
EDITOR INFO.

SECTION TITLE. Collaborative Modeling in Software Engineering

ARTICLE TITLE.
Secure Views for Collaborative Modeling

AUTHOR.
Csaba Debreceni1,2, Gábor Bergmann1,2,5, István Ráth1,3, Dániel Varró1,2,4
AUTHOR AFFILIATION.
1Budapest University of Technology and Economics, Hungary
2MTA-BME Lendület Research Group on Cyber-Physical Systems, Hungary
3IncQuery Labs Ltd., Hungary
4McGill University, Canada
5 supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences

ABSTRACT. Model-based systems engineering necessitates effective

collaboration between different collaborators, teams, and stakeholders.

Traditional approaches used for managing concurrent code-based

development do not naturally extend to collaborative modeling, which

implies novel challenges. We present a collaborative modeling framework

that provides secure views with precisely defined model access to each

collaborator by rule-based model-level access control policies.

CHALLENGES

The adoption of model-based systems engineering (MBSE) by system integrators (like

airframers or car manufacturers) has been steadily increasing in the recent years [1].

MBSE enables to detect design flaws early and generate various artifacts (source code,
configuration tables, etc.) automatically from high-quality system models. As a common

industrial practice, system integrators frequently outsource the development of various
components to subcontractors in an architecture-driven supply chain where the

collaboration between cross-organizational teams is facilitated by sharing models stored
in model repositories [2]. However, effective collaboration is hindered by numerous

factors.

Protection of intellectual property over heterogeneous teams. Cross-organizational collaboration

introduces significant challenges for access control management to protect the respective

Intellectual Property (IP) of different parties. For instance, the detailed internal design of a

component needs to be revealed to certification authorities, but it needs to be hidden from

competitors who might supply a different component in the system. Furthermore, certain

critical aspects of the system model may only be modified by domain experts with

appropriate qualifications. Due to the lack of support for cross-company collaboration in

existing modeling repositories, very strict infrastructure-level security policies are in place

at companies, which prevent effective collaboration.

Model fragmentation and lack of fine-grained access control. In current industrial MBSE

practice, system models are persisted in repositories such as (1) Version Control Systems

(VCS), e.g. SVN or Git, (2) local database backends (e.g. in MetaEdit+ [3]), (3) dedicated

object-based storages such as CDO (e.g. in Team for Capella), or (4) cloud-based solutions

(e.g. NoMagic Teamwork Cloud).

Unfortunately, access control management is still in a preliminary phase in these

repositories as they support permission assignments only globally, or using fragments (i.e.

on the level of files or projects). In order to share parts of system models between

collaborators, models need to be split into a large number of static fragments (e.g. over

1000 for automotive models). Consequently, the re-fragmentation of the model, which may

be necessary when roles, policies or models evolve, is hard or infeasible. Therefore, static

fragmentation becomes both a scalability and usability bottleneck.

Static fragmentation can be mitigated by fine-grained access control where each model

element may have its own set of permissions. Unfortunately, large industrial models may

have millions of model elements, thus explicitly assigning permissions for each element

would be labor-intensive and error-prone. Moreover, understanding and maintaining

permissions after model changes can be problematic.

Online and offline collaboration. System models are traditionally developed either in an offline

or online manner. In offline collaboration, engineers check out an artifact from a repository

into a local copy and commit local changes to the repository in asynchronous (long)

transactions. In online collaboration, engineers may simultaneously edit a model in short

synchronous transactions which are immediately propagated to all other users. This strategy

is similar to online collaborative office tools like Google Docs, and it is showcased in

modeling tools like WebGME [4], ATOMPM [5], GenMyModel [6] or MetaEdit+ [3].

In case of access control restrictions, certain model changes should not be propagated to

some collaborators while certain model modifications may be disallowed and rejected. In

the offline case, all information available to a specific user needs to be provided as a self-

contained model that can be displayed and edited by existing off-the-shelf modeling tools.

Hiding elements in a modeling tool is insufficient, as the IP is still accessible on the client

side e.g. by file inspection. Hence, a filtered but modifiable model that excludes any

confidential information needs to be sent to each client. Furthermore, the online scenario

requires immediate change propagation where model modifications need to be evaluated in

an efficient, reactive way in response to the change.

Integration with existing techniques and tools. Effective access control for collaborative

modeling should smoothly integrate with other collaboration practices such as version

histories, user authentication, lock management (to temporarily prevent certain model

edits) or conflict resolution by differencing and merging. While traditional VCS

frameworks provide efficient support for handling text-based design artifacts, their model-

level counterparts require sophisticated techniques. Furthermore, the seamless integration of

a collaboration layer with existing toolchains is a key industrial need.

SECURE VIEWS FOR RULE-BASED MODEL-LEVEL ACCESS
CONTROL
To address these challenges, we have developed the MONDO COLLABORATION

FRAMEWORK that enhances collaborative modeling repositories by providing secure views

as an extra protection layer with rule-based model-level access control simultaneously

enforced for both offline and online collaboration scenarios and adapted to software

configuration management.

Model-level Access Control Rules

Security policies define access control rules that grant or deny read or write permissions

over some assets (objects, attributes, references) for certain collaborators. Individual assets

are read-only if write permissions are denied and they are hidden if read permissions are

denied. Complex attribute-based access control strategies can be implemented by

combining access control rules with graph queries. Graph queries provide an expressive

declarative language (from the VIATRA [7, 8] open source project) to select which assets

to restrict. Access control rules may reuse graph queries to define complex hierarchies and

dependencies between individual assets based on the current state of the model.

Access control rules are illustrated on a small example, extracted from the domain of

offshore wind turbines [9] which was a case study of the MONDO Project [10]. A control

unit is responsible for a certain type of physical device (e.g. pump, heater, fan). It may

depend on multiple inputs (e.g. temperature) and produce multiple outputs (see metamodel

in Figure 1, upper-left part). Each control unit requires special domain knowledge, thus a

specialist called IOManager needs to oversee the inputs and outputs.

The security policy (Figure 1, right part) provides access to non-confidential inputs and

outputs only. By default, it denies access to any asset in the model. Here all access control

rules use the same graph query objectIO (Figure 1, lower-left part) that selects all inputs and

outputs and the value of their confidential attribute. Rule enableIO grants read and write

permissions to all objects selected by graph query objectIO. Rule disableConfidentialAttr

overrides this to make the confidential attribute of the same objects tamper-proof. Finally,

rule disableConfidentialIO takes those inputs and outputs where the query returns true for

isConfidential, and entirely hides them from subcontractors (members of the Externals

group including IOManagers). Note that high-priority rules override lower-priority rules as

well as the default permissions.

FIGURE CAPTION. Figure 1. Sample access control policy

Enforcing Access Control Rules in Secure Online and Offline Collaboration

Our approach assumes the existence of a gold model that includes all information and IP,

but it is not directly accessible to collaborators. Instead, access control rules are enforced by

providing secure views (called front models) which contain only those model elements that

are accessible to a specific collaborator. When collaborators modify their front models, the

changes are propagated back to the gold model and then to other collaborators.

Such synchronization between updatable secure views can conceptually be described by

a lens [11], which is a pair of model transformations GET and PUTBACK. GET is

responsible for read access control by filtering the gold model (hiding assets) into the front

model according to read permissions. PUTBACK is responsible for checking modifications

of the front model against write permissions and propagating them to the gold model if

accepted.

For secure offline collaboration [12] (Figure 2, upper part), each collaborator gets a

dedicated front repository that contain the full version history of a front model. Similarly, a

gold repository contains the version history of the gold model with complete information.

Each collaborator continues to use an existing off-the-shelf client to access the front

repository (but not the gold repository). Hence there is infrastructure-level protection

against unauthorized model access. When a collaborator uploads some modifications to her

front repository, these changes are propagated to the gold model by a PUTBACK operation.

Then a new entry is added to version history of the gold repository, and all other front

repositories are synchronized by GET operations where those changes are visible.

For secure online collaboration, several users can join a shared modeling session (Figure

2, lower part) to simultaneously display and edit the same model where changes are

propagated immediately to other users. The gold model is loaded to server memory from

the gold repository of the underlying (offline) repository. When a collaborator joins the

session, a dedicated front model is derived from the gold model. Collaborators access their

front model directly on the server (e.g. using a web browser), in contrast to the offline

scenario, where users manipulate local copies of the models. As such, sensitive and

restricted information is always kept on the servers, and it never reaches the modeling

clients. Our lens transformations [13] operate in an incremental way: if a front model is

modified, then the resulting PUTBACK and the subsequent GETs (propagating to other

collaborators) act only on the changes. Therefore, after the initialization phase when the

gold and front models are loaded into the memory, execution time is only proportional to

the size of the changes and not to the size of the model.

FIGURE CAPTION. Figure 2. Architecture of offline and online collaboration

Secure Software Configuration Management

Secure views can be directly used in industrial software configuration management (SCM)

scenarios.

Change requests. In SCM, changes may require the approval of multiple collaborators in

model/code reviews. Without sufficient permissions to commit to gold, a proposer may

create a change request. The request can be inspected for approval by other collaborators,

and committed once it is signed off by one or more reviewers with jointly sufficient write

privileges.

Read access is enforced on change requests via GET before being shown to reviewers.

However, as access control is attribute-based, this filtering can be manipulated, e.g. an

attacker may propose changes in artifact ownership. Privilege escalation is averted as

follows: first, a modified PUTBACK applies those proposed changes that are allowed with

the joint write permissions of the proposer and the reviewer; then the merged result model

is filtered by GET for the reviewer. This way, the secure view on the change request will

only contain modifications that the reviewer can enact, or the proposer would be allowed to

commit anyway.

Collaboration workflows. In the industrial context, complex collaboration workflows along

multiple branches (production, feature, etc.) are needed to co-evolve multiple versions of a

system design for continuous engineering. Since access control rules use a graph query

language for identifying assets, the scope of restrictions can be easily extended to support

multiple branches. Domain-specific types defined by the metamodel are complemented

with SCM-specific concepts like workspace, resource, branch, revision or tag, but no

further adaptation is needed to the access control language. Thus one can specify access

control policies where a collaborator is restricted to observe model versions on specific

branches or created after certain revisions.

Industrial applications. Together with the industrial partners of MONDO, we carried out a

detailed scalability evaluation of the collaboration server with respect to increasing number

of front repositories, increasing size of models or increasing change size (for the offline

case) with promising results [9, 13, 12]. Further practical relevance stems from the fact that

certain industrial products (like NoMagic Teamwork Cloud) have already adapted a mixed

online and offline collaboration architecture, thus the concepts of secure views are directly

applicable.

While we promote graph queries to drive rule-based access control management for

collaborative modeling, it is worth emphasizing that graph queries can also support other

server-side tasks such as change impact analysis or automated conformance checks.

Moreover, since lenses for checking access control rules can be wrapped into micro-

services (like Docker), we foresee the seamless adaptation and integration of secure views

into existing product line management tools or future collaborative cloud-based model

repositories.

Limitations. Our collaboration server is currently integrated with Subversion (SVN) as

requested by the industrial partners of MONDO European FP7 Project, where version

history is managed in a standard SVN repository and users collaborate by using existing

modeling tools and any SVN client. Integration with Git as underlying VCS technology is

ongoing work.

PRACTICAL BENEFITS
Key benefits of our collaborative modeling framework for MBSE include the following:

Collaboration of heterogeneous stakeholders: Our framework supports collaborative

modeling between engineering teams of different companies (e.g. an integrator and its

subcontractors) while protecting their intellectual property with the secure storage of the

gold model.

Extra layer of access control: Model-level fine-grained access control using secure views

injects an extra layer of protection on top of existing protection offered by the

underlying repository.

Validation of access control policies: Access control rules support the consistent assignment

and maintenance of permissions for large models and enable the systematic validation of

access control policies (e.g. to ensure export control regulations or investigate a security

breach).

Compliance with SCM practices: Access control policies can be defined for modern SCM

practices to collaborate along multiple branches, formal change request, etc.

Smooth integration with existing tools: Our framework extends existing server-side

repositories while keeping client-side modeling tools intact, thus engineers may continue

using existing collaborative tools.

As such, powerful existing collaboration practices used in software engineering can be

complemented when collaborating over models.

References

1. Whittle, J. et al., The state of practice in model-driven engineering, IEEE Software 31(3) (2014):79-85.

2. Di Rocco, J. et al., Collaborative repositories in model-driven engineering, IEEE Software 32(3) (2015):28-

34.

3. Tolvanen, J-P. et al, Model-Driven Development Challenges and Solutions - Experiences with Domain-

Specific Modelling in Industry, MODELSWARD'16 (2016):711-720.

4. Maróti, M. et al., Next Generation (Meta) Modeling: Web-and Cloud-based Collaborative Tool Infrastructure,

MPM@ MoDELS'14 (2014): 41-60.

5. Syriani, E. et al., ATOMPM: A web-based modeling environment., MODELS'13 (2013):21-25.

6. Dirix, M. et al., GenMyModel: an online UML case tool, ECOOP, 2013.

7. Eclipse Project, VIATRA https://www.eclipse.org/viatra/.

8. Varró, D. et al., Road to a reactive and incremental model transformation platform: three generations of the

VIATRA framework, Software and System Modeling 15(3) (2016):609-629.

9. Gómez, A. et al., On the Opportunities of Scalable Modeling Technologies: An Experience Report on Wind

Turbines Control Applications Development, ECMFA’17 (2017):300-315.

10. Bagnato, A. et al., Flexible and scalable modelling in the MONDO project: Industrial case studies., XM@

MoDELS'14 (2014):42-51.

11. Foster, J. et al., Updatable Security Views, 22nd IEEE Computer Security Foundations Symposium

(2009):64–70.

12. Debreceni, C. et al., Enforcing Fine-grained Access Control for Secure Collaborative Modeling using

Bidirectional Transformations, Software and Systems Modeling (2017),DOI:10.1007/s10270-017-0631-8.

13. Bergmann, G. et al., Query-based Access Control for Secure Collaborative Modeling using Bidirectional
Transformations, MoDELS'16 (2016):351-361.

