated areas) and then repeated calculations
of univariate statistics for these areas. For the methodological flowchart see Figure 3. We present
our results as boxplot diagrams (Figures 4–7) and evaluated them from three perspectives (Figure 3):
we first determined NDVI by water basin as a whole and then divided the water basins into open water
surfaces (i.e., MNDWI ≥ 0) and vegetated areas (i.e., MNDWI < 0). However, as available images were
not equidistant, we did not apply formal time series analysis; graphical presentation nevertheless made
it possible to draw conclusions regarding the changes in both vegetation and open water surfaces.
We also derived a water depth model from these three perspectives (whole water basin, open water
surface, and vegetated surface).
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We determined vegetation frequency over the time series of this analysis by summarizing vegetated
areas based on MNDWI indices (i.e., where MNDWI < 0), as each pixel that was not water was assessed
as a vegetated area. Thus, using this frequency map we defined permanent open water surfaces (i.e., at
least 18 times covered with water over the 20 investigated dates, 90%) and used vegetated areas as a
counterpoint. We also determined the Percentage of Open Water (POW [%]; Equation (3)) as the ratio
of open water and the whole area of a given water basin.

POW [%] =
open water area o f a basin

[
m2
]

whole area o f a basin [ m2]
(3)

POW values were examined from the perspective of the relationship with the water level. Thus,
July water levels (most of the satellite images were captured in this month) of each corresponding year
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were used in this analysis such that minimum (j_min), maximum (j_max), mean (j_mean), and standard
deviation (j_sd) were calculated. Correlations were visualized using a correlation plot.

We utilized ENVI IDL 5.3 [62] and ArcGIS 10.4 [63] for image processing while the jmv package [64]
of the software R 3.5.1 [65] was used for statistical analysis. Each index and result map derived from
Landsat imagery has a 30 m Ground Sampling Distance (GSD).
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2.5. Vegetation Spread Risk Mapping and the Level of Sedimentation Risk Index (LoSRI)

We calculated the risk of vegetation spread for each water basin as a measure of succession level
and sedimentation. In other words, the higher the vegetation density, the higher the sedimentation,
as deep water is not favorable for many plant species to occupy the open water surface (i.e., most
plants, such as water caltrop and reeds, require shallow water). This means that the presence of aquatic
plants indicates sedimentation and shallow water. Changes can be followed annually using a time
series. We therefore specified threshold values for average NDVI (i.e., higher values indicate denser
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vegetation) and minimum POW (i.e., minimum POW appearance annually) to determine threat factors
for water basins (Table 3). The two threat factors were assigned to each water basin; a summarized
value specifies a level in each case based on the LoSRI (Equation (4)). These two factors can indicate
very important components of lake sedimentation; the NDVI can measure vegetation density via the
amount of biomass in a water basin (larger values indicate larger biomass), while the POW can show
the ratio of unvegetated areas (the larger proportion of open water is more favorable).

Table 3. Threshold values for threat factors (VDF: Vegetation Density Factor; OWFF: Open Water
Fraction Factor; LoSRI: Level of Sedimentation Risk Index; NDVI: Normalized Difference Vegetation
Index; POW: Percentage of Open Water).

VDF OWFF LoSRI
Threat RiskNDVI Mean

Value Range
Threatening
Factor

Minimum POW
Value Range (%) Threat Factor Summarized

Threat Factors

−1 to 0.1 1 65–100 1
2–5 Small risk

0.1–0.2 2 45–65 2

0.2–0.3 3 30–45 3
6–9 Medium risk

0.3–0.4 4 20–30 4

0.4–0.5 5 10–20 5
10–12 High risk

0.5–1 6 0–10 6

Values for LoSRI were calculated as follows (Equation (4)):

LoSRI = VDF + OWFF (4)

In this expression, LoSRI is the Level of Sedimentation Risk Index and VDF is the Vegetation
Density Factor, i.e., the average NDVI of the observed years of a given water basin. Similarly, OWFF
denotes the Open Water Fraction Factor, i.e., the proportion of water basin open water surface (Table 3).
Values for this metric range between 2 and 12: thus, 2 indicates no risk and 12 indicates a very
significant risk that this water body will disappear in the future.

2.6. Validation

In the frame of validation, we determined the Ratio Of the Vegetated areas and Water basins
(ROVW). Vegetated water surface is the inverse of POW, and is determined as Equation (5):

ROVW [%] = 100− POW (5)

ROVW, water depth and LoSRI values are depicted in the same figure with a double y-axis
(see Section 3.6 below). The pattern of the values reflects the relationship. We also determined the
correlation between LoSRI and water depth with Spearman’s rho, as LoSRI can be considered as an
ordinal variable.

3. Results

3.1. Aquatic Vegetation Annual Dynamics

The data presented here reveal an NDVI trend between May and September 2015, as we searched
for vegetation maximum values that are highest and encompass the least variance. Data showed
that each water basin within the sample area was characterized by similar succession dynamics;
subsequent to 5 July, vegetation cover reached a maximum extent with high NDVI values, with the
highest occurring on 4 August; the next image, on 23 September, shows that the vegetation started to
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collapse (Figure 4). Accordingly, the best period for sampling fell between 28 July and 11 August; we
therefore focused on this period for further analyses.

3.2. Aquatic Vegetation Dynamics Between 1984 and 2017

We distinguished three water basin trend types based on the variance
(minimum, median, maximum) of NDVI values between 1984 and 2017 (Figure 5). The first
of these comprised water basins 1, 2, and 5, as these exhibited decreasing trends in NDVI values
between 1984 and 2015 before increasing again from 2015 onwards. Fluctuations were also seen
over the study period, but this increase was significant in the case of water basin no. 5, for which
the median NDVI rose above 0.5, suggesting extensive vegetation development. The second trend type
we distinguished comprised water basins 3, 4, 6, 7, and 9; these water basins all generally exhibited
increasing trends over the sampling period, taking the shape of saturation curves. Data showed that
between 1984 and 1987, NDVI decreased, but began to increase between 1987 and 2000, following a
steep curve, before values stagnated or showed a slight decrease. Water basins 8 and 10 represented
the third type, where the NDVI values did not show a definite trend and medians fluctuated in a wide
range, even in consecutive years. The year 2010, in particular, was outstanding in this sample, as
NDVI values remained at their lowest compared to values in other years.

Next, we repeated our analyses for open water surfaces (MNDWI ≥ 0) as well as in areas of
aquatic vegetation (MNDWI < 0). The results of this analysis enabled us to distinguish two trends in
water surface NDVI values (Figure 6) with substantive differences between the two. The first type
comprised water basins no. 1, 2, 4, and 5 and revealed a decreasing trend in NDVI values, as well
as increasing values over the last three years between 2015 and 2017. In most years, however, NDVI
values remained below zero and indicated open water. The second type (water basins no. 3, 6, 7, 8, 9,
and 10) exhibited larger NDVI values and positive medians in most years. Water basins no. 3, 6, 7,
and 8 all exhibited an increasing trend in the NDVI values between 1984 and 2000, while no. 9 and 10
were characterized by a stagnant but fluctuating trend.

Analysis showed that vegetated areas exhibited very similar trends among the different water
basins based on statistical analyses of NDVI values (Figure 7); we were therefore unable to separate
different trend types. There was an increasing trend in the NDVI values with two minimum points at
1984 and 2010. Subsequent to 2014 there was a very slight decreasing trend in NDVI values.

3.3. Changes in Open Waterbody Ratios

The water basins analyzed here comprised five different types based on open waterbody
percentages (Figure 8). The first type (#1) is seen in water basin no. 1 where there was a slight
decrease overall, reaching a maximum value in 2010. This conspicuous year was observable in each
water basin, while the second type (#2) was comprised of water basins 2 and 5. A decreasing trend was
evident between 1984 and 2005, the ratio then increased up to 2010, before a reductive process began.
The ratios in each case also remained higher than 50%, while the third type (#3) was comprised of water
basins no. 3, 6, and 7. Trends in this case were similar to those seen in type #2, although minimum
percentage values approached zero between 2000 and 2005. In the fourth type (#4) were water basins
no. 4 and 9, while the fifth type (#5) comprised no. 8 and 10, where trends were similar to those
seen in type #3 in which ratios encompassed a larger variance. Minimum values in this case did not
approach zero.
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We then summed the vegetated areas over the course of this survey (Figure 9). Considering median
vegetation frequencies, two clusters were recovered, namely, medians below 3, in the case of water basins
no. 1, 2, 5, 8, and 10, with lesser risk of complete occupation by aquatic plants; and medians above 10,
in water basins no. 3, 4, 6, 7, and 9. This latter group was at considerable risk (Figure 10).Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 25 
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Remote Sens. 2020, 12, 1468 15 of 24
Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 25 

 

 

Figure 10. Vegetated frequencies by basins. 

3.4. The Relationship Between POW and Water Level 

Water levels were 665 cm, and 685 cm in 1984 and 1985, respectively, while in consecutive years 
the level was operationally increased to around 725 cm. We therefore excluded 1984 and 1985 from 
the analysis in order to avoid generating false conclusions. Correlations between water level and 
POW fell between 0.00 and −0.53 even though these relationships were not significant (Figure 11) 
because of low sample size. We cannot consider these results to be representative of accurate 
outcomes: the low variance related to POW water level remains insignificant, while the relatively 
large correlations (between ca. 0.50 and 0.94) between water level values of studied water basins 
indicate that water level is very similar across the whole area within the reservoir. The only 
exceptions were water basins no. 8 and 10, both oxbow lakes, which are rather isolated in their 
situation and whose water budgets are independent of the regulated water table. 

Figure 10. Vegetated frequencies by basins.

3.4. The Relationship Between POW and Water Level

Water levels were 665 cm, and 685 cm in 1984 and 1985, respectively, while in consecutive years
the level was operationally increased to around 725 cm. We therefore excluded 1984 and 1985 from the
analysis in order to avoid generating false conclusions. Correlations between water level and POW fell
between 0.00 and −0.53 even though these relationships were not significant (Figure 11) because of
low sample size. We cannot consider these results to be representative of accurate outcomes: the low
variance related to POW water level remains insignificant, while the relatively large correlations
(between ca. 0.50 and 0.94) between water level values of studied water basins indicate that water
level is very similar across the whole area within the reservoir. The only exceptions were water basins
no. 8 and 10, both oxbow lakes, which are rather isolated in their situation and whose water budgets
are independent of the regulated water table.
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3.5. Sedimentation Risk Mapping

We separated water basins that are differently threatened in this analysis using the LoSRI index
(Table 4). Our results show that, first, the less-threatened water basins are no. 1, 2, and 5, which are
large and deep enough to hinder the establishment of aquatic vegetation, including water caltrop.
These water basins had low average NDVI values (less than 0.15) and, no. 1 and 2, in particular, had
high open-water ratios (greater than 65%). We also show that water basins no. 4, 8, and 10 had medium
average NDVI values (0.3–0.4), while water basins no. 8 and 10 had POW values above 35%. These
water basins were not greatly influenced by succession. The most threatened water basins within our
sample were no. 3, 6, and 7. These water basins had extremely high NDVI values (all greater than 0.45)
and reached almost zero open water percentage values in some years during the 2000s. These water
basins were most affected by succession. Water basin no. 9 also had a high average NDVI value (0.51)
during the studied years. This water basin was formerly a river meander, as was also the case with
water basins no. 8 and 10; these were therefore deeper and, as a result, aquatic vegetation could not
spread efficiently. However, in the latter years of this study, the open water percentage of water basin
no. 9 decreased from an average of 20% to 13%. It is therefore worth considering that this water basin
is threatened.
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Table 4. Summary of basin threat factors (VDF: Vegetation Density Factor; OWFF: Open Water Fraction
Factor; LoSRI: Level of Sedimentation Risk Index).

Threatening Factor

Basin VDF OWFF LoSRI

1 1 1 2
2 1 1 2
5 2 2 4
8 4 2 6
10 4 3 7
4 4 4 8
9 6 5 11
3 5 6 11
6 5 6 11
7 5 6 11

3.6. Validation

The LoSRI was developed in order to predict future changes including the spread of aquatic
vegetation. The Spearman correlation was 0.60 (p < 0.05) between the LoSRI and average water depth
taking into account all samples. Average water depth in the largest water basins (no. 1 and 2) was
less than 1.4 m while open waterbodies were 1.42 m and 1.60 m in depth (Figure 12). These water
basins also had small (13.49% and 37.58%) ROVWs and the smallest LoSRI values (i.e., equal to 2).
Former river meanders (no. 3, 8, and 9) had the highest average water depths of open waterbodies
(>1.85 m) and, because of their small POW and high ROVW values (greater than 51.97%), these are
threatened by succession, particularly water basins no. 3 and 9 (ROVW values greater than 86.33%).
The LoSRI values in this case were also high (i.e., equal to 11); water basins no. 6, 7, and 10 had shallow
average water depths between 0.55 and 0.72 m, while water basins no. 6 and 7 had ROVW values
above 94%. These water basins also had very high LoSRI values (i.e., equal to 11); water basin no. 7
was completely covered by vegetation while no. 6 had a minimal permanent open water surface area
and a low (0.44 m) water depth. Although water basin no. 10 was a former meander, its average depth
was only 0.59 m. This water basin also had a 56.76% ROVW value and a LoSRI equal to just 7.
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4. Discussion

Indicating water depth is a challenging topic, but as depth is an important driver of vegetation
spread and shallow water is favorable for several plant species, depth can be indicated by aquatic
vegetation. Moreover, NDVI can be an effective tool, as a proxy, to monitor vegetation spread and
sedimentation. The Tisza River transports large volumes of suspended sediments [66], which are
then deposited within the water basins of Lake Tisza due to changing flow conditions. Due to the
effect of the Kisköre dam, the water flow in the basins is minimal; thus, the lake faces sedimentation,
favorable for the establishment and spread of aquatic vegetation (mostly water caltrop and duckweed),
as well as species typical in shallow water (e.g., reed mace). Accordingly, the lake is losing open water
areas [49,67]. From the present study, trends did not indicate severe risk, however, although aquatic
vegetation and shoreline herbaceous plants surface processes did not show evidence of intensive
spreading, it was found that POW values can fluctuate by more than 50% due to flooding (Figure 8).
Management by cutting machines and large floods (for example in 2010) at the beginning of the
vegetation period when the water table was higher hindered the spread of aquatic vegetation. Plants
were not able to sprout and this caused a negative anomaly in the NDVI values (Figures 5 and 6).
Sedimentation remains a problem endangering the existence of the lake in the long run, and the oxbows
are also endangered [68].

We discriminated three types of water basins within our study area on the basis of the observed
NDVI dynamics, in high accordance with extent and depth. Large basins were characterized by open
water surfaces, deep water, and minimal vegetation coverage. The smaller water basins comprised
oxbows and paleo-channels with the deepest water. These smaller basins varied in indices and mostly
had positive NDVI values with larger variance. Water caltrop requires a water level less than 2 m
in depth, although other aquatic species such as duckweed were dominant in some years. In cases
where water basins contained shallow water (less than 1.3 m), water caltrop occupied large areas.
Excluding vegetated areas from NDVI statistics, we were able to delineate two water basin types
based on quantitative differences. Water basins no. 1, 2, 4, and 5 mostly had NDVI values below zero,
which means that they had more open water surface than the other basins (no. 3, 6–10). Observations
of NDVI for the vegetated areas (Figure 7) resulted in just one class, which indicates that vegetated
areas are homogenous.

The five separated types of POW values resulted in more variation in the water basins within our
sampling area in terms of NDVI. We were also able to show that MNDWI values provide an effective
tool to determine POW and, with NDVI, enable us to provide information on qualitative conditions of
the vegetated areas within water basins. The levels of vegetation cover in water basins over the years
studied here refer to trends in succession.

No previous study has been devoted to Lake Tisza succession and just a handful have so far
focused on average sedimentation rates in other parts of the river and floodplain. According to 137Cs
(radioactive isotope of cesium) measurements, researchers have used experimental nuclear tests based
on the marker layer laid down by the Chernobyl accident in 1986. The sedimentation rate in oxbow
lakes is between 1 and 2 cm/year but, with large floods, can exceed 5 cm/year [33,69]. Oxbows act like
sediment traps related to other parts of the floodplain because of hydrodynamic forces. Sedimentation
speed is also a function of distance from the river; over shorter distances, this rate is between 1 and
2 cm/year, while above 200 m it decreases to 0.4 cm/year [70]. It is also noteworthy that there are
a number of discrepancies with the observations presented here; for example, because Lake Tisza
comprises a set of water basins connected with canals, the coarse fraction of suspended sediment
will be deposited immediately when the speed of the flow decreases. This also refers to the largest
sedimentation volumes; contrary to oxbows situated on floodplains, those in Lake Tisza might not be
the most intensive parts to sedimentation.

Although previous studies have noted a correspondence between NDVI and water level
(e.g., Omute et al. [44]), we were unable to confirm this relationship in this analysis. We do know if the
operational water level changes according to actual management aims; this level rose 60 cm between
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1984 and 1986. A correlation analysis performed on our dataset including 1984 and 1985 showed a
significant negative relationship, with r values were between −0.7 and −0.9. This indicates that higher
water levels had a good relationship with smaller POW values. The explanation for this is complex
for two reasons: first, at the beginning of reservoir operation, the presence of aquatic vegetation was
not typical; and second, higher water levels have impeded the spread of water caltrop (Trapa natans),
which poses the largest threat regarding vegetation spread in the lake. POW values should be higher
with higher water levels when all other circumstances remain constant. Correlations between POW
and the water level excluding 1984 and 1985 remained significant with r > 0.5; this is one consequence
of the small variance in water level values (standard deviation: 5.4 cm). One breakpoint was observed
in 2002 when the water level rose an additional 10 cm.

Previous studies have shown that water caltrop is the most abundant plant in water depths of
2 m [53]. Future work should also take herbaceous and aquatic plants into account, but our results
showed that mean water depth in vegetated areas was 0.88 ± 0.47 m. This means that vegetation can
spread easily in these parts of the water basins. Mean water depth in open waterbodies remained
within 1.52 ± 0.33 m. The presence of aquatic vegetation, in this case dominated by water caltrop,
depends on water depth, which is affected by two key parameters: the regulated water level and
sedimentation. We have therefore been able to show that aquatic vegetation is an effective indicator of
water depth.

The correlation between LoSRI and mean water depth within the water basins studied here was
0.6 (p < 0.01). This result means that LoSRI can provide indirect information about water depth based
on only satellite imagery because NDVI evaluates the state of water basins based on the open water
surface quantity (POW) and biomass amount. These factors are the consequences of water depth.
Thus, shallower water basins usually have higher LoSRI values while deeper water basins have smaller
values. It is also necessary to consider ROVW values because a water basin with shallow water can
also contain a large open waterbody due to management, the presence of a former meander, or the
topography of a particular water basin. In conjunction, LoSRI and ROVW can predict the state of water
basin sedimentation. It should be noted that the correlation between LoSRI and water depth (r = 0.6)
was moderate. This moderate level of correlation might be due to the fact that water depth reflected
only the current status (a single survey in 2017) of the lake-bed, while the LoSRI was calculated with 20
satellite images of a time series covering 33 years. In addition, the lake is under continuous water level
regulation, and some areas receive plant-cutting treatment using aquatic plant harvester machines.

LoSRI can be an efficient indicator for most lake basins. However, for oxbows and
paleo-river meanders, where the basin area is smaller and the water depth can be significantly
higher, LoSRI overpredicts risk, as deeper inner parts are not threatened, only coastal regions. This may
be the case with water basins no. 8, 9, and 10, in which the water depth is the greatest and only the
littoral zone can be vegetated as water deepens within a short distance; i.e., the succession process is
relatively long. In addition to the LoSRI index, a vegetation frequency map should therefore also be
used in these cases. This approach helps to identify permanent open waterbodies that are not currently
threatened by succession and also only requires satellite images from an area with no additional
data input. This workflow is therefore efficient and can be quickly applied to a specific area where
succession is suspected.

Kiage and Douglas [60] also applied MNDWI and NDVI, and found that MNDWI provides more
reliable results compared to NDVI; in our methodology, we used MNDWI to identify water surfaces
and NDVI was used to calculate biomass. However, further comparison with the similarities or
differences of other authors’ findings is difficult, as studies dealing with lakes and wetlands are usually
performed at the catchment level, or larger areas, and aim to reveal change in land cover categories
and its consequences [71–73].

Sedimentation exerts a considerable effect on lake succession through sediment deposition and
providing habitats for aquatic plants, which themselves accelerate sedimentation. It is therefore crucial
to collect enough information about water depth. In most cases, authorities and lake managers simply
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do not have enough detailed information about the nature of the bottom of lakes and basins, and this
remains difficult to determine, even with sonar devices, as depth changes due to sedimentation.
Satellites can provide information on vegetation spread and integrate image interpretations with field
vegetation surveys, thus making all of the collected information available for risk mapping. Our
approach can work for shallow lakes, and requires knowledge of plant species and long-term satellite
imagery. These requirements, as well as our new approach, means that the locations of shallow water
bodies and sedimentation rates can be estimated using only satellite images. Although the study’s
validation resulted in only moderate correlations, better results could be achieved in water bodies
where the water level is natural, and vegetation is not treated. In our case, it was important to find the
hot spots of vegetation spread. Stationary open water surfaces and changes in vegetation cover are
good indicators of risk. This result suggests a possible approach for water directorates to focus on
endangered areas.

5. Conclusions

We performed a long term (1984–2017) vegetation change monitoring study based on Landsat
image spectral indices for the Lake Tisza area, Hungary, with the aim of revealing if a trend exists in
vegetation spread at the sub-basin level (in 10 water basins), and to develop a methodology to identify
the sub-basins where the sedimentation-related vegetation spread poses a risk. We determined NDVI
values in the 10 water basins and separated the open waterbodies and vegetated areas by water basins
based on the MNDWI index. Our results enabled us to specify six threat level factors for NDVI and
POW values that were assigned to each water basin. LoSRI index values were then summarized from
these data. Water level and water depth values were consistent with our results. Less-threatened water
basins were the larger basins with low NDVI and high POW values, while the most threatened were
smaller or more vegetated areas with high NDVI and low POW values. These water basins will require
special management. Validation showed that there are limitations of the general usage of the LoSRI,
but the moderate relationship indicated that with careful interpretation, the risk of sedimentation can
be estimated. Plotting the summarized binary layers of the 20 satellite images of vegetation frequency
based on MNDWI < 0 provided the possibility of spatial evaluation. As Lake Tisza is subject to regular
human intervention (excavating sediment, harvesting plants, and artificial regulation of the water
level), the trends of the water basins were not obvious. This method can be applied to large lakes to
help identify sedimentation, but is limited to shallow lakes in which vegetation that favors shallow
water is present. If these circumstances exist, sedimentation risk can be revealed.
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