
Noname manuscript No.
(will be inserted by the editor)

Scalable Modeling Technologies in the Wild
An Experience Report on Wind Turbines Control Applications Development

Abel Gómez · Xabier Mendialdua · Konstantinos Barmpis · Gábor Bergmann ·
Jordi Cabot · Xabier de Carlos · Csaba Debreceni · Antonio Garmendia ·
Dimitrios S. Kolovos · Juan de Lara

Received: date / Accepted: date

Abstract Scalability in modeling has many facets, includ-
ing the ability to build larger models and domain specific
languages (DSLs) efficiently. With the aim of tackling some
of the most prominent scalability challenges in Model-Based
Engineering (MBE), the MONDO EU project developed the
theoretical foundations and open-source implementation of
a platform for scalable modeling and model management.
The platform includes facilities for building large graphical
DSLs, for splitting large models into sets of smaller inter-
related fragments, to index large collections of models to
speed-up their querying, and to enable the collaborative con-
struction and refinement of complex models, among other
features.

This paper reports on the tools provided by MONDO that
Ikerlan, a medium-sized technology center which in the last
decade has embraced the MBE paradigm, adopted in order to

A. Gómez
Internet Interdisciplinary Intitute (IN3), Universitat Oberta de
Catalunya (UOC), Barcelona, Spain
E-mail: agomezlla@uoc.edu

X. Mendialdua · X. de Carlos
Ikerlan Research Center, Arrasate, Spain
E-mail: {xmendialdua | xdecarlos}@ikerlan.es

Konstantinos Barmpis · D. S. Kolovos
Dept. of Computer Science, University of York, York, UK
E-mail: {dimitris.kolovos | konstantinos.barmpis}@york.ac.uk

G. Bergmann · C. Debreceni
MTA-BME Lendület Research Group on Cyber-Physical Systems, Bu-
dapest University of Technology and Economics, Budapest, Hungary
E-mail: {bergman | debreceni}@mit.bme.hu

J. Cabot
ICREA – Internet Interdisciplinary Intitute (IN3), Universitat Oberta
de Catalunya (UOC), Barcelona, Spain
E-mail: jordi.cabot@icrea.cat

A. Garmendia · J. de Lara
Universidad Autónoma de Madrid, Madrid, Spain
E-mail: {Antonio.Garmendia | Juan.deLara}@uam.es

improve their processes. This experience produced as a result
a set of model editors and related technologies that fostered
collaboration and scalability in the development of wind tur-
bine control applications. In order to evaluate the benefits
obtained, an on-site evaluation of the tools was performed.
This evaluation shows that scalable MBE technologies give
new growth opportunities to small and medium-sized orga-
nizations.

Keywords Model-Based Engineering (MBE), Scalabil-
ity, Domain Specific Graphical Modeling Languages,
Collaborative Modeling, Model Indexing, Experience
Report

1 Introduction

Ikerlan is a Spanish private non-profit technology center cre-
ated in 1974, and a technological R&D actor within the
Mondragon Corporation [50]. Ikerlan is a point of reference
for innovation, dedicated to advanced technology transfer to
industry and comprehensive product development (from con-
cept to implementation) for a wide variety of domains: en-
ergy (wind and solar power, and storage systems), transporta-
tion (railway and vertical), automation, industrial, health,
home appliances, etc. Ikerlan works closely with companies
to improve their competitiveness through the application of
technological knowledge to develop innovative products as
well as by providing new tools and methodologies for imple-
mentation in design and production processes. It has a staff
of more than 200 qualified researchers and engineers, with
experience in interdisciplinary work and capable of tackling
complex problems. As a center of excellence in the transfer
of technology, more than 800 R&D projects have been com-
pleted until 2019 in cooperation with companies developing
new products, implementing customized systems in design,

2 Abel Gómez et al.

and manufacturing processes. The actions of Ikerlan are de-
voted to providing product, process and service innovation
for companies. To achieve these ambitious goals, Ikerlan of-
fers comprehensive solutions that combine the three domains
in which it has a high degree of specialization and expertise:
Electronics, Information and Communication Technologies
(EICT), Energy and Power Electronics and Advanced Man-
ufacturing.

Focusing on energy, and specifically in wind power, Iker-
lan has been working for the last 11 years in the develop-
ment of supervisory and control platforms for wind turbines
for one of the world’s leading companies in the field of re-
newable energy. Wind turbines are complex systems where
hardware and software components need to interact in in-
tricate ways. To tackle this complexity, Model-based Engi-
neering (MBE) [85] technologies were introduced in 2008
in Ikerlan for the engineering of the supervisory and con-
trol systems. The goal for adopting and investing in MBE
was to improve the productivity and competitiveness of its
industrial customers by enhancing their software develop-
ment processes using, as Section 2 sketches, Domain Spe-
cific Languages (DSL) [53] and code generators [21]. The
experiences reported by customers showed significant pro-
ductivity increases, indicating that MBE has been critical
in the development of new software products faster, cheaper
and with fewer errors than in previous projects.

However, too often, MBE tools and methodologies have
targeted the construction and processing of small models in
non-distributed environments. This focus neglects common
scalability challenges [59], considering that a more typi-
cal scenario involves different engineers working in collab-
oration at distributed locations. Handling these issues is a
challenging task that requires specific solutions that foster
scalability, as we discuss in Section 3.

In 2013, the MONDO project1 was launched with the
aim of tackling some of the most prominent challenges of
scalability in MBE by developing the theoretical foundations
and open-source implementation of a platform for scalable
modeling and model management. Achieving scalability in
MBE involves Achieving scalability in modeling and MDE
involves being able to construct large models and domain
specific languages in a systematic manner, enabling teams
of modelers to construct and refine large models in a col-
laborative manner, advancing the state-of-the-art in model
querying and transformations tools so that they can cope with
large models (of the scale of millions of model elements),
and providing an infrastructure for efficient storage, indexing
and retrieval of large models. Among the technologies devel-
oped2, Section 4 focuses on the ones that can provide Ikerlan
the opportunity to offer its customers software development
methodologies in geographically distributed scenarios where

1 http://www.mondo-project.org/

2 http://www.mondo-project.org/technologies

multiple users can work collaboratively with large mod-
els and DSLs; and Section 5 describes the different solutions
developed in Ikerlan using the MONDO platform.

Section 6 describes how the scalable MONDO technolo-
gies have been evaluated in Ikerlan and presents the results
obtained. Section 7 analyses related work, especially focus-
ing on the technologies developed and adopted in this expe-
rience. Finally, Section 8 draws conclusions and discusses
this experience on the application of scalable modeling tech-
nologies in a company like Ikerlan.

This article is an extension of our previous paper pre-
sented at the ECMFA’17 conference [44]. In this version, we
provide an extended description of the MONDO framework
in Section 4, expanding upon the capabilities of the different
solutions of the MONDO framework that are of interest for
Ikerlan. We also provide further details on how the MONDO
framework was adopted in Ikerlan, presenting in Section 5
a description of the different solutions implemented. In Sec-
tion 6, we report on the evaluations performed, including a
description of the different experimental setups. And finally,
we provide a comparison with related work in Section 7.

2 Background: Towards an MBE Development Process

In 2008 Ikerlan adopted the MBE paradigm to develop soft-
ware applications in a wide range of domains to increase
the productivity in their software development processes. In
2008, the application of this more modern MBE approach
started in its wind turbines division [100]. This section in-
troduces the changes such modernization implied and the
improvements achieved.

The result of this initial modernization effort forms the
baseline for the experience reported in this paper, and pro-
vides the rationale for the decisions taken and technologies
used for the evolution of the framework.

2.1 Wind Turbines

A wind turbine is a complex system composed of a set of
physical subsystems whose aim is to convert wind energy
into electrical energy. The Wind Turbine Control System
(WTCS) [1] is the system which monitors and controls all
of the subsystems that make up the wind turbine. Its aim
is to maximize the generation of electrical energy, always
ensuring the correct operation of the turbine and avoiding
any problem which can cause any damage to it. It moni-
tors the status of the wind turbine and the environmental
conditions, making decisions to obtain the highest energy
production. The WTCS is a HW/SW system that runs on a
dedicated hardware platform. This is connected to the wind
turbine through assorted communications to receive infor-

http://www.mondo-project.org/
http://www.mondo-project.org/technologies

Scalable Modeling Technologies in the Wild 3

mation from inputs (sensors, device state signals, etc.) and
to actuate on outputs (device actuators).

2.2 In the Beginning, there was only Code

Ikerlan’s work is primarily focused on the development of the
software part of the WTCS, which mainly handles control
algorithms, communications and user interfaces. The initial
WTCS – i.e., prior to 2008 – was designed to manage the
system operation, but its design did not originally consider
extensibility or customizability for particular wind turbines.

The size of the entire control system was roughly half
a million lines of C++ code. There were several software
components such as control algorithms, communications,
interfacing, simulation, and so on. The development process
was already based on modeling artifacts, mostly state-charts
for the behavior of the system, and structural diagrams for
the main architecture of the system; but models were not
driving the process nor used for generating code.

The control system in operation was one already deployed
in hundreds of wind turbines. As the system was considered
proven and reliable, starting from scratch was not a realistic
choice, instead, a more evolutionary approach was needed.

Considering the limitations of the initial system, the chief
architect was requesting and internally leading the need for
a long-term shift in the design of the WTCS; and indeed,
the entire development team was actually encouraging such
a shift, and so was well prepared for change.

This is the environment where the initial modernization
took place, which indeed was appropriate for the implan-
tation of MBE techniques according to – at the moment –
current [17] and later [48,49] experiences: a highly mo-
tivated workforce, committed to perform changes in their
organization and processes, but following a progressive and
iterative approach which allows a direct return of invest-
ment.

2.3 Towards using Model-based Engineering for Offshore
Wind Turbine Control System Development

The system specification and the control runtime were tan-
gled in the software implementation, and software elements
were actually mapped to control physical subsystems. This
situation introduced some degree of complexity when modi-
fications and customizations were needed at the system level.
This situation also prevented the specialization of different
engineers, something the growing development team was
calling for. It was necessary to separate the wind turbine
system specification (i.e., which elements are controlled by
an individual system, which specific inputs/outputs are used,
which specific params are set, etc.) from the runtime control
software (i.e., the real-time components of the system).

SW
H

W
O

S
Wind Turbine Control Application

Control Units Library

Operating System

Hardware

Execution Engine / Common Libraries

Fig. 1: HW/SW architecture of a Wind Turbine Control Sys-
tem

Figure 1 shows the improved HW/SW architecture of the
WTCS that enabled such separation of concerns. The two
lower layers refer to the HW and the operating system. The
software layer is composed of the following components:

The Execution Engine is a component that cyclically exe-
cutes the algorithms to monitor and control the wind
turbine.

The Control Units Library contains a set of reusable control
algorithms. These are basic blocks, with well defined
interfaces, which can be instantiated and interconnected
to implement the Wind Turbine Control Application.

A Wind Turbine Control Application (WTCA) comprises the
set of algorithms that must be executed in order to ensure
the correct operation of the wind turbine the WTCS is
monitoring and controlling. The control algorithms of the
wind turbine are specified by instantiating control units
available in the Control Units Library and by combining
those instances.

In this software architecture, the Execution Engine is a
stable software component which does not vary from one
wind turbine to another. The Control Units Library is also
a stable component which, generally, does not vary either,
unless some new device is used in a wind turbine and a
custom control unit has to be implemented to control it.
Finally, the WTCA is the part of the software in a WTCS
that is customized for each wind turbine, depending on the
specific requirements that WTCS must met.

The development of a WTCS is a process whereby a
multidisciplinary team of hardware, software and telecom-
munications engineers, as well as electrical, mechanical and
other engineers work in collaboration. However, since the
top layer (WTCA) is the only part that is specific for each
different wind turbine, this paper will only focus on the de-
velopment of the WTCA.

In the late 2000’s, Ikerlan had already implemented dif-
ferent solutions based on DSLs built on top of open-source
tools, and more specifically, on Eclipse [94] and its Eclipse
Modeling Framework (EMF) [89]. Based on this experience,

4 Abel Gómez et al.

WT

sysId : EString
model : EString
version : EString

SystemInput

sysId : EString
description : EString

SystemOutput

sysId : EString
description : EString

SystemParam

sysId : EString
description : EString
value : EInt
settable : EBoolean = false

WTCInput WTCOutputWTCParam

Subsystem

sysId : EString
description : EString

ControlUnit

sysId : EString
description : EString
cycle : EShort
priority : EShort
enabled : EBoolean = false

MainSubsystem

ControlUnit15

[0..*] inputs
[0..*] outputs

[0..*] params

[0..*] controlUnits

[0..*] subsystems

[0..*] subsystems

[1] Input__iInput1
[1] Output__oOutput1

[1] Parameter__pParam1

Fig. 2: Metamodel of the Wind Turbine DSL (excerpt)

the development of a new set of tools exploiting a domain-
specific modeling tool for the development of control ap-
plications for wind turbines – the so-called Wind Turbine
Control Modeler (WTCM) – started, using Eclipse and re-
lated open-source technologies. The WTCM provides the
catalogue of available control units that engineers can use to
develop the algorithms to monitor and control the subsystems
of the wind turbine.

The control system of a wind turbine is typically com-
posed of almost 2000 basic control units, involving about
2000 inputs and up to 1000 outputs, depending on the specific
model configuration. A control unit is a basic and reusable
control algorithm that may be combined with other control
units to build more complex algorithms. The control system
is structured into logical subsystems, each controlling differ-
ent physical subsystems or parts of them. The control of a
wind turbine is built through the aggregation of basic control
units in order to specify those complex algorithms.

Figure 2 shows an excerpt of the metamodel, which
describes the abstract syntax of the DSL provided by the

WTCM. As the figure shows, the control system of a wind tur-
bine (WT) is a parameterizable element (via SystemParam)
that processes a set of SystemInputs to obtain a set of Syste-
mOutputs. This control system contains a set of MainSubsys-
tems – a specific kind of Subsystems3 – and that in turn, con-
tain ControlUnits. Subsystems may also contain other Subsys-
tems following the composite pattern. ControlUnits – which
may be also parameterized using WTCParams – implement
the algorithms which process a set of inputs (WTCInput)
to provide a set of outputs (WTCOutput). For the sake of
simplicity, Figure 2 only shows an example ControlUnit15,
which processes a single input according to a single param,
and produces a single output. As aforementioned, the Con-
trol Units Library is a stable element which, in general, does
not vary. As such, our Wind Turbine DSL contains a subclass
extending ControlUnit for each one of the reusable control
algorithms we have in the Control Units Library.

3 We differentiate between MainSubsystems and Subsystems because,
in our case study, the code generated for the former is inherently different
from the code generated for the latter.

Fig. 3: Screenshot of Wind Turbine Control Modeler

Scalable Modeling Technologies in the Wild 5

Figure 3 shows what the initial implementation of the
WTCM – which implements the Wind Turbine DSL – looks
like. As it can be seen, the initial WTCM is an Eclipse
application, which enables engineers to edit WTCS models
using a regular EMF tree editor. This regular tree editor is
a single-user editor designed to be executed in a desktop
computer. Models created using this tree editor are stored as
XMI [74] files.

Once a model has been created using the WTCM, the
actual C++ code for monitoring and controlling the physi-
cal subsystems can be generated using model-to-text trans-
formations expressed in the Epsilon Generation Language
(EGL) [57].

2.4 Measurable Benefits

The adoption of MBE practices facilitated coping with the
inherent system complexity. One of the reasons was that the
systems were specified in terms closer to the problem do-
main, which gave engineers the ability to detect and resolve
issues at that level, while separating them from the software
implementation details. Thanks to the efficient separation of
concerns in the improved platform, the knowledge about the
system greatly improved among the engineers in charge of
its development. As a result, there was a substantial gain
in terms of efficiency and productivity: Ikerlan adopted the
newly MBE-based solutions in a small group of develop-
ers (around 5 persons), which from that moment on applied
them to the development of 20 new systems with nearly 100
subsystems each. Other developers continued using the old
manual approach. After measuring the time spent to specify
the different models and generate the code for a WT, and
comparing such time with the the time spent to manually
code a similar WTCA in terms of complexity, the results
showed that the time to develop a new WTCA targeted for a
new product using MBE techniques was reduced from 240
weeks to only 15 for a junior engineer; while for a senior
engineer was reduced from 60 to 15 weeks. These improve-
ments where obtained in an incremental way, by refining
the platform that had already been developed, and by taking
advantage of the experience of the in-house developers.

3 Challenges

Today, MBE is used by a group of around 10 developers
working in the R&D area of Ikerlan developing control sys-
tems for new families of wind turbines. The aim of Ikerlan
is to extend MBE technologies to other activities such as
wind turbine control customization for specific customer re-
quirements. Considering that there are more than 30 different
variants of control applications that are still being developed

using non-MBE methodologies, it is expected that the num-
ber of different models can grow significantly within the next
years, increasing the number of developers using modeling
techniques up to 20 or more in the mid-term.

This requirement poses a major challenge to the initial
WTCM approach presented before, as it lacks the features
that would enable a team of engineers to work collabora-
tively: each engineer has to work with their own copy of
the model, and model merging operations – e.g., to include
changes performed by others – need to be carried out man-
ually. This manual process is a complex, tedious and error
prone activity that can take more than half an hour depending
on the amount and type of changes made.

Another important limitation is that engineers do not have
mechanisms to work with a subset of the model. That means
that all engineers must always work with the whole model
(which may add up to thousands of elements as described in
the previous section), although a small subset of elements of
the model can be sometimes enough to perform a specific
modeling or validation activity.

Based on these limitations, the following challenges have
been identified to improve the development of WTCAs:

1. The first challenge is to move from a single-user model-
ing tool built for an engineer to work in an isolated way,
to a modeling tool enabling several engineers to work
collaboratively and securely by sharing – possibly big –
models located in a central repository.

2. The second challenge is the ability to edit partial mod-
els or model fragments. It should be noted that a typical
wind turbine model contains thousands of control units.
Thus, the ability to edit partial models or model frag-
ments allows each engineer to work with a specific part
of the model (as opposed to the whole model), thereby
easing modeling activities. Additionally, the use of model
fragments allows minimizing the volume of data trans-
ferred over the network and limits the number of merge
conflicts.

3. The third challenge is to graphically display and edit
WTCS hierarchical models. Graphical models are more
expressive for this domain as they ease the identification
of relationships between model elements. This is an im-
portant enhancement with respect to the initial tree-based
editor, where relationships have to be found using aux-
iliary views of the editor. Such graphical models, may
contain, again, thousands of elements. Thus, graphical
editors handling such models must be capable of dis-
playing big models while being usable. Such scalable
editors should include additional features like filtering
facilities, hierarchies of diagrams, etc. Figure 4 shows a
mockup of what a graphical WTCM would look like.

4. Finally, the fourth challenge is to enable model editing
using a lightweight mobile device – instead of a lap-

6 Abel Gómez et al.

RotorSpeed

CnvPressure

NacelleHumidity

NacellePressure iPressure oActivation
iDisabled
pUnderPressureLimit
pOverPressureLimit

CnvPump

TowerPump

NacellePump

NacelleChiller

GeneratorCoolerTowerPressureIN
PU

TS
PA

R
A

M
ET

ER
S CnvUnderPressureLimit

CnvOverPressureLimit

NacelleUnderPressureLimit

NacelleOverPressureLimit

TowerUnderPressureLimit

TowerOverPressureLimit

O
U

TPU
TS

iPressure oActivation
iDisabled
pUnderPressureLimit
pOverPressureLimit

TowerPump::PumpCtrl

ConverterPump::PumpCtrl

. . .

. . .

Fig. 4: Wind Turbine Control graphical modeling conceptual mock-up

top – to perform the modeling activities on site in the
wind farm.

4 The MONDO platform

The goal of Ikerlan joining the MONDO project was twofold:
(i) to provide a real-world scenario where the scalable mod-
eling technologies can be tested and evaluated; and (ii) to
improve their development processes by introducing such
techniques. It is worth noting that the fact that MONDO was
being developed as an open-source platform was important,
as one of our requirements was to continue using open-source
MDE tools. The MONDO platform is the open-source so-
lution4 for scalable modeling and model management de-
veloped within the MONDO project. Its main purpose is to
address the shortage of scalable and collaborative support
in state-of-the art technologies within the MBE landscape.
It is composed by several components for the development
of scalable Eclipse-based editors and DSLs, collaborative
modeling, model indexing and scalable model transforma-
tions and queries.

In what follows we describe these main MONDO compo-
nents, focusing on the aspects that were relevant to Ikerlan’s
implementation of its Wind Power infrastructure, and more
specifically, on the components that play an important role
in the solutions presented in Section 5 and the evaluation
presented in Section 6.

4.1 Collaboration

The MONDO Collaboration Framework5 [23] is a set of
server-side and client-side tools and services aimed at im-
proving collaboration among multiple organizations as well
as multiple professionals within a single organization.

4 Sources available at https://github.com/mondo-project/
5 https://github.com/FTSRG/mondo-collab-framework

The framework offers two main avenues of improvement
over the state-of-the-art. First, better security through model-
aware fine-grained access control of modeling artifacts. Sec-
ond, better conflict management either (i) through simul-
taneous multi-user model editing in online collaboration;
or in case of traditional offline collaboration, (ii) through
rule-based model element-level locking to avoid conflicts,
and (iii) through intelligent automated merging to resolve
conflicts when they do occur.

In the following, we present a brief overview of chal-
lenges as well as design decisions to address them, with the
primary focus on access control features.

4.1.1 Motivation and challenges

Access control — The development of complex systems ne-
cessitates intensified collaboration between distributed
teams of different stakeholders (system integrators, engi-
neers of component providers/suppliers, certification au-
thorities, etc.), potentially employed by different compa-
nies. However, such collaboration introduces significant
challenges for access control management to protect the
respective Intellectual Property (IP) of different parties.
For instance, the detailed internal design of a component
needs to be revealed to certification authorities, but it
needs to be hidden from competitors who might supply
a different component in the system. Even within a sin-
gle organization, export control regulations may prevent
certain artifacts from being divulged to external com-
pany offices. Furthermore, certain critical aspects of the
system model may only be modified by domain experts
with appropriate qualifications. For all these reasons, en-
gineering artifacts must undergo access control.

Model fragmentation and granularity — At the time the
development of MONDO Collaboration Framework was
started, access control management in most existing col-
laborative modeling repositories was still in a prelim-
inary phase, supporting permission assignments only

https://github.com/mondo-project/
https://github.com/FTSRG/mondo-collab-framework

Scalable Modeling Technologies in the Wild 7

globally, or using fragments (i.e. on the level of model
files or projects). In order to share various parts of system
models between collaborators, models needed to be split
into a large number of static fragments (e.g. over 1000 for
automotive models). Consequently, the re-fragmentation
of the model (which may be necessary when collabo-
ration roles, model contents or policy decisions evolve)
is hard or infeasible. Therefore, static fragmentation be-
comes both a scalability and usability bottleneck. Static
fragmentation can be mitigated by fine-grained access
control where each model element may have its own
set of permissions. Unfortunately, large industrial mod-
els may have millions of model elements, thus explicitly
assigning permissions for each element would be labor-
intensive and error-prone. Moreover, understanding and
maintaining permissions after model changes can also be
problematic.

Online and offline collaboration — System models are tra-
ditionally developed either in an offline or online manner.
In offline collaboration, which is very common in cur-
rent MBE practice, engineers check out an artifact from a
repository into a local copy, work on their disconnected
copy for an arbitrary duration, and then commit local
changes to the repository in asynchronous (long) trans-
actions. In online collaboration, engineers may simulta-
neously access and edit a model in short synchronous
transactions which are immediately propagated to all
other users. This latter strategy is similar to online collab-
orative office tools like Google Docs, and it is showcased
in modeling tools like WebGME [64], AToMPM [20],
GenMyModel / Web Modeling Framework [96] or Meta-
Edit+ [99].
In the offline case, all information available to a specific
user (accounting for read access control) needs to be
provided as a self-contained model that can be displayed
and edited by existing off-the-shelf modeling tools. Sim-
ply hiding elements from the user interface of a desktop
modeling tool is insufficient, as the IP is still accessible
on the client side e.g. by file inspection. Hence, a filtered
but modifiable model that excludes any confidential in-
formation needs to be sent to each client. Furthermore,
the online scenario requires immediate change propaga-
tion, where model modifications need to be evaluated in
an efficient, reactive way in response to the change; this
change processing must account for write access control
(is the user allowed to make this change?) as well as read
access control (which other users are allowed to see the
effects of this change?).

Conflicts and merging — Effective collaboration requires
that engineers working simultaneously do not interfere
with each other. This is traditionally achieved by par-
titioning the model into fragment files and providing
file-level locks; while object-level locks are also avail-

able in some systems. The former is too coarse-grained
and thus prone to overlocking (needlessly preventing un-
related edits), while the latter may be too fine-grained
and may easily lead to accidental underlocking (where
locks fail to prevent conflicting edits). Conflicts are es-
pecially prevalent in asynchronous offline collaboration,
where individual collaborators execute longer checkout-
commit cycles, with a larger chance of conflicting edits
happening in the meantime.
When conflicts do occur, the alternative versions have
to be correctly merged. Computing differences, conflicts
and merged resolutions is significantly more complex
over MBE models with graph-based knowledge represen-
tations (and complex well-formedness rules) than over
textual source code. Inter-model dependencies make con-
flicts surprisingly easy to introduce and hard to resolve.

4.1.2 Architectural overview

The central component of the MONDO Collaboration Frame-
work is the MONDO Collaboration Server [10], which en-
forces fine-grained access control during both offline and
online collaborative modeling. The server provides secure
views with precisely defined model access to each collabo-
rator, synchronized with each other by bidirectional model
transformations [25]. In particular, a transformation applies
read access restrictions to present a filtered view to a user,
while a separate transformation merges changes proposed by
a user into the unfiltered model (if write access restrictions
allow); both transformations are automatically derived from
the declared access control policy.

In the offline collaboration scenario, the server hosts
models in a version control system (VCS). However, tra-
ditional source code repositories cannot address the chal-
lenges associated with fine-grained access control of models.
The MONDO Collaboration Server provides multiple user-
specific version histories instead, which are all synchronized
with each other; see the architecture depicted in Figure 5. The
full and unabridged model is versioned in the so-called gold
repository which is inaccessible to the actual users. There is
also a separate front repository dedicated to each user, that
contains a copy of the gold repository, with complete ver-
sion history (black vertical arrows in Figure 5), where the
contents of each version snapshot is filtered according to the
read access privileges of that user (see solid green horizontal
arrows in Figure 5). Users are given access to a dedicated
front repository so that they can read the current or histor-
ical contents of the model files (up to their read privileges)
and commit their changes (which may be denied based on
write permissions). In case changes (see dashed arrows in
Figure 5) are successfully committed, they are transparently
propagated to the gold repository (blue dashed horizontal ar-
row), and then, by the usual filtering, to the front repositories

8 Abel Gómez et al.

Fig. 5: Overview of access control (offline collaboration)

Fig. 6: Overview of access control (online collaboration)

of all other users (green dashed horizontal arrow). In their
normal day-to-day workflow, users interact with their front
repository using standard VCS protocols and off-the-shelf
VCS client software.

For an online collaboration scenario, MONDO provides
an online collaborative modeling tool, where users can open,
view and edit models stored in the VCS backends using a
web browser, thus no client software needs to be installed.
As depicted in Figure 6, multiple users can collaborate on
the same model simultaneously, enjoying the same access
control mechanism that underlies the offline collaboration
framework. The editor is provided as an Eclipse RAP-based
web application [95]; note that the model editing Web UI is
language-dependent, and thus has to be provided separately
for each supported modeling domain.

4.1.3 Query-based access control

As argued before, security needs a fine-grained access con-
trol mechanism that must determine the permissions of each
model element in the model. It would be possible to adopt
a low-level specification method, i.e. require engineers to
manually assign security permissions to each model element,
each attribute slot value and each cross-reference. However,
industrial wisdom (see e.g. the survey [98], itself citing sev-
eral older surveys in the field) advises against such a solution,
and advocates for "high-level specification of access rights"

instead. Indeed, the low-level approach suffers from the fol-
lowing difficulties:

– the necessary per-element permission annotations would
form a large amount of additional user input;

– manually specifying and correctly maintaining them ac-
cording to organizational security policies would put an
undue burden on each collaborating specialist that edits
the model;

– as such a large amount of security-critical user input, they
would be prone to contain errors (with business-critical
consequences) that are difficult to test for in an automated
fashion;

– overseeing them and auditing them for conformance with
organizational security policies would be labor-intensive
for security officers.

We have therefore chosen a high-level alternative for
specifying access rights. A rule-based approach for con-
cisely defining fine-grained model access control policies
has been proposed in [10], where a single rule may grant or
deny permissions for many elements in a model selected ac-
cording to a model query. A MONDO Access Control Policy
combines individual rules with various priority classes, in
addition to applying sensible defaults, according to seman-
tics defined in [24]. An incremental evaluation mechanism
was provided in [11] so that the access control policies can

Scalable Modeling Technologies in the Wild 9

be reactively applied after each single editing operation in
the online collaboration scenario.

The key distinguishing feature of MONDO Access Con-
trol from (non-model-based) standard rule-based policy lan-
guages (such as XACML [43]) is that it applies to models.
Therefore, it uses expressive model queries (graph patterns)
to identify the model elements to which the rules of the
policy are applicable. Furthermore, it ensures referential in-
tegrity of the model throughout the interactions of rules, so
that the filtered local copies provided in the offline scenario
are consistent, if incomplete, models.

4.1.4 Locking and merging

The MONDO Collaboration Framework implements a novel
property-based locking technique introduced in [26], which
is a common generalization of several widely used lock-
ing approaches. Property-based locks can be used to pro-
tect model editing operations (including complex refactor-
ings) by capturing their pre-conditions as a declarative query.
The lock forbids other users from concurrently changing the
model in a way that affects the result set of the query, thereby
violating a precondition of the lock owner. The MONDO
Collaboration Server applies locks analogously to access
restrictions.

Nevertheless, conflicts occasionally do occur and have to
be merged. The framework includes a client-side tool called
DSEMerge [27] – and seamlessly integrated into Eclipse-
based client modeling environments – that performs auto-
mated search-based model merge. The tool computes and
displays possible candidate resolutions (conflict-free merged
models) for a conflict, from which the user can select the most
suitable one. In the fortunate case where there are no conflicts
between element-level changes (even if there was a file-level
conflict), the tool comes up with a single "perfect" solution
candidate that includes all changes, so that the user does not
even have to choose, but merely approve. Otherwise, choos-
ing a solution is assisted by several summary metrics such as
the number of elements deleted, number of changes included
in the solution, etc.

More precisely, the tool identifies the set of individual
model editing operations on the two branches to be merged
(since the last common ancestor), and automatically pro-
duces the set of "maximally merged" conflict-free states that
cannot be extended further by including more of these edit-
ing operations. The developer of the modeling language may
provide additional domain-specific insights to further im-
prove this mechanism. By default, the solution candidates are
constructed by breaking down the overall model differences
into atomic edit operations (e.g. modify attribute, delete ob-
ject), but this may be overridden if complex domain-specific
semantic edit operations and resolution rules are provided.
Furthermore, beside obvious hard contradictions (e.g. as-

signing different values to the same attribute), the notion
of "conflict" may include domain-specific well-formedness
rules as "soft goals". The automated generation of candidate
solutions may also take into account a distinction between
essential and incidental modifications, e.g. a core design
decision vs. simply rearranging a diagram; obviously, the
former kind is prioritized over the latter.

4.2 Model indexing

Hawk6 is a model indexer: it keeps an up-to-date read-only
view of model collections (aka a model index) and facilitates
performing efficient queries on them. Hawk monitors local
or remote data locations (such as local file directories, ver-
sion control systems like Git or SVN or remote URLs) and
periodically synchronises itself with model files of interest
in these monitored locations.

4.2.1 Using Hawk as part of the MONDO Platform

Hawk enables scalable queries on models in the MONDO
platform. By querying model indexes of such models (in-
stead of the originating model fragment files), the MONDO
platform is able to perform various read-only operations in a
scalable and incremental manner. For example, a graphical
editor needing to display parts of a very large EMF model
is able to query Hawk for the subset of model elements it
currently needs to display, hence visualizing it in a more
efficient way (in terms of time and memory use) than if it
needed to load the entire model from its originating frag-
ments. This can be extended to queries performing arbitrary
computations on parts of large fragmented models (such as
the ones created by Ikerlan), as such queries can execute
without having to load, resolve or navigate through the parts
of the model they are not interested in. Further information
on Hawk, including its updating and querying policies, can
be found in [5,6,7,38].

4.2.2 Architectural overview

Figure 7 shows an overview of Hawk, focusing on how its
components interact to maintain an up-to-date model index:

Version Control Managers — Specific for each version con-
trol system (VCS), these components need to compute the
set of changed files (added, removed or updated) relative
to the revision last indexed by Hawk (and the current
latest version in the VCS).

Model Resource Factories — These components offer
parsers for reading from specific model persistence for-
mats, like EMF models persisted in XMI or Modelio [66]

6 https://github.com/mondo-project/mondo-hawk

https://github.com/mondo-project/mondo-hawk

10 Abel Gómez et al.

Fig. 7: Component architecture of Hawk

models in XML. Such parsers take as input the contents
of files (provided by version control managers) and pro-
duce as output a uniform in-memory representation (“re-
source”) of such models.

Model Updater — This component receives resources cre-
ated by the appropriate model parser(s), and inserts/up-
dates them into Hawk’s persistence (database), through
back-end specific drivers. The structure of these stores
assumes that such back-ends provide a mechanism for
rapidly accessing specific elements using a key (aka
database indexing). This is the case for many popular
stores such as MySQL, MongoDB or Neo4J, which in-
clude their own embedded database indexes.

Query Engine — This component provides a bridge be-
tween Hawk and any model management tools querying
it. Queries can be performed on both local and remote
Hawk model indexers and can return textual or numeric
results, as well as collections of model elements.

4.3 Pattern-based scalable DSLs

DSL-tao7 [80] is the component within the MONDO plat-
form that enables the systematic development of scalable
graphical DSLs based on EMF. Its working scheme is de-
picted in Figure 8.

DSL-tao supports the systematic creation of DSLs by
reusing patterns. It supports 5 types of patterns, covering the
different aspects of DSL design: domain, design, infrastruc-
ture, semantics and concrete syntax. The patterns either help
in designing the metamodel (e.g., design and domain pat-
terns), or contribute with services for the final environment
(e.g., infrastructure, semantics and concrete syntax). This
way, DSL-tao profits from an extensible library of metamod-
eling patterns, which are instantiated and combined when
building a DSL. Some of the currently supported domain
patterns (e.g., for variants of state machine, workflows, ex-

7 https://github.com/jdelara/DSL-tao

Pattern
repository

DSL
Designer

Domain
Design

Concrete Syntax
Infrastructure

Semantics

DSL-tao

DSL-metamodel

pattern
occurrence

fragmentation
visibility
scoping
indexing
scoped validation
concrete syntax

EMF-Splitter

DSL
Users

Generated
environment

Fragmented model
persistence

Hawk

Code
Gen.

Fig. 8: Working scheme of DSL-tao

https://github.com/jdelara/DSL-tao

Scalable Modeling Technologies in the Wild 11

pressions, etc) were extracted from the analysis of existing
metamodels in public repositories [80].

DSL-tao provides extensibility mechanisms, so that new
patterns can be added to its repository. A new pattern can
contribute its own wizard to facilitate its instantiation, and
with services (realized by code generation) to contribute
functionality to the final modeling environment. This way,
a number of infrastructure patterns have been created, to
define modularization strategies for DSLs, including pat-
terns to define fragmentation strategies (so that models are
not persisted in a monolithic way), visibility (to define ac-
cess rules for model elements), scoping (to specify reference
scope), filtering (to select interesting objects) and graphical
concrete syntax support, among others. The application of
these patterns, and their associated services are contributed
by EMF-Splitter8 [41], a tool that can also be used stand-
alone. The generated environments rely on Sirius for graph-
ical model editing, while Hawk [4] – the MONDO model
indexer – is used for efficient look-up of models element
across fragments.

In the following, we explain the different parts of the
approach: the pattern structure and application process (Sec-
tion 4.3.1), the modularization patterns (Section 4.3.2), and
the concrete syntax pattern (Section 4.3.3).

4.3.1 DSL Patterns

Our DSL patterns have the form of a metamodel, which is
conceptually located one meta-level higher than the domain
metamodel being built. The elements of a pattern are called
roles [60].

To apply a pattern, its metamodel is instantiated and then
integrated into the existing domain metamodel. This integra-
tion requires first a mapping from the roles in the pattern
instance to the elements in the domain metamodel. Once this
identification is made, an automatic merge operation adds
to the domain metamodel the roles in the pattern that are
not mapped, and annotates the metamodel elements with the
pattern roles.

Figure 9 illustrates the scheme of pattern application.
Label 1 depicts a simple metamodeling design pattern de-
scribing tree structures [13]. The pattern has two class roles
(Tree and Node), two reference roles (root and children) and
two attribute roles (ordered and ident). The ordered attribute
role is a configuration attribute (indicated using the “@1”
potency annotation [2,61]), meaning that it takes a value
when the pattern is instantiated, rather than being mapped to
an attribute in the domain metamodel.

In Figure 9, label 2 shows the pattern instantiation the
metamodel designer has chosen, where two instances of chil-
dren and ident have been created. Label 3 shows an excerpt
of a domain metamodel the designer is working on. To apply

8 https://github.com/antoniogarmendia/EMF-Splitter

Tree

root 1

Node

1..*

pattern

ordered@1: bool

ident: String

:Tree

:root

:Node

pattern
instance

2

ordered= true

:ident: String
:ident: String

0..*

1

children
*

1..*

: children : children

WT

Subsystem

Versioned

version: String

1

sys

ctrl
*

3

WT

Subsystem

sysId: String

Versioned

version: String

sys

*
ctrl

aux
«ident»

«Node»

«root»

«children» «children»

«Tree»

«ident»

domain
MM

mapping

4

…

…

updated
domain
MM

Fig. 9: Scheme of pattern application.

the pattern, mappings between the pattern instance and the
domain metamodel need to be established. Our mechanism
supports structural matching, so that, e.g., ident in Node is
mapped to version in class Versioned. As the Figure shows,
the merge operation creates the elements not mapped in the
pattern instance in the domain metamodel, and annotates the
domain metamodel elements with the pattern roles. The cre-
ated elements take by default the name of the role element,
but this name can be changed when the mapping is being
defined (as in case of the example). When the pattern is ap-
plied, if an element with same name already exists in the
metamodel, a new name is generated (concatenating a nu-
merical index). Other conflicts (e.g., inheritance cycles) are
automatically detected either when the mapping is created,
or when the pattern itself is applied. In both cases, an error is
reported, and the engineer is asked to change the mappings.

It must be stressed that the pattern may bring services
to the generated domain-specific environment, for example,
constraints ensuring a proper order in case of ordered trees,
and operations ordering the tree according to the selected
identifiers. By defining these services on the pattern, they
become reusable for any metamodel where the pattern is
applied. Moreover, this approach also brings benefits when
the DSL evolves. In this case, the designer needs to change
the mappings to accommodate the change, and regenerate
the environment again with the updated service provided
by the pattern. This way, the service code does not need
to be changed by hand, but only the mappings need to be
modified. If the services would have been defined directly on
the domain metamodel, the designer would have needed to
manually modify the code implementing the service, which
typically would require more effort.

While role cardinalities support the customization of a
pattern for a given context, our patterns also support more
coarse-grained variation. For example, in case of trees, in

https://github.com/antoniogarmendia/EMF-Splitter

12 Abel Gómez et al.

Project Package

<<abstract>>
Container

<<abstract>>
Containee0..*

contents

(a) (b)

<<Project>>
WT

sysId: EString<<name>>

icon=“wt.png”

<<abstract>>
IdentifiableElement

name: Estring
icon@1: Path

<<Unit>>
SystemInput

<<Unit>>
SystemOutput

<<Unit>>
SystemParam

icon=“sys-i.png”
extension=“input”

extension@1: EString

Unit

icon=“sys-p.png”
extension=“param”

icon=“sys-o.png”
extension=“output”

icon=“subsystem.png”
extension=“sub”

<<Unit>><<Package>>
Subsystem

sysId: EString <<name>>

subs 0..* subs

0..*

0..* 0..*

inputs

outputs

params

0..*

Fig. 10: (a) Fragmentation modularity pattern (b) Applying the fragmentation pattern to the WT metamodel.

addition to the simple structure shown in Figure 9, we may
have structured trees (enabling the differentiation of leaf and
non-leaf classes, leading to a structure similar to the com-
posite pattern [37]), trees changing over time, or overlapping
trees (whose nodes may share a parent node), among oth-
ers [13]. This way, we support pattern variants, which are
selected through a feature model [51].

4.3.2 DSL modularization patterns

In MDE, models are the main assets used to create soft-
ware. However models frequently lack native modularization
mechanisms, unless they are explicitly encoded in the mod-
eling language and implemented in the supporting modeling
environment. Thus, we have devised a number of patterns
to provide modularity services to the DSL environments. In
this sense, we follow a similar philosophy to the Java Devel-
opment Tools (JDT). In this way, each model corresponds
to an Eclipse project, and the model content will then be
fragmented into units, and organized in folders, with a direct
mapping to the file system.

The main pattern to achieve this modularity is the frag-
mentation pattern, shown in Figure 10 (a). This pattern de-
fines Project, Package and Unit as classes roles. Language
engineers can configure which classes in the domain meta-
model will play those roles. For example, typically the class
that is mapped to Project will be the root class in the meta-
model (the one that directly or indirectly contains all the
other classes). As a result, each time this class is instantiated
in the generated environment, a new modeling project (i.e., a
folder that will hold all fragments of the model) is produced.
Similarly, when a class with role Package is instantiated, the
environment creates a folder in the file system, together with
a hidden file storing the value of the class attributes and non-
containment references. Finally, instantiating a class with
Unit role results in the creation of a file that holds instances

of the classes that can be directly or indirectly reached by
means of containment relations.

The application of the fragmentation pattern to the WT
metamodel is shown in Figure 10 (b). The WT class has been
assigned role Project, while Subsystem has been assigned
roles Package and Unit. This means that within WT projects
we can find both, folders and files to represent subsystems,
and the model developer chooses which representation is
desired. Finally, classes SystemInput, SystemOutput and Sys-
temParam are assigned role Unit.

Hence, altogether, by using this pattern the DSL designer
can devise a suitable fragmentation strategy for the DSL,
so that models are no longer monolithic, but fragmented
and structured according to the chosen strategy. Technically,
we rely on EMF crossreferences to realize references across
fragments. These are based on the creation of proxy objects,
which are only resolved when the reference is navigated.
Moreover, the environment uses Hawk to optimize the han-
dling of the different model fragments.

4.3.3 DSL concrete syntax patterns

In our approach, the concrete syntax of the DSL is defined
by applying patterns as well. Two patterns are currently sup-
ported, to visualize the models in the form of graphs (graphi-
cal syntax), or tables (tabular syntax). These concrete syntax
patterns enable the creation of language families with similar
representations. In the case of graphical syntax, we support
the definition of nodes, edges and spatial relationships be-
tween elements for visualization in a graphical editor. The
concrete syntax patterns can be used to automate the gener-
ation of editors supporting the defined syntax (which other-
wise should be implemented by hand), and can be attached
to domain (e.g., the state machine pattern [80]) or design
patterns (e.g., the tree pattern) in order to define different
default visualization options for them.

Scalable Modeling Technologies in the Wild 13

GraphicRepresentation

name: String

Layer

name: String

1..*

layers defaultLayer

1..1

<<abstract>>
DiagramElementType

EdgeClassType NodeType

diagElements

0..*

Shape
0..1

spatialRelations

Ellipse

width: Integer
height: Integer

Rectangle

width: Integer
height: Integer

Figure

filePath: String

edgeStyle

EdgeStyle

decorator: String
width: Integer

0..1

<<abstract>>
SpatialRelation

0..*

Containment Affixed

EdgeReference

width: Integer
height: Integer

edgeReference

0..*

0..1 edgeStyle

Fig. 11: Excerpt of the GraphicRepresentation metamodel

The application of the concrete syntax must map the
classes in the domain metamodel to a graphical element.
This process has many specificities (like selecting figures
for nodes and decorators for edges), that is why we imple-
mented a dedicated wizard to facilitate this task (shown later
in Figures 13 and 14). For instance, the customized wiz-
ard implements heuristics to decide which classes will be
represented as nodes, which ones as edges, the attributes to
display, and the nodes that are containers of other nodes.
Then, the designer can refine the inferred concrete syntax
and fine-tune the visual representation for nodes and edges,
using the pattern wizard.

The wizard allows customizing the heuristics that best
suit the metamodel for which the environment is generated.
The heuristics analyze the classes and references defined in
the metamodel and infer a visual representation. For example,
to choose the root node there are two strategies: choosing the
class that contains more children (classes) or the class that
does not have parents. The first strategy counts how many
classes are contained in each class and selects the one that
contains more. The second strategy suggests classes that are
not contained in other classes. Both strategies are based on
the tree of containment references defined in the metamodel.

With respect to edges, our heuristics support selecting
edge-like classes and references as edges. In the first case, we
select the classes that define two non-containment references
with lower bound 0 or 1, and upper bound 1. These two
references will be mapped to the source and target of the edge
representation for the class. In second case, the heuristics
identify the references that will be displayed graphically as
edges, compartments or affixes.

We consider abstract syntax metamodels defined in Ecore,
for which the concrete syntax can be established according
to Figure 11. In particular, classes in the domain metamodel
can be represented either as nodes (class NodeType) or as

edges (class EdgeClassType) and are referred to through the
class DiagramElementType. In case the class is represented
as an edge, it is possible to configure the references of the
class acting as source and target of the edge. References
in the domain metamodel can be mapped into EdgeRefer-
ences, and their concrete syntax annotations are mapped into
an EdgeStyle. All created graphical elements are included in
the default layer.

Technically, the concrete syntax pattern relies on Sirius.
This way, once the pattern is applied, the generated modeling
environment will automatically feature Sirius-based editors
to edit the different model fragments.

5 MONDO Solutions for Offshore Wind Power

Using the previous core MONDO infrastructure, three mod-
eling solutions have been implemented in Ikerlan. These
three modeling solutions aim to cover the different scenarios
showing up in Ikerlan (see Section 6.1), where the challenges
listed in Section 3 emerge. Next we describe these solutions,
whose sources and demonstrators are also available online9.

5.1 The Online Concurrent WTCS Modeling Solution

The Online Concurrent WTCS Modeling Solution is a web
modeling application that allows multiple modelers to share
a modeling session. All modelers can work concurrently with
the same WTCS model versioned in a model repository. All
changes performed by a modeler are automatically propa-
gated to all other modelers, constantly providing them with
an up-to-date version of the model.

9 https://github.com/mondo-project/mondo-demo-wt

https://github.com/mondo-project/mondo-demo-wt

14 Abel Gómez et al.

Besides allowing concurrent modeling activities, this so-
lution also supports working with partial models. It means
that each modeler can work with a different view of the
same model, thus editing a different fragment of it. This
feature is possible thanks to the model access rules, which
can be defined by using the model access control policy lan-
guage provided by the MONDO Collaboration Framework
(see subsection 4.1). This is achieved by creating a custom
model view containing only the model elements a user is al-
lowed to see and edit, hiding all other elements in the model.
Unauthorized editing of model elements is also prevented
as a consequence of using this process. The Online Concur-
rent WTCS Modeling solution allows modelers to commit
the changes performed in the model to the model repository.

The Online Concurrent WTCS Modeling Solution is a
web application that can be accessed both from desktop com-
puters and mobile devices. Each in-memory model session
is managed by the MONDO Collaboration Server, which
transparently enforces the model access rules by (i) filtering
the content to be presented in the web-based model editor to
each of several simultaneously connected users and (ii) inter-
cepting their model edit operations for write access control
and propagation to the views of other users10.

5.2 The Offline Collaborative WTCS Modeling Solution

The Offline Collaborative WTCS Modeling Solution is an
Eclipse-based modeling application that runs locally. It en-
ables several engineers to work with a shared model, but
unlike the solution presented above, collaborative modeling
is done asynchronously, i.e., each modeler working with the
shared model edits a local copy of the shared WTCS model,
which is checked out (or updated) from a model repository.
When model editing has finished – or whenever the user de-
cides – a commit operation is requested and the MONDO
Collaboration Server carries out the operation.

From the perspective of engineers using the modeling
platform, the main difference between the offline and online
modeling solutions is that the offline solution allows the user
to check out a disconnected, persisted copy of the model.
This local version can then be processed by legacy or off-
the-shelf MBE tooling. The user has to explicitly commit
any local changes to the server, and merge with changes that
may have been performed in the mean time. This is aided by
a full version history maintained on the server, providing a
standard version control repository interface for client-side
or server-side tooling to interact with.

Access control restrictions, imposed by the same policy
introduced above, are of course enforced in the offline solu-

10 For more information and screenshots about the Online Concurrent
WTCS Modeling Solution (Section 5.1) and the Offline Collaborative
WTCS Modeling Solution (Section 5.2), refer to the public MONDO
deliverable [97].

tion as well. This is achieved by introducing access-filtered
replicas of the version control repository hosting the models.
There will be a separate front repository for each different
user role and it will contain the (version history of the) filtered
partial model for that user role. The MONDO Collaboration
Server will be in charge of keeping synchronized all the front
repositories with the so-called gold repository (hidden from
users), which will always contain the whole WTCS model.
This synchronization will be done when any commit oper-
ation is carried out. For synchronizing the gold repository
and all the front repositories, model access rules described
above will be used by the MONDO Collaboration Frame-
work, to take into account the permissions each user will
have to access and edit model elements. This way forbidden
model editing operations will be detected by the MONDO
Collaboration Framework before any commit operation is
performed and the commit requested by the modeler will be
rejected.

As aforementioned, in MONDO, the management of par-
tial models in an offline manner is handled by the MONDO
Collaboration Server (see subsection 4.1) which performs
the synchronization between all the front repositories and
the gold repository; there exists a different front repository
for each different user type which contains the partial model
for that user type. The modeling client, therefore, only needs
to include an off-the-shelf VCS client in order to be able
to participate (by communicating with their dedicated front
repository using standard VCS protocols).

However, for more efficient handling of conflicts, the Of-
fline Collaborative WTCS Modeling Solution is additionally
bundled with DSEMerge [27] (see subsection 4.1), which is
the MONDO solution for automated model merging. DSE-
Merge may be customized for each modeling language by
domain-specific operations and well-formedness constraints
in order to reduce the search space and obtain accurate
merged models (that are semantically consistent as well).
Such operations and constraints should be defined only once
for a given domain, and not once per each merge activity.
In case of Offline Collaborative WTCS Modeling Solution,
we specified no domain-specific operations, and only ap-
plied the following custom well-formedness constraints: it is
mandatory that all SystemInput and SystemParam instances
should be referenced by at least one control unit and each
SystemOutput has to be referenced by a unique control unit.

Apart from collaboration related operations, the way a
model user will work with the Offline Collaborative WTCS
Modeling solution is quite similar to the way the modeler
was working with the tree-based single user modeling tool
introduced in Section 2.3: in summary, the engineers will
now have all the features that will allow them to work in
collaboration with other engineers but without having to
change the way they were used to.

Scalable Modeling Technologies in the Wild 15

Fig. 12: Graphical editor for Offline Collaborative WTCS Modeling solution

Fig. 13: Applying the Graph-based representation pattern

5.3 The Offline Graphical Collaborative WTCS Modeling
Solution

The Offline Graphical Collaborative WTCS Modeling So-
lution is a Sirius-based editor, which allows editing WTCS

models graphically, as depicted in Figure 12. As mentioned
above, WTCS models edited by the offline modeling solution
are built with the Wind Power domain specific tree editor,
but, as mentioned in Section 3, an important challenge is the
capability of editing WTCS models graphically, with an ed-

16 Abel Gómez et al.

Fig. 14: Shape selection and visualization details

itor that provides advanced features like drill-down, element
filtering, layers, custom views, different diagrams, etc.

This challenge has been addressed by integrating a Sirius
based graphical editor in the Offline Collaboration WTCS
Modeling solution. This way, the same model (and model
fragments) that can be edited by the EMF based tree editor
and the graphical editor based on Sirius, taking advantage
of all the functionality Sirius provides. Both client modeling
perspectives enjoy the same collaborative features.

It must be noted that the ability to edit models using
graphical diagrams based on Sirius is not a contribution of
MONDO project, but a contribution of the developer team
of Sirius. As the MONDO project was progressing, Sirius
has become one of the most widely used Eclipse components
to build graphical EMF-based model editors. For this reason
it was decided to use Sirius for addressing the challenge of
editing graphical models in this Wind Power use case. Hence,
the MONDO project has been focused on facilitating creation
of and integration with Sirius based modeling editors.

Taking this into account, we integrated the graph-based
representation concrete-syntax pattern explained in Section
4.3.3 into DSL-tao in order to simplify the process of con-
struction of this kind of editors based on Sirius. Although

Sirius provides its own tools to design graphical editors, this
design activity carried out using Sirius design tools can be
time consuming, and the graph-based representation pattern
aims to make this process much more simple to the DSL
designers, hiding low level details of Sirius graphical speci-
fications, which must be taken into account if design is car-
ried out using Sirius design tools. Therefore, we designed the
graphical concrete syntax for the wind power DSL using the
graph-based representation pattern provided by DSL-tao.
This design pattern provides a wizard-based design process.
The steps followed to build the graphical syntax are shown
in Figures 13 and 14.

The first step consists in selecting the pattern through
DSL-tao, as shown in Figure 13. This Figure shows the main
DSL-tao canvas in the background, with the DSL metamodel,
and a pattern view that permits browsing and selecting the
patterns to be applied to the metamodel.

It shows the first page dedicated pattern wizard, which
allows the combination of heuristics to automatically gener-
ate a graphical representation for the metamodel. The wizard
offers different heuristics for the automatic selection of a root
class representing the diagram (box Root strategies). In this
case, we use the Class with no parents to select the class that

Scalable Modeling Technologies in the Wild 17

is not contained in any other class, which in this example
is the WT class. The heuristics also permit the automatic
proposal of a suitable label for each class representation (La-
bel Selection). For this example, we select the first string
attribute of the class as its label. In addition, the heuristics
can detect the Edge-like nodes (Arc Strategies), which are
the classes holding two non-containment references. Finally,
it is possible to decide how containment references will be
represented (section Links & Compartment & Affixed Se-
lection Strategy). This way, it is possible to visualize them
as edges, or via spatial relationships (containment or adja-
cency). In our case, we select that containment references
will be mapped as affixed elements since, at it can be seen in
Figure 12, the parameters, input and outputs are positioned
at the border of the control units.

Once these initial settings are configured, the represen-
tation for nodes and edges can be refined, and organized in
layers, as seen in Figure 14 (label 1). Finally, visualization
details (shapes, link decorators, colors, labels, etc.) can be
set, as shown in Figure 14 (label 2).

The wizard permits defining various visualizations for
different parts of the meta-model, to create a multi-view en-
vironment (see button “Another representation” with label 3
in Figure 14). This way, we generated a view that permits
exploring the hierarchical representation of the WTCS mod-
els. As a result, the diagram on the left in Figure 12 shows
a global view of model subsystems, and the diagram on the
right, shows the details of the Subsystem_1 element.

The result of this design process is the graphical model
editor we showed in Figure 12. We have used this editor to
carry out the evaluation related to the graphical visualization
and editing of WTCS models.

6 Evaluation

In order to assess the success of the MONDO technologies
in the Ikerlan MBE processes, an evaluation has been per-
formed. This section reports on the methodology used and
results obtained from this evaluation.

6.1 Evaluation Framework

Three realistic scenarios, which express the four challenges
presented in Section 3, are used for the validation of the
MONDO technologies:

Scenario S1: Wind turbine control design — Different sys-
tem engineers work concurrently on a single model, mod-
eling different subsystems. Each system engineer works
on a partial model or submodel and MONDO technolo-
gies shall merge all the partial models into a unified one.

Scenario S2: Wind turbine commissioning — A system en-
gineer works on a particular submodel during the com-
missioning of a subsystem. Transformations for code
generation will only take into account the artefacts con-
tained in (and referenced from) the submodel the engi-
neer is working on.

Scenario S3: Maintenance activities in the wind farm using
mobile devices — A maintenance operator of a wind
farm detects a malfunction of a non-critical element in
a wind turbine. This causes the wind turbine to be out
of operation. The engineer makes a minor change in the
control model and obtains new code, including auto-
matically generated tests, to put the wind turbine into
operation in a degraded mode. These changes – typically
minor changes in values and conditions – are made using
a tablet or a mobile device.

The solutions presented in Section 5 support the three
aforementioned scenarios:

Scenario S1 can be supported by two MONDO solutions:
the Online Concurrent WTCS Modeling Solution and the Of-
fline Collaborative WTCS Modeling Solution. Although in a
different way, both solutions allow several engineers to work
in parallel on the algorithms for the different subsystems of
a wind turbine. Likewise, both solutions manage all changes
performed by each engineer merging them in a single WTCS
model.

Scenario S2 is supported by the Offline Collaborative
WTCS Modeling Solution. A specific subsystem manager is
allowed to load only a fragment of the entire WTCS model.
Thus they can only edit the part of the model for the subsys-
tem under their responsibility. The subsystem manager also
has the ability to generate code for the subsystem.

Scenario S3 is supported by the Online Concurrent
WTCS Modeling Solution. As this is a web based solution
deployed on a web server, it can be accessed using a tablet.
Thus, on-site modeling operations related to maintenance
activities can be performed by the maintenance operator.

In order to better measure the impact of MONDO tech-
nology in the development of a WTCA, several indicators
have been defined for purposes of this assessment. Such in-
dicators express industrial needs of Ikerlan that were difficult
to jointly satisfy with the state of the art before the MONDO
project.

Their suitability for assessing the modeling solutions is
explained below:

Time for committing model changes — Collaboration was
not supported in the modeling solution for the Wind
Power domain before the MONDO project. Thus, a merg-
ing operation when several engineers modified their mod-
els had to be carried out by hand. Model merging was
tedious and error prone task, which could take from two
or three minutes for slight model modifications, up to

18 Abel Gómez et al.

Table 1: Quantitative Measures and Evaluation Criteria

id description sufficient good excellent

QN1 Increase in time for loading a model on a tablet instead of on a PC 25% 15% 10%

QN2 Number of concurrent users working with a model 2 3 5+

QN3 Time for change propagation and notification among concurrent users <5 s <3 s <1 s

QN4 Maximum number of elements that can be displayed in a diagram 25 50 >50

QN5 Time for loading a diagram having 25 elements to be displayed 2 s 1 s <1 s

QN6 Time for committing model changes <5 s <3 s <1 s

QN7 Performance impact caused by the MONDO Collaboration Framework <5% <2% <1%

QN8 Time reduction for building graphical domain specific modeling editors 25% 50% 75%

Table 2: Qualitative Measures

id description

QL1 Is there a methodology which specifies how a large DSL should be constructed?

QL2 Is there a tool support for the methodology, which guides the user on the construction of a large DSL?

QL3 Does this tool provide a way to create a basic but fully functional collaborative domain specific modeling tool?

QL4 Is MONDO technology mature enough to be used in industrial solutions?

QL5 Does MONDO technology allow concurrent editing of a model?

QL6 Does MONDO technology allow partial loading of models?

QL7 Does MONDO technology allow progressive loading of a model?

QL8 Does MONDO technology allow working with several modeling languages in a single tool?

QL9 Can a model be edited using a tablet?

30 minutes when a large set of changes were made. This
merging operation was made using file comparison tools,
and the engineer who was performing the merge oper-
ation had to decide how files should be merged. This
aims at capturing the benefits of using MONDO-based
collaborative tooling.

Impact on performance derived from using MONDO
Collaboration technology — When an innovative tech-
nical solution is used to add new features, the improve-
ment obtained is often penalized with a loss of perfor-
mance on the previously available features. Therefore,
one potential risk of using the MONDO Collaboration
Framework, is that, although it enables new modeling
features that were not available before – like the collabo-
ration among several modelers who work with a domain
specific modeling tool – it can also increase the time
required to carry out some operations that were already
available in the solutions prior to MONDO (e.g., model
visualization on editors, code generation using model
to text transformations, etc.). In this sense, this indica-
tor aims at measuring the possible loss of performance
caused by the MONDO Collaboration Framework.

Time reduction for building graphical domain specific
modeling editors — This indicator aims at measuring
the reduction on the time required to construct a graphical
editor to model a WTCS using the design tools provided
by MONDO (i.e., DSL-tao [80]) as opposed to the time
required for constructing it with other standard tools.

Based on the expertise of Ikerlan in this domain, as well
as their industrial needs, these generic indicators have been
materialized into a set of quantitative and qualitative mea-
sures, which are summarized in Tables 1 and 2.

The quantitative evaluation is carried out based on the
measures shown in Table 1. The table also summarizes the
corresponding evaluation criteria used to determine the level
of success of the proposed solution. Section 6.3.1 gives fur-
ther details on the experiments executed to perform the eval-
uation and on the rationale behind the evaluation criteria.
The qualitative evaluation is carried out amongst the engi-
neers participating in the evaluations using the questions in
Table 2. In their answers, a four point scale (i.e., fully, largely,
partially, none) is used together with the opportunity for re-
spondents to provide comments and clarifications regarding
their assessment. Section 6.3.2 reports on the comments and
feedback received.

Scalable Modeling Technologies in the Wild 19

Table 3: WTCS model user types

domain engineer model view elements in wtcs allowed to access/edit

Principal Engineer (PE) Full WTCS model The Principal Engineer will have permissions to modify (add, remove
and update) any element in a WTCS model.

IOManager (IOM) SystemInput and SystemOutput elements
Only SystemInput and SystemOutput elements can be edited by an
IOManager. Access to any other element types in the model will be
denied for the IOManager.

Subsystem Manager (SM) Subsystems

A Subsystem Manager will be allowed to edit the content of any Main-
Subsystem element in the WTCS model. It means they can edit (add,
remove and modify) subsystems contained in any main subsystem as
well as CtrlUnit elements in the main subsystem or in a contained
subsystems, at any level in the hierarchy of subsystems. They will
be allowed to read SystemInput, SystemOutput, SystemParam, Sys-
temFault and SystemTimer type elements to reference them from the
CtrlUnit elements being edited but they will not be allowed to add,
remove nor modify any of these referenced elements.

Generator Manager (GM) Generator subsystem

A Generator Manager will be allowed to edit the content of the
Generator subsystem (i.e., the MainSubsystem element in the model
named as Generator). This user will be allowed to do the same opera-
tions as SubsystemManager is allowed to do, but only for a predefined
MainSubsystem (Generator).

Converter Manager (CM) Converter subsystem

A Converter Manager will be allowed to edit the content of the
Converter subsystem (i.e., the MainSubsystem element in the model
named as Converter). This user will be allowed to do the same opera-
tions as SubsystemManager is allowed to do, but only for a predefined
MainSubsystem (Converter).

Pitch Manager (PM) Pitch subsystem

A Pitch Manager will be allowed to edit the content of the Pitch
subsystem (i.e., the MainSubsystem element in the model named as
Pitch). This user will be allowed to do the same operations as Sub-
systemManager is allowed to do, but only for a predefined MainSub-
system (Pitch).

6.2 Evaluation Setup

Next, we describe the elements that characterize the evalua-
tion setup, such as persons involved, roles and access rules,
model characteristics, and hardware and equipment used.

6.2.1 Persons involved and roles

To carry out the evaluation a set of different WTCS model
user types (Wind Power domain engineers) have been de-

Listing 1: Model access rules for Converter Manager
1 /* Grant access to Converter MainSubsystem for

converter manager */
2 rule enableConverter permit RW to convertermanager {
3 query "macl.project.objectSubsystemNithName"
4 bind name value "Converter"
5 }
6 /* Deny access to any other MainSubsystem for

converter manager */
7 rule denyOtherSubsystemsForConverter deny RW to

convertermanager {
8 query "macl.project.objectSubsystemNotHavingName"
9 bind name value "Converter"
10 }

fined and the model access rules for all of them have been
implemented. These user types and the model elements they
will be allowed to edit are described in Table 3.

Permissions for each user type are set by implementing
model access rules using the access control facilities pro-
vided by the MONDO Collaboration Framework. Listing 1
shows an example of model access rules defined for a WTCS
model user (Converter Manager). Permission to access the
subsystem named Converter is set on the first rule, while the
other restricts access to all other subsystems (i.e., those not
named Converter).

6.2.2 Model size and characteristics

The evaluation has been carried out with an offshore WTCS
model having 5441 objects and 5429 references, distributed
as shown in Table 4. The maximum depth for subsystems in
the hierarchy is 4.

6.2.3 Equipment

Evaluations requiring a single computer have been carried
out using a Dell Latitude E5540 laptop with an Intel Core i7

20 Abel Gómez et al.

Table 4: Model characteristics

element type number of instances

WT 1

MainSubsystem 20

Subsystem 110

CtrlUnit 1590

SystemInput 1698

SystemOutput 900

SystemParameter 285

SystemAlarm 798

SystemTimer 39

processor at 2.7GHz, 16 GB of RAM, and using Windows 7
Professional SP1.

In the experiments that required several engineers work-
ing concurrently, the evaluation has been carried out using
(i) 3×Dell Latitude E5540, 15.6” laptop, Core i7 @ 2.7GHz,
16 GB of RAM, Windows 7 Professional SP1, and (ii) 2 ×
Dell Latitude E6530, 15.6” laptop, Core i7 @ 2.9GHz, 8 GB
of RAM, Windows 7 Professional SP1, .

Evaluations performed on tablet have been done on a 9”
device: an HTC Nexus 9, with 32 GB of storage, 2 GB of
RAM, and running Android 5.0.

6.3 Evaluation Results

Next we present how we evaluated the different quantitative
and qualitative measures, and the results obtained.

6.3.1 Quantitative Measures

QN1 – Increase in time for loading a model on a tablet in-
stead of on a PC — The Online Concurrent WTCS Modeling
Solution has been used for the evaluation of this measure. The
aim of this measure was to compare the time required to load
a model on a modeling tool running on a tablet, and time
required to load the same model on a modeling tool running
on a PC. Thus, the Online Concurrent Modeling Solution
has been separately executed first on a PC and then on a
tablet, and the time required to load the same model in both
devices has been measured. Since there are several different
engineers that will work on the modeling of the WTCS, and
different model fragments are loaded for each type of engi-
neer, this operation has been carried out for the following
engineers: PrincipalEngineer, IOManager, GeneratorMan-
ager, ConverterManager, PitchManager and Yaw Manager.
Table 5 collects all the measured times, along with the model
objects and references contained in the loaded model (in the

Table 5: Time required for model loading (QN1)

engineer
type

model
objects /

references

time for
loading on

pc

time for
loading on

tablet

Principal
Engineer 5441 / 5429 9.1 s 11.0 s

IO Manager 2599 / 0 3.8 s 4.3 s

Generator
Manager 3924 / 676 7.1 s 7.9 s

Converter
Manager 4305 / 2102 8.2 s 9.2 s

Pitch
Manager 3943 / 545 7.0 s 7.9 s

Yaw Manager 3921 / 637 7.1 s 7.9 s

case of the Principal Engineer, who accesses the full model)
or model fragment (in the case of all the other engineers).

Analyzing the measures collected in the table, we see
that the increase of the time required to load the model on a
tablet instead of on a PC, ranges between the 11% and the
13% for model fragments, and goes up to the 20% when the
full model is loaded.

The target measures and evaluation criteria for this indi-
cator were:

– Sufficient — No more than 25% increase.
– Good — No more than 15% increase.
– Excellent — No more than 10% increase.

Thus, the results achieved for this measure are sufficient.

QN2 – Number of concurrent users working with a model —
The number of concurrent users working with a WTCS
model has been evaluated using the Online Concurrent WTCS
Modeling Solution. Note that in this context, “number of con-
current users” specifically refers to an online collaboration
scenario, whereby this number only includes those simul-
taneously displaying and editing the same model (or rather
access-controlled views of it) via thin clients, i.e. without
having local copies. Beyond this group of users who share a
common collaboration session, there can of course be many
more users overall, each with their own offline copies of the
model, not having to be constantly connected to (and taking
up resources in) the collaboration server.

To see whether the solution meets the most ambitious
target measure set by industrial needs, 5 different users par-
ticipated in the scenario: PrincipalEngineer, IOManager,
PitchManager, ConverterManager and GeneratorManager.
The five users have been working in the same shared mod-
eling session. Thus every change made by one of the users
has been automatically propagated to all other users, and
their editors have been automatically refreshed to show the
updated model.

Scalable Modeling Technologies in the Wild 21

The target measures and evaluation criteria for this indi-
cator were:

– Sufficient — 2 concurrent users.
– Good — 3 concurrent users.
– Excellent — 5 or more concurrent users.

Since five users have been able to concurrently edit the
model, the result achieved for this measure is excellent.

QN3 – Time for change propagation and notification among
concurrent users — The time needed for change propa-
gations and notification has been evaluated using the On-
line Concurrent WTCS Modeling Solution. This solution has
been executed by five different users: PrincipalEngineer,
PitchManager, ConverterManager, GeneratorManager and
IOManager. The first four were working with their desktop
PCs, while the fifth one executed it on a tablet. Each time a
single modification was made by one user, the time required
for notifying and updating other users’ models has been mea-
sured, obtaining the result that changes were propagated in
less than one second.

The target measures and evaluation criteria for this indi-
cator were:

– Sufficient — Propagate and notify in less than 5 seconds.
– Good — Propagate and notify in less than 3 seconds.
– Excellent — Propagate and notify in less than 1 second.

The obtained result is that less than one second is required
to propagate the changes. Thus, we consider that the result
achieved for this measure is excellent.

QN4 – Maximum number of elements that can be displayed
in a diagram — The evaluation of the maximum number of
elements displayed in a diagram has been carried out on a
PC using the Offline Graphical WTCS Modeling Solution.

To carry out this evaluation, several diagrams having dif-
ferent number of elements have been tested with the Offline
Graphical WTCS Modeling Solution. The different diagram
types used for this evaluation are collected in Table 6.

The target measures and evaluation criteria for this indi-
cator were:

– Sufficient — Display a diagram with 25 elements.

Table 6: Number of elements in diagram (QN4)

diagram type number of elements
in diagram

Small-size diagrams 5 to 15

Mid-size diagrams 25

Pitch diagram 196 (194 CtrlUnits + 2 Subsystems)

Converter diagram 452 (447 CtrlUnits + 5 Subsystems)

Table 7: Time required for diagram loading (QN5)

diagram size time

Diagram having 5 to 15 elements < 2 s

Diagram having 25 elements < 3 s

Pitch diagram (194 CtrlUnits + 2 Subsystems) < 4 s

Converter Manager (447 CtrlUnits + 5 Subsystems) < 7 s

– Good — Display a diagram with 50 elements.
– Excellent — Display a diagram with more than 50 ele-

ments.

Considering that the Offline Graphical WTCS Modeling
Solution can successfully load diagrams having up to 450
elements, and that the edition capabilities remain functional
with this model size, the results achieved for this measure
are excellent.

QN5 – Time for loading a diagram having 25 elements to
be displayed — The evaluation of the time required to load
a diagram has been carried out on a PC using the Offline
Graphical WTCS Modeling Solution. The diagrams used for
this evaluation are those collected in Table 6, since they are
the same diagrams we used for the evaluation of QN4.

The results of the evaluation are presented in Table 7,
where the size of the diagrams together with the time required
to load them are summarized.

The target measures and evaluation criteria for this indi-
cator were:

– Sufficient — Load the diagram in 2 seconds.
– Good — Load the diagram in 1 second.
– Excellent — Load the diagram in less than 1 second.

Thus, considering the results of the evaluation carried
out – which shows that more than two seconds are required
to load and display a diagram having 25 elements – the first
conclusion is that target measures set in evaluation plan are
not met. Nevertheless, we must remark that results achieved
are very close to the sufficient target results, as this diagram
can be loaded and displayed in less than 3 seconds. Thus, we
can consider the result good enough. It must also be taken
into account that the largest diagram for the WTCS model
used in this evaluation, having 452 elements to be displayed,
is loaded in less than 7 seconds, which is also considered a
good result. So, although the target result has not been met,
the overall results achieved in this evaluation are considered
sufficient.

QN6 – Time for committing model changes — The time
needed for committing model changes to the repository has
been evaluated using the Offline Collaborative WTCS Mod-
eling Solution.

22 Abel Gómez et al.

Table 8: Time required for committing model changes (QN6)

changes time

Add 1 Subsystem 22 s

Add 10 Inputs 24 s

Add 2 MainSubsystems, 8 CtrlUnits, 16 references to
Inputs, 8 references to Outputs 26 s

Add 1000 Inputs, 1000 Outputs, 10 MainSubsystems,
40 CtrlUnits, 800 references to Inputs, 400 references

to Outputs
29 s

When a commit operation is performed in an offline col-
laborative scenario, model changes are committed to the gold
repository and are propagated then to the front repositories
for the different engineer types who are working in collab-
oration. So, the overall time required for the full commit
and model merging operation will depend on the number of
front repositories. To make this indicator independent of the
number of front repositories, the target measures were set
considering a single front repository.

To carry out this evaluation, different sets of changes have
been made on models with the aim of measuring whether the
amount of changes significantly impacts on the time required
to commit all the changes to the repository or not.

Results of the evaluation are shown in Table 8, where
changes performed in the model are presented together with
the time required to commit them.

The evaluation scenario comprises one gold repository
and 10 front repositories. The times collected in Table 8
correspond to the overall times required to commit changes
to the gold repository and to update all the front repositories
with those changes.

The first conclusion after the evaluation is that the amount
of changes to be committed to the repository has no signifi-
cant impact on the time needed to commit all the changes.

The target measures and evaluation criteria for this indi-
cator were:

– Sufficient — Commit changes in less than 5 seconds.
– Good — Commit changes in less than 3 seconds.
– Excellent — Commit changes in less than 1 second.

Taking into account that times collected in Table 8 are
the overall times for committing changes and updating all the
front repositories, we see that between two and three seconds
are needed for each repository. Therefore we can conclude
that results for this measure are good.

Nevertheless, keeping in mind – as explained earlier –
that model merging was a hand-made and error prone ac-
tivity which could take up to half an hour, the improvement
obtained thanks to MONDO technology which automates
the merging process is in any case excellent.

QN7 – Performance impact caused by the MONDO Col-
laboration Framework — The impact on performance has
been evaluated using the Offline Collaborative WTCS Mod-
eling Solution. No requirement about performance degrada-
tion was defined in the initial project requirements, nor was
any indicator defined in the evaluation plan in this regard.
However, we consider that it is worth mentioning that the so-
lution designed and developed for offline collaboration does
not penalize the performance of features that were already
available in the solution built without MONDO technology,
which are also used in this Offline Collaborative WTCS Mod-
eling Solution.

Therefore, an engineer will get the same performance for
the modeling activities they were used to, but they will now
have collaborative modeling capabilities not available prior
to the MONDO project.

The target measures and evaluation criteria for this indi-
cator were:

– Sufficient — Less than 5% of performance loss.
– Good — Less than 2% of performance loss.
– Excellent — Less than 1% of performance loss.

In this sense the conclusion is that results for this measure
are excellent.

QN8 – Time reduction for building graphical domain spe-
cific modeling editors — The process of construction of
the Offline Graphical WTCS Modeling Solution has been
considered for the evaluation of time reduction for building
graphical domain specific modeling editors.

The aim of this measure was to compare the time re-
quired to create a graphical WTCS modeling editor using
the MONDO technology (specifically, DSL-tao and its de-
sign patterns) and the time required to create the graphical
modeling editor using the design tool provided by Sirius.

A graphical WTCS modeling editor has been constructed
by an expert using the Sirius graphical specification design
tool in two hours.

An equivalent graphical modeling editor has been con-
structed using DSL-tao – as explained in Section 5.3 in no
more than half an hour.

The target measures and evaluation criteria for this indi-
cator were:

– Sufficient — 25% of reduction in time.
– Good — 50% of reduction in time.
– Excellent — 75% of reduction.

The time required to create the editor using DSL-tao is
one fourth of time required to create it using the Sirius design
tool, so the result achieved is excellent.

Quantitative Measures Summary — For the sake of un-
derstandability, Table 9 summarizes the rates achieved in

Scalable Modeling Technologies in the Wild 23

Table 9: Quantitative measures Results

id rating

QN1 Sufficient

QN2 Excellent

QN3 Excellent

QN4 Excellent

QN5 Sufficient

QN6 Good

QN7 Excellent

QN8 Excellent

the different quantitative measures according to the criteria
specified in the different experiments and also summarized
in Table 1.

6.3.2 Qualitative Measures

Besides the quantitative measures presented above, a set of
qualitative measures were also planned. The qualitative eval-
uation was carried out by three engineers participating in the
evaluation playing six different roles in different moments of
the experience (see Table 3 for such roles). The data for the
quantitative analysis was gathered based on their experiences
while performing the experiments. In their answers, respon-
dents had the opportunity to provide additional comments
and clarifications regarding their assessment.

The fulfillment of this set of measures is explained below,
in Table 10, where the level of compliance for each measure
is presented along with their comments. The level of compli-
ance is set using a four point scale with the following values:
(i) fully, the expected target measure has been achieved for
the Wind Power domain; (ii) largely, although the target mea-
sure has not been fully been reached, the achieved result is
very close to the expected result; (iii) partially, some inter-
esting results have been achieved for the Wind Power domain
thanks to the MONDO technology, although the target mea-
sure has not been reached; and (iv) none, no result related
to the target measure has been obtained with the MONDO
technology.

6.3.3 Scenario Coverage

Table 11 summarizes the relationship among the evaluation
scenarios described in Section 6.1, the MONDO solutions
used for each scenario, and the measures evaluated.

6.3.4 Threats to validity

In this section, we discuss the main threats to the validity
of the approach and methodology used, as well as those of

the results of the experiment itself. Our work is subjected to
a number of threats to validity, namely: (i) internal validity,
which is related to the inferences we made; and (ii) exter-
nal validity, which discusses the generalization of our ap-
proach/findings.

Regarding the internal validity, our threats are mainly as-
sociated with the empirical validation and the measurements
that were taken as part of it. In particular, experiments and
metrics were defined based on the experience and estimated
needs of Ikerlan which introduces a bias to the validation
process. Nevertheless, to mitigate this risk, the rest of the
partners reviewed the metrics to check they were reasonable
and aligned with their own perceptions. A second threat to
internal validity is that the engineers involved may have been
positively biased towards the MONDO project. This risk was
mitigated by the need to write and report objectively in the
project deliverables, which were reviewed (both off-line and
on-line via a demo) by the project officers.

Regarding the external validity, our threats are related to
our focus on a single industrial case study and the constraints
it imposed in the initial selection of frameworks to choose
from. For example, the time reduction for building graphical
domain specific modeling editors was validated using one
DSL, but results may depend on the editor complexity, and
the expertise of the engineers involved. Therefore, the results
of this experiment should not be generalized to the global
population of modeling tools and technologies even if our
personal experience suggests that indeed at least some of
the problems and solutions part of the MONDO framework
are useful in a large variety of modeling scenarios. Another
threat was the number of participants in the experiment (tens
of users) and the models used in it (thousands of elements).
An experiment orders of magnitude larger than these could
have reflected a different outcome. Nevertheless, the size of
the experiment was realistic for Ikerlan’s needs in terms of
Wind Turbine modeling.

Furthermore, since this use case uses brownfield devel-
opment, it focuses on leveraging existing domain-knowledge
and avoiding recreation of the solution, as much as possible,
by extending the current tool-set instead of replacing it. It
also limits itself to using open-source tools, and hence can
only be generalizable to cases where similar requirements
are present.

7 Related Work

In this section, we analyze related work concerning the
systematic development of scalable graphical DSLs (Sec-
tion 7.1), scalable modeling (Section 7.2), and access con-
trol (Section 7.3). We also note the relevant features that
are unavailable in the state-of-the-art, which resulted to the
need for a different solution, in this case using the MONDO
platform.

24 Abel Gómez et al.

Table 10: Qualitative Measures Results

id fulfillment comments

QL1 Fully DSL-* tools provide a step by step process for designing large DSLs.

QL2 Fully The tool supporting large DSL construction is DSL-tao. It provides a set of design patterns to design the DSL and to
build its modeling tool.

QL3 Largely A functional domain specific modeling tool can be created using DSL-tao, but collaboration features are not fully
supported.

QL4 Largely Components like the MONDO Collaboration Framework are ready to use. Setting up of the collaboration environments,
however, should be automated.

QL5 Fully This feature is provided by MONDO Online Collaboration Framework, which has been used to build the Online
Concurrent WTCS Modeling solution.

QL6 Fully This feature is provided by the MONDO Collaboration Framework. EMF-Splitter provides also this feature, enabling
to split a model into different physical files that can be loaded separately on demand.

QL7 Fully Progressive loading can be achieved by EMF-Splitter where each model fragment can be loaded on demand, when
modularity pattern is applied.

QL8 Fully Although this requirement has not been validated in the previous use cases, the MONDO technology has been tested
to confirm that there is no constraint to combine two different modeling languages in a single modeling tool.

QL9 Fully The MONDO Collaboration Framework allows users to edit a model concurrently using a web modeling application
run on a tablet.

Table 11: Scenarios, solutions and evaluated measures

scenario mondo solution measure id

S1 Online Concurrent QN2, QN3, QL5, QL6, QL4

S1 Offline Collaborative QN4, QN5, QN6, QN7, QN8, QL1, QL2, QL3, QL4, QL6, QL7, QL8

S2 Offline Collaborative QN6, QN7, QL1, QL2, QL3, QL4, QL6

S3 Online Concurrent QN1, QL4, QL9

7.1 Systematic development of graphical DSLs

Today’s development of external DSLs normally relies on
language workbenches, which facilitate the DSL design task.
Frequently, these tools promote a model-driven approach to
DSL development, allowing for automation in the develop-
ment process. On top of these tools, several authors have
proposed techniques, processes and guidelines to make the
development of DSLs more systematic and repeatable [53,
90,55,103,65].

For example, in [52] the authors identify worst practices
for DSL development, like the lack of involvement of do-
main experts, or lack of domain understanding. Conversely,
Volter [103] identifies best practices for model-based devel-
opment, including limiting the expressiveness of the DSL,
defining notations that fit the domain, and support for model
partitioning, among many others.

In [90] the authors suggest explicit processes for devel-
oping DSLs, including building a mock-up language when
the domain is complex, and proposing a special process to
extract the DSL from an existing system. In [65] the authors
identify recommendations to help in the decision, analysis,

design, implementation and deployment phases of DSLs. At
the design level, for languages based on existing notations,
they recommend either to piggyback DSL features on the
existing language; specialize or extend the language.

At a more technical level, some works have proposed pat-
terns for building DSLs [18,83,87]. However, while DSL-tao
proposes domain, design, concrete syntax, dynamic seman-
tics and infrastructure patterns, these works typically focus
only on one or two kinds of patterns.

Regarding design patterns, Cho et al. [18] propose a set
of metamodeling design patterns, but their lack of support
for variability limits their practical use. Schäfer et al. [83]
also acknowledge the lack of proper engineering processes
for building DSLs, and thus propose documenting DSL re-
quirements using design patterns and use cases. Mernik et
al. [65] review common patterns and phases for DSL devel-
opment. While their proposals are for textual DSLs, our work
is oriented to graphical DSLs. Finally, Spinellis [87] defines
architectural patterns for DSL design. Altogether, design pat-
terns in these works improve the inner quality of the DSL,
by providing design guidelines akin to traditional object-
oriented design patterns [37], but they are normally low-level

Scalable Modeling Technologies in the Wild 25

and provide less gain in productivity compared to domain
and infrastructure patterns. Please note that in MONDO, in
addition to tooling, we proposed methodologies for system-
atic engineering of DSLs, including specific notations for
gathering requirements for DSLs (called DSL-maps), and
automated transition into a metamodel design [81].

Domain patterns capture domain knowledge and are use-
ful to automate the construction of metamodels. Pedro et
al. [79] proposed building DSLs by composing domain con-
cepts. The latter are metamodels and their semantics are
given by model transformations. The composition of con-
cepts entails the composition of the respective transforma-
tions. Our domain patterns are located at a higher meta-
level, which allows a more flexible instantiation. In addition,
we support combined pattern application, variants, and the
component-based construction of the DSL environment.

Some authors have proposed the use of methods from
software product lines to facilitate the configuration of com-
ponents and the composition of DSLs out of smaller parts.
For example, White et al. [104], propose equipping DSLs
with a feature model, where a configuration produces a meta-
model variant. In the grammarware technical space, Never-
lang [101] supports building textual languages from so called
slices, which are made of fragments of the concrete syntax
(a textual grammar) and semantics (an evaluator). Slices can
be combined using a feature model. In our approach, we
provide further flexibility by the instantiation of roles, and
support the synthesis of modeling environments by attaching
services to patterns.

Many graphical DSL workbenches have been proposed
for different applications, like meta-CASE tools [53], dia-
gram sketching [15], or multi-formalism modeling and sim-
ulation [62]. The popularity of Eclipse has promoted frame-
works to create graphical editors as plugins, like Tiger [12],
GMF [42], Eugenia [58], Spray [88], Graphiti [46], or Sir-
ius [86]. Some other approaches, like WebGME [64] or
AToMPM [20] are based on the web browser.

All these tools use a model-based approach to specify
the concrete syntax, except Graphiti, which requires manual
programming using a Java API. Some of them are based
on code generation for other lower-level approaches. For ex-
ample, Eugenia relies on GMF, and Spray generates code
for Graphiti. In our case, the editors produced by DSL-tao
rely on Sirius. All these frameworks rely on code generation
except Sirius, which is interpreted. The way of specifying
the concrete syntax varies: Eugenia requires annotating the
metamodel elements, Spray uses a textual DSL, GMF and
Sirius require building models that describe the graphical
syntax, and Graphiti requires Java programming. Conceptu-
ally, our approach is closer to Eugenia, as pattern applications
result in metamodel annotations. However, DSL-tao is based
on wizards and heuristics, and supports attaching concrete
syntax styles to domain patterns, which improves the produc-

tivity in the creation of graphical environments. This feature,
and the ability to specify tool services via infrastructure pat-
terns, are unique among the mentioned tools. In particular,
none of these tools is able to produce graphical environments
with model fragmentation capabilities.

Graphical DSLs are often evaluated according to some
established criteria in the visual languages community, like
Moody’s “physics” of notations [69], or the cognitive di-
mensions of notations framework [47]. The goal is to eval-
uate and ensure that the graphical concrete syntax designed
for a DSL possesses adequate perceptual features, so that
models can be easily understood and built. Some tools, like
CEVINEDIT [45], provide assistance for some of Moody’s
criteria. In our case, providing support for engineering cog-
nitive effective graphical syntaxes is left for future work.

Overall, compared to related works in this area, the con-
tributions of the MONDO framework include an approach
to facilitate the systematic creation of metamodels, and their
associated graphical environments. This is realized by the
use of patterns (of five different types) and heuristics.

7.2 Scalable persistence

Different approaches have been proposed to process large
models, fragmentation of models being a popular solution
solving many of the challenges faced. For instance, Scheid-
gen and Zubow [84] propose the EMF-Fragments persistence
framework, which supports automatic and transparent frag-
mentation to add, edit and update EMF models. To guide the
fragmentation, the composition references in the metamodel
that are aimed at producing fragments need to be annotated.
EMF-Fragments stores fragmented models in memory, and
for persistence primarily relies on distributed file-systems
and key-value stores like MongoDB [67] and HBase [93].

The use of fragmentation techniques have also been used
to improve the comprehensibility of models. For example,
Kelsen et al. [54] propose an algorithm to fragment a model
into submodels (actually a lattice of submodels), where each
submodel is conformant to the original metamodel. The algo-
rithm considers cardinality constraints but not general OCL
constraints, and there is no tool support. Other works use
Information Retrieval (IR) algorithms to split a model based
on the relevance of its elements [91]. This research resulted
in the creation of Splittr as a tool to split models. There-
fore, splitting models that belong to the same metamodel can
produce different structures. Customizable graph clustering
techniques, with the purpose of metamodel modularization,
have also been proposed [92]. The techniques are based on
several clustering algorithms operation on a distance matrix.
Such matrix is obtained by weighting different metamodel
relations (generalization, composition, association) accord-
ing to their relevance. While EMF-Splitter is applicable to
existing large models, a distinctive feature of this solution

26 Abel Gómez et al.

is that we also generate a modeling environment that en-
forces the defined modularization strategy when creating a
new model.

Different (open-source, proprietary, and/or academic)
model repositories have been proposed in the last few years to
improve scalability and offering different services [82]. Pro-
prietary model repositories such as No Magic’s Teamwork
Server [72] have been developed, providing versioned col-
laborative development of models; they offer model-element-
level versioning and querying, supporting concurrent users
accessing the same model. Nevertheless, these systems are
highly-coupled with their modeling tools, having limited
flexibility, due to binding the user to a specific modeling
technology.

Similarly, open-source model repositories such as EMF-
Store [56] and CDO [30] have arguably gained little traction
in industry, even though they commonly support a wide va-
riety of back-end technologies and offer lower coupling with
specific modeling tools. In our view, there are various valid
reasons for this: from a user’s point of view, adopting a
model-specific version control system supported by a small
open-source community for storing business-critical models
is hard to support, when contrasted with robust and widely-
used and supported file-based version control systems. Also,
using two version control systems in parallel – such as having
code in a Git repository and models in CDO – can introduce
additional overhead and inconsistency risks, as code and
models altered in the context of the same conceptual commit,
are manually split and distributed amongst two unconnected
systems.

Several model persistence technologies have been devel-
oped in the past years, as a scalable alternative to XMI –
which is used in popular modeling technologies like EMF.
Many of these, such as NeoEMF [9], Morsa [77], Mon-
goEMF [16] and also EMF-Fragments [84] use NoSQL
databases like Neo4J [70] or MongoDB as their back-ends,
and often deliver promising results for model traversal and
querying. On the other hand these systems do not handle
version control of models stored in them, focusing on model
management operations over a single conceptual version.

With respect to Hawk, further advancements have been
made since then, including the ability to index the entire
history of models in a single Hawk index. This work, a pre-
liminary version of which has been already presented [39],
allows for temporal queries spanning over arbitrary numbers
of commits, and can enable cross-referencing or model com-
parison queries without the need to retrieve, load and query
multiple different models.

Since all of these technologies were relevant to Ikerlan,
a decision had to be made on which one to adopt. Using
Hawk allowed Ikerlan to continue using their current models,
in their original format, whilst gaining the advantages of
scalable model querying. This meant that they did not have

to change any of their current practices or tools in order to
add Hawk to their technology stack, but instead only had to
learn to use it as a technology orthogonal to their own. In
the context of the MONDO stack as a whole, this meant that
Hawk did not interfere with or add any further constraints to
any of the other tools that aimed at supporting collaborative
file-based modeling.

7.3 Fine-grained Access Control in Various Domains

In this section, we analyse different techniques for fine-
grained access control, and their application in different tech-
nological spaces and domains.

As the following paragraphs will show in detail, none
of the related approaches in the state of the art can readily
fulfill the conjunction of all design goals of the MONDO
Collaboration Framework, as stated in subsection 4.1.

File-based Access Control — Traditional version control
systems (like CVS, SVN) and file sharing technologies adopt
file-level access policies (or even more coarse-grained, such
as branch/repository-level access control in Git), which are
clearly insufficient for fine-grained access control specifica-
tions.

Off-the-shelf file systems typically require resources (files
and folders) to be explicitly labeled with permissions that
take the form of an Access Control List (ACL), or the simpli-
fied form user/group/other flags. An ACL consists of entries
regarding which user/subject is granted or denied permission
for a given operation.

File-based solutions can be directly applied to MBE, but
cannot provide fine-grained access control, where different
parts of a model file have different permissions. MONDO
Access Control policies are fine-grained, use implicit rules
– so that model elements do not have to be explicitly anno-
tated with permission flags, which is difficult to manually
maintain as the model evolves – and respect internal referen-
tial consistency; all the while being more flexible [24] in the
conflict resolution method.

Access Control in RDF Triple/Quad stores — Graph-based
access control is a popular strategy for many triple and quad
stores (4store [40], Virtuoso [75], IBM DB2) developed for
storing large RDF data. User privileges can be granted to for
each named graph while access control is actually checked
when issuing a SPARQL query. Denial of access for a graph
filters the query results obtained from this specific graph.
Data access in AllegroGraph [34] can be controlled on the
database or catalog level (coarse-grained) as well as on the
graph and triple level (fine-grained) while Stardog only al-
lows database-level access control.

Similarly to our approach, fine-grained access control is
discussed by Dietzold and Auer [28], who propose using

Scalable Modeling Technologies in the Wild 27

graph queries as preconditions of rules to select certain as-
sets on which the permissions need to be enforced. The major
difference is that we apply queries in an MBE environment
(which has very important implications with respect to in-
ternal model consistency [24]), and we also provide offline
collaboration.

In the Oracle Database Semantic Technologies [76], ac-
cess control is carried out by default on the model (graph)
level. Furthermore, it can be configured on the triple (row)
level, which is implemented by query rewriting. In this case,
the definition of access control policies is based on so-called
match and apply (graph) patterns, where the former identifies
the type of access restriction while the latter injects access-
control specific constraints to the query. Again, due to the
different requirements in MBE, our approach additionally
supports internal model consistency [24]) and offline collab-
oration.

Another access control technique is called label based se-
curity, which offers (i) triple-level control using (a hierarchy
of) sensitivity labels attached to each triple, and (ii) RDF re-
source-level access control for subject/predicate/object. Ex-
plicit data access labels are implemented by Oracle [76]
and are generalized into abstract tokens and operators by
Papakonstantinou et al. [78]. Again, due to the different re-
quirements in MBE, our approach additionally supports in-
ternal model consistency [24]); it also operates with graph
query-based polcies that do not require manual security label
assignments.

Access Control for XML Documents — A number of stan-
dards such as XACML [43] (OASIS standard) provide fine-
grained access control for XML documents. These type of
documents are similar to models in a way, that they con-
sists of nodes with attributes that may contain other nodes.
XACML provides several combining algorithms to select
from contradicting policies. Fundulaki and Marx [35] for-
malize fine-grained access control using XPath for XML
documents, their work claims that the visibility of a node
depends on its ancestors, thus when a node is granted access,
then access is also granted to its descendants. However, other
dependencies are not discussed related to XML Documents.

Similarly to our approach, a dedicated policy language is
used by Montrieux and Hu [68], from which a transformation
(lens) is automatically generated to enforce access control for
XML documents. In addition to the attributes and context of
the assets (XML nodes), the XQuery-based policy can take
into account external (subject or context) attributes as well.

As the above techniques are not MBE approaches, there
is no treatment of cross-references. There is no discussion of
internal referential consistency either (except for the contain-
ment hierarchy, which is relevant for XML as well). Finally,
there is no discussion of the challenges of online and offline

collaboration. These are the major differentiating character-
istics of our approach ahead of the state of the art.

Access control in Collaborative Modeling Environments —
Currently, fine-grained access control is not considered in
the state of the art tools of MDE such as MetaEdit+ [99],
VirtualEMF [19], WebGME [64], EMFStore, GenMyModel
/ Web Modeling Framework [96], Obeo Designer Team [73],
MDEForge [8] or the tools developed according to [36]. They
either offer no low-level fine-grained access control, or do
so without support for high-level specification of the access
policy. See also the broader survey in [82].

The generic framework CDO (used for example in Obeo
Designer [73], Eclipse Papyrus [31], PolarSys CHESS [33]
or OpenCert [32]) provides both online collaboration and
role-based access control with type-specific (class, package
and resource-level) permissions, but no facility for instance
level access control policy specifications. However, there is a
pluggable access control mechanism that can specify access
on the object level; it should be possible to integrate fine-
grained solutions such as the currently proposed system.

The collaborative hardware design platform called Ve-
hicleFORGE stores their model in graph-based databases
and has an access control scheme TrustForge [22] that uses
an implementation of KeyNote [14] trust management sys-
tem. This system is responsible for evaluating the request
addressed to the database, which can be configured in var-
ious ways. It supports unlimited permission levels and it is
also able to handle consistency constraints by adding them
as assertions. Conflict resolution strategies are not discussed.
AToMPM [20] provides fine-grained role-based access con-
trol for online collaboration; no offline scenario or query-
based security is supported, though. Access control is pro-
vided at elementary manipulation level (RESTful services)
in the online collaboration solution of [29].

As a substitute for developing custom DSL tools, UML-
based tools could plausibly be adopted with the usage of
UML profiles. While UML profiles offer a way to add do-
main knowledge to UML, it is difficult to create and use a
concise DSL aimed at solving the problem at hand. Hiding
irrelevant parts of the UML language and the user interface
of modeling tools may be supported by certain vendors, but
in our case, we have found it to likely require more work than
creating a DSL from scratch. Furthermore, briefly surveying
major collaborative UML tooling vendors, we have found
no solutions that would satisfy our security needs. Neither
GenMyModel [3] nor No Magic’s Teamwork Server [72] and
Teamwork Cloud [71] support fine-grained access control.
Sparx EA [63] natively supports fine-grained (element-level)
access control for write access to shared collaborative repos-
itories, but there is no high-level specification method, and
also no read access control. EA’s access control features,

28 Abel Gómez et al.

however, can be programmatically extended on the level of
the storage backend.

8 Conclusions

Scalable modeling technologies can provide new opportuni-
ties for small and medium-sized organizations to grow their
software development teams. In this paper we have reported
on the experience at Ikerlan after implementing the technolo-
gies developed in the MONDO project. The experience has
been extremely positive, and the evaluation shows that five
out of eight quantitative measures scored excellent – one of
them scored good and two others scored sufficient – while
seven out of nine qualitative measures were fully fulfilled –
the two remaining were largely fulfilled.

From this experience, we can also learn that continuous
compliance with existing development processes is a key
factor for success. The MONDO scalable technologies do
not impose a big change on the processes and tools that were
already implemented in the company. In this sense, the new
solutions enable teamwork in the offline scenario in such a
way that can be integrated without changing the pre-existing
single-user modeling tools. This way developers continue
working in the same way they used to work, and collaboration
features only come into play to automate operations that were
manual before (e.g., model merging).

Part of this success has been due to, not only the technol-
ogy itself, but to the methodological guidance provided by
MONDO. Specifically, the methodology supported by DSL-
tao can be easily followed to construct large scale DSLs. In
this sense, it is important that this methodology provides a
wide set of predefined design patterns, which DSL design-
ers can take advantage of to build their custom modeling
solutions.

Another important contribution of the scalable technol-
ogy is the capability for concurrent model editing using
web technology, enabling real-time collaboration with se-
cure access control, even using mobile devices. While there
are several emerging modeling frameworks to support web-
based collaborative modeling (e.g., AToMPM, WebGME,
Web Modeling Framework, etc.) security and scalability re-
mains a major challenge for them. As demonstrated by On-
line Graphical Collaborative WTCS Modeling Solution the
Eclipse RAP platform [95] is not mature enough.

Finally, this experience also evidences that web-based
solutions are not best suited to carry out modeling activities
in handheld mobile devices, since they present usability is-
sues. In this sense, another possible avenue for research is
the development of dedicated domain-specific modeling
environments for mobile devices [102].

Acknowledgements This work has been supported by the MONDO
(EU FP7-ICT-611125) project.

Emberi Erőforrások
Minisztériuma

The work of Gábor Bergmann was also partially supported by
the János Bolyai Research Scholarship of the Hungarian Academy of
Sciences, the ÚNKP-18-4 New National Excellence Program of The
Ministry of Human Capacities, and the ÚNKP-19-4 New National Ex-
cellence Program of the Ministry For Innovation and Technology.

Antonio’s and Juan’s work was also partially supported by the
Spanish Ministry of Science (RTI2018-095255-B-I00) and the Madrid
Region (S2018/TCS-4314).

Finally, would like to thank Ana Pescador, István Ráth, Dániel
Varró, and all the MONDO researchers for their contributions to the
project.

References

1. Ackermann, T., Söder, L.: Wind energy technology and current
status: a review. Renewable and Sustainable Energy Reviews 4(4),
315 – 374 (2000). DOI 10.1016/S1364-0321(00)00004-6

2. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure.
ACM Trans. Model. Comput. Simul. 12(4), 290–321 (2002)

3. Axellience: GenMyModel.com. url: https://www.genmymod
el.com/, last accessed Aug. 2019

4. Barmpis, K., Kolovos, D.: Hawk: Towards a scalable model index-
ing architecture. In: Proceedings of the Workshop on Scalability
in Model Driven Engineering, BigMDE ’13, pp. 6:1–6:9. ACM,
New York, NY, USA (2013). DOI 10.1145/2487766.2487771

5. Barmpis, K., Kolovos, D.S.: Hawk: towards a scalable model
indexing architecture. In: Proceedings of the Workshop on Scal-
ability in Model Driven Engineering, BigMDE ’13, pp. 6:1–6:9.
ACM, New York, NY, USA (2013)

6. Barmpis, K., Kolovos, D.S.: Towards scalable querying of large-
scale models. In: Proceedings of the 10th European Conference
on Modelling Foundations and Applications, pp. 35–50 (2014).
DOI 10.1007/978-3-319-09195-2_3

7. Barmpis, K., Shah, S., Kolovos, D.S.: Towards incremental up-
dates in large-scale model indexes. In: Proceedings of the 11th
European Conference on Modelling Foundations and Applica-
tions (2015). DOI 10.1007/978-3-319-09195-2_3

8. Basciani, F., Rocco, J.D., Ruscio, D.D., Salle, A.D., Iovino, L.,
Pierantonio, A.: MDEForge: an extensible web-based modeling
platform. In: CloudMDE@MoDELS (2014)

9. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.:
Neo4emf, a scalable persistence layer for emf models. In:
Modelling Foundations and Applications, pp. 230–241. Springer
(2014)

10. Bergmann, G., Debreceni, C., Ráth, I., Varró, D.: Query-based ac-
cess control for secure collaborative modeling using bidirectional
transformations. In: Proceedings of the ACM/IEEE 19th Interna-
tional Conference on Model Driven Engineering Languages and
Systems, Saint-Malo, France, October 2-7, 2016, pp. 351–361
(2016). DOI 10.1145/2976767.2976793

11. Bergmann, G., Debreceni, C., Ráth, I., Varró, D.: Towards effi-
cient evaluation of rule-based permissions for fine-grained access
control in collaborative modeling. In: 2nd International Workshop
on Collaborative Modelling in MDE. Austin, Texas, USA (2017)

12. Biermann, E., Ehrig, K., Ermel, C., Hurrelmann, J.: Generation of
simulation views for domain specific modeling languages based
on the eclipse modeling framework. In: ASE, pp. 625–629. IEEE
CS (2009)

13. Blaha, M.: Patterns of data modeling. CRC Press (2010)
14. Blaze, M., Keromytis, A.D.: The keynote trust-management sys-

tem version 2 (1999)

https://www.genmymodel.com/
https://www.genmymodel.com/

Scalable Modeling Technologies in the Wild 29

15. Brieler, F., Minas, M.: A model-based recognition engine for
sketched diagrams. J. Vis. Lang. Comput. 21(2), 81–97 (2010).
DOI 10.1016/j.jvlc.2009.12.002. URL http://dx.doi.org
/10.1016/j.jvlc.2009.12.002

16. Bryan Hunt: MongoEMF. url: https://github.com/Bryan
Hunt/mongo-emf/, last accessed Nov. 2019

17. Cezo, J., Krueger, C.: Use product line engineering to reduce
the total costs required to create, deploy & maintain systems &
software. URL https://www.embedded.com/design/prot
otyping-and-development/4008186/Use-product-lin
e-engineering-to-reduce-the-total-costs-require
d-to-create-deploy--maintain-systems--software

18. Cho, H., Gray, J.: Design patterns for metamodels. In: DSM
(2011)

19. Clasen, C., Jouault, F., Cabot, J.: VirtualEMF: A model virtu-
alization tool. In: Advances in Conceptual Modeling. Recent
Developments and New Directions, pp. 332–335 (2011)

20. Corley, J., Syriani, E., Ergin, H.: Evaluating the cloud architecture
of atompm. In: MODELSWARD 2016 - Proceedings of the
4rd International Conference on Model-Driven Engineering and
Software Development, pp. 339–346. SciTePress (2016)

21. Czarnecki, K., Eisenecker, U.W.: Generative Programming:
Methods, Tools, and Applications. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA (2000). isbn: 0-201-30977-
7

22. DARPA VehicleFORGE, P.U.: TrustForge: Flexible Access Con-
trol for VehicleForge.mil Collaborative Environment (2012).
URL http://cps-vo.org/node/6851

23. Debreceni, C., Bergmann, G., Búr, M., Ráth, I., Varró, D.: The
mondo collaboration framework: Secure collaborative model-
ing over existing version control systems. In: 11th Joint Meet-
ing of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering. ACM, ACM, Paderborn, Germany (2017). DOI
https://doi.org/10.1145/3106237.3122829

24. Debreceni, C., Bergmann, G., Ráth, I., Varró, D.: Deriving effec-
tive permissions for modeling artifacts from fine-grained access
control rules. In: 1st International Workshop on Collaborative
Modelling in MDE. ACM, ACM, Saint Malo, France (2016)

25. Debreceni, C., Bergmann, G., Ráth, I., Varró, D.: Enforcing fine-
grained access control for secure collaborative modelling using
bidirectional transformations. Software & Systems Modeling
(2017). DOI 10.1007/s10270-017-0631-8. URL https://do
i.org/10.1007/s10270-017-0631-8

26. Debreceni, C., Bergmann, G., Ráth, I., Varró, D.: Property-based
locking in collaborative modeling. In: 20th International Con-
ference on Model Driven Engineering Languages and Systems.
Austin, Texas, USA (2017)

27. Debreceni, C., Ráth, I., Varró, D., Carlos, X.D., Mendialdua,
X., Trujillo, S.: Automated Model Merge by Design Space Ex-
ploration. In: P. Stevens, A. Wasowski (eds.) Fundamental Ap-
proaches to Software Engineering - 19th International Confer-
ence, FASE 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, Lecture Notes
in Computer Science, vol. 9633, pp. 104–121. Springer (2016).
DOI 10.1007/978-3-662-49665-7_7

28. Dietzold, S., Auer, S.: Access Control on RDF Triple Stores
from a Semantic Wiki Perspective. In: C. Bizer, S. Auer,
L. Miller (eds.) Proc. of 2nd Workshop on Scripting for the
Semantic Web at ESWC, Budva, Montenegro, June 12, 2006,
CEUR Workshop Proceedings ISSN 1613-0073, vol. 183 (2006).
URL http://sunsite.informatik.rwth-aachen.de/Pub
lications/CEUR-WS/Vol-181/paper3.pdf

29. Farwick, M., Agreiter, B., White, J., Forster, S., Lanzanasto, N.,
Breu, R.: A web-based collaborative metamodeling environment
with secure remote model access. In: Web Engineering, 10th

International Conference, ICWE 2010, Vienna, Austria, July 5-
9, 2010. Proceedings, LNCS, vol. 6189, pp. 278–291. Springer
(2010)

30. Foundation, T.E.: CDO Model Repository. url: http://www.
eclipse.org/cdo/, last accessed Nov. 2019

31. Foundation, T.E.: Eclipse Papyrus. url: https://www.eclips
e.org/papyrus/, last accessed Nov. 2019

32. Foundation, T.E.: OpenCert. url: https://www.polarsys.o
rg/projects/polarsys.opencert, last accessed Nov. 2019

33. Foundation, T.E.: PolarSys CHESS. url: https://www.polars
ys.org/projects/polarsys.chess, last accessed Nov. 2019

34. Franz, I.: AllegroGraph. http://franz.com/agraph/alleg
rograph/doc/security.html

35. Fundulaki, I., Marx, M.: Specifying access control policies for
XML documents with XPath. In: 9th ACM Symposium on Access
Control Models and Technologies, pp. 61–69 (2004)

36. Gallardo, J., Bravo, C., Redondo, M.A.: A model-driven devel-
opment method for collaborative modeling tools. J. Network and
Computer Applications 35(3), 1086–1105 (2012)

37. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Pat-
terns. Elements of Reusable Object-Oriented Software. Addison
Wesley (1994)

38. Garcia-Dominguez, A., Barmpis, K., Kolovos, D.S., Wei, R.,
Paige, R.F.: Stress-testing remote model querying apis for re-
lational and graph-based stores. Software & Systems Modeling
(2017). DOI 10.1007/s10270-017-0606-9

39. García-Domínguez, A., Bencomo, N., Paucar, L.H.G.: Reflecting
on the past and the present with temporal graph-based models.
In: Proceedings of the 13th International Workshop on Mod-
els@run.time, at MODELS’18 (2018)

40. Garlik: 4store Access Control. http://4store.org/trac/wi
ki/GraphAccessControl

41. Garmendia, A., Guerra, E., Kolovos, D.S., de Lara, J.: EMF
splitter: A structured approach to EMF modularity. In: Proc.
XM@MODELS, CEUR Workshop Proceedings, vol. 1239, pp.
22–31. CEUR-WS.org (2014). url: http://ceur-ws.org/Vo
l-1239/xm14_submission_3.pdf

42. GMF: https://wiki.eclipse.org/Graphical_Modeling_
Framework

43. Godik, S., (eds), T.M.: eXtensible access control markup language
(XACML) version 1.0. (2003)

44. Gómez, A., Mendialdua, X., Bergmann, G., Cabot, J., Debreceni,
C., Garmendia, A., Kolovos, D.S., de Lara, J., Trujillo, S.: On the
opportunities of scalable modeling technologies: An experience
report on wind turbines control applications development. In:
Modelling Foundations and Applications - 13th European Con-
ference, ECMFA, Lecture Notes in Computer Science, vol. 10376,
pp. 300–315. Springer (2017)

45. Granada, D., Vara, J.M., Bollati, V.A., Marcos, E.: Enabling the
development of cognitive effective visual dsls. In: MoDELS, vol.
8767, pp. 535–551. Springer (2014)

46. Graphiti: http://eclipse.org/graphiti/
47. Green, T.R.G., Petre, M.: Usability analysis of visual program-

ming environments: A ’cognitive dimensions’ framework. J. Vis.
Lang. Comput. 7(2), 131–174 (1996)

48. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven en-
gineering practices in industry. In: Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11,
pp. 633–642. ACM, New York, NY, USA (2011). DOI
10.1145/1985793.1985882. URL http://doi.acm.org/10.
1145/1985793.1985882

49. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.:
Empirical assessment of mde in industry. In: Proceedings of the
33rd International Conference on Software Engineering, ICSE
’11, pp. 471–480. ACM, New York, NY, USA (2011). DOI
10.1145/1985793.1985858. URL http://doi.acm.org/10.
1145/1985793.1985858

http://dx.doi.org/10.1016/j.jvlc.2009.12.002
http://dx.doi.org/10.1016/j.jvlc.2009.12.002
https://github.com/BryanHunt/mongo-emf/
https://github.com/BryanHunt/mongo-emf/
https://www.embedded.com/design/prototyping-and-development/4008186/Use-product-line-engineering-to-reduce-the-total-costs-required-to-create-deploy--maintain-systems--software
https://www.embedded.com/design/prototyping-and-development/4008186/Use-product-line-engineering-to-reduce-the-total-costs-required-to-create-deploy--maintain-systems--software
https://www.embedded.com/design/prototyping-and-development/4008186/Use-product-line-engineering-to-reduce-the-total-costs-required-to-create-deploy--maintain-systems--software
https://www.embedded.com/design/prototyping-and-development/4008186/Use-product-line-engineering-to-reduce-the-total-costs-required-to-create-deploy--maintain-systems--software
http://cps-vo.org/node/6851
https://doi.org/10.1007/s10270-017-0631-8
https://doi.org/10.1007/s10270-017-0631-8
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-181/paper3.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-181/paper3.pdf
http://www.eclipse.org/cdo/
http://www.eclipse.org/cdo/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://www.polarsys.org/projects/polarsys.opencert
https://www.polarsys.org/projects/polarsys.opencert
https://www.polarsys.org/projects/polarsys.chess
https://www.polarsys.org/projects/polarsys.chess
http://franz.com/agraph/allegrograph/doc/security.html
http://franz.com/agraph/allegrograph/doc/security.html
http://4store.org/trac/wiki/GraphAccessControl
http://4store.org/trac/wiki/GraphAccessControl
http://ceur-ws.org/Vol-1239/xm14_submission_3.pdf
http://ceur-ws.org/Vol-1239/xm14_submission_3.pdf
https://wiki.eclipse.org/Graphical_Modeling_Framework
https://wiki.eclipse.org/Graphical_Modeling_Framework
http://eclipse.org/graphiti/
http://doi.acm.org/10.1145/1985793.1985882
http://doi.acm.org/10.1145/1985793.1985882
http://doi.acm.org/10.1145/1985793.1985858
http://doi.acm.org/10.1145/1985793.1985858

30 Abel Gómez et al.

50. IKERLAN: IKERLAN, Where technology is an attitude. url:
http://www.ikerlan.es/en/ikerlan/, last accessed Nov.
2019

51. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson,
A.S.: Feature-oriented domain analysis feasibility study. Tech.
rep., CMU-SEI (90)

52. Kelly, S., Pohjonen, R.: Worst practices for domain-specific mod-
eling. IEEE Software 26(4), 22–29 (2009)

53. Kelly, S., Tolvanen, J.: Domain-specific modeling - enabling full
code generation. Wiley (2008). URL http://eu.wiley.com
/WileyCDA/WileyTitle/productCd-0470036664.html

54. Kelsen, P., Ma, Q., Glodt, C.: Models within models: Taming
model complexity using the sub-model lattice. pp. 171–185.
Springer (2011)

55. Kleppe, A.: Software Language Engineering: Creating Domain-
Specific Languages Using Metamodels, 1 edn. Addison-Wesley
Professional (2008). isbn: 0321553454, 9780321553454

56. Koegel, M., Helming, J.: EMFStore: a model repository for EMF
models. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, vol. 2, pp. 307–308. ACM
(2010). DOI 10.1145/1810295.1810364

57. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Transfor-
mation Language. In: Proceedings of the 1st International Con-
ference on Theory and Practice of Model Transformations, ICMT
’08, pp. 46–60. Springer-Verlag, Berlin, Heidelberg (2008). DOI
10.1007/978-3-540-69927-9_4

58. Kolovos, D.S., Rose, L.M., bin Abid, S., Paige, R.F., Polack,
F.A.C., Botterweck, G.: Taming EMF and GMF using model
transformation. In: MODELS, LNCS, vol. 6394, pp. 211–225.
Springer (2010)

59. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E.,
Cuadrado, J.S., De Lara, J., Ráth, I., Varró, D., Tisi, M., Cabot, J.:
A research roadmap towards achieving scalability in model driven
engineering. In: Proceedings of the Workshop on Scalability in
Model Driven Engineering, BigMDE ’13, pp. 2:1–2:10. ACM,
New York, NY, USA (2013). DOI 10.1145/2487766.2487768

60. Kühn, T., Böhme, S., Götz, S., Aßmann, U.: A combined formal
model for relational context-dependent roles. In: SLE, pp. 113–
124. ACM (2015)

61. de Lara, J., Guerra, E., Cuadrado, J.S.: When and how to use
multilevel modelling. ACM Trans. Softw. Eng. Methodol. 24(2),
12:1–12:46 (2014)

62. de Lara, J., Vangheluwe, H.: Atom3: A tool for multi-formalism
and meta-modelling. In: FASE, LNCS, vol. 2306, pp. 174–188.
Springer (2002)

63. Ltd., S.S.: Enterprise Architect. url: https://www.sparxsys
tems.eu/enterprise-architect, last accessed Aug. 2019

64. Maróti, M., Kecskés, T., Kereskényi, R., Broll, B., Völgyesi,
P., Jurácz, L., Levendovszky, T., Lédeczi, Á.: Next generation
(meta)modeling: Web- and cloud-based collaborative tool infras-
tructure. In: Proceedings of the 8th Workshop on Multi-Paradigm
Modeling (MPM@MODELS), CEUR Workshop Proceedings,
vol. 1237, pp. 41–60. CEUR-WS.org (2014)

65. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop
domain-specific languages. ACM Comput. Surv. 37(4), 316–344
(2005)

66. Modeliosoft: Modelio Open Source - UML and BPMN free mod-
eling tool. url: https://www.modelio.org/, last accessed
Nov. 2019

67. MongoDB Inc.: MongoDB. url: https://www.mongodb.com,
last accessed Nov. 2019

68. Montrieux, L., Hu, Z.: Towards attribute-based authorisation for
bidirectional programming. In: Proceedings of the 20th ACM
Symposium on Access Control Models and Technologies, SAC-
MAT ’15, pp. 185–196. ACM, New York, NY, USA (2015).
DOI 10.1145/2752952.2752963. URL http://doi.acm.org/
10.1145/2752952.2752963

69. Moody, D.L.: The “physics” of notations: Toward a scientific
basis for constructing visual notations in software engineering.
IEEE Trans. Software Eng. 35(6), 756–779 (2009)

70. Neo4j, Inc.: Neo4J Graph Platform. url:https://neo4j.com/,
last accessed Nov. 2019

71. No Magic, I.: Teamwork Cloud. url: https://www.nomagic.
com/products/teamwork-cloud, last accessed Aug. 2019

72. No Magic, I.: Teamwork Server. url: https://www.nomagic.
com/products/teamwork-server, last accessed Aug. 2019

73. Obeo: Obeo designer team. https://www.obeodesigner.com
/en/collaborative-features

74. OMG: XML Metadata Interchange (XMI), Ver. 2.5.1. https:
//www.omg.org/spec/XMI/2.5.1/

75. OpenLink Software: OpenLink Virtuoso. url: https://virt
uoso.openlinksw.com, last accessed Nov. 2019

76. Oracle: Database Semantic Technologies. http:
//docs.oracle.com/cd/E11882_01/appdev.112/e11828/
fine_grained_acc.htm

77. Pagán, J.E., Cuadrado, J.S., Molina, J.G.: A repository for scalable
model management. Software & Systems Modeling 14(1), 219–
239 (2013). DOI 10.1007/s10270-013-0326-8

78. Papakonstantinou, V., Michou, M., Fundulaki, I., Flouris, G., An-
toniou, G.: Access control for RDF graphs using abstract models.
In: 17th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT ’12, Newark, NJ, USA - June 20 - 22, 2012,
pp. 103–112. ACM (2012)

79. Pedro, L., Buchs, D., Amaral, V.: Foundations for a domain spe-
cific modeling language prototyping environment: A composi-
tional approach. In: DSM (2008)

80. Pescador, A., Garmendia, A., Guerra, E., Cuadrado, J.S., de Lara,
J.: Pattern-based development of Domain-Specific Modelling
Languages. In: 18th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MoDELS,
pp. 166–175. IEEE Computer Society (2015). DOI 10.1109/MO
DELS.2015.7338247

81. Pescador, A., de Lara, J.: Dsl-maps: from requirements to de-
sign of domain-specific languages. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software En-
gineering, ASE, pp. 438–443 (2016)

82. Rocco, J.D., Ruscio, D.D., Iovino, L., Pierantonio, A.: Col-
laborative repositories in model-driven engineering [software
technology]. IEEE Software 32(3), 28–34 (2015). DOI
10.1109/MS.2015.61

83. Schäfer, C., Kuhn, T., Trapp, M.: A pattern-based approach to
DSL development. In: DSM@SPLASH, pp. 39–46. ACM (2011)

84. Scheidgen, M., Zubow, A.: Map/reduce on emf models. In: Pro-
ceedings of the 1st International Workshop on Model-Driven
Engineering for High Performance and Cloud Computing, MDH-
PCL ’12, pp. 7:1–7:5. ACM, New York, NY, USA (2012). DOI
10.1145/2446224.2446231

85. Selic, B.: The pragmatics of model-driven development. IEEE
Software 20(5), 19–25 (2003). DOI 10.1109/MS.2003.1231146

86. Sirius: https://eclipse.org/sirius/
87. Spinellis, D.: Notable design patterns for domain-specific lan-

guages. Journal of Systems and Software 56(1), 91–99 (2001)
88. Spray: https://code.google.com/a/eclipselabs.org/
p/spray/

89. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework 2.0, 2nd edn. Addison-Wesley Pro-
fessional (2009). isbn: 0321331885

90. Strembeck, M., Zdun, U.: An approach for the systematic de-
velopment of domain-specific languages. Softw., Pract. Exper.
39(15), 1253–1292 (2009)

91. Strüber, D., Rubin, J., Taentzer, G., Chechik, M.: Splitting models
using information retrieval and model crawling techniques. pp.
47–62. Springer (2014)

http://www.ikerlan.es/en/ikerlan/
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470036664.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470036664.html
https://www.sparxsystems.eu/enterprise-architect
https://www.sparxsystems.eu/enterprise-architect
https://www.modelio.org/
https://www.mongodb.com
http://doi.acm.org/10.1145/2752952.2752963
http://doi.acm.org/10.1145/2752952.2752963
https://neo4j.com/
https://www.nomagic.com/products/teamwork-cloud
https://www.nomagic.com/products/teamwork-cloud
https://www.nomagic.com/products/teamwork-server
https://www.nomagic.com/products/teamwork-server
https://www.obeodesigner.com/en/collaborative-features
https://www.obeodesigner.com/en/collaborative-features
https://www.omg.org/spec/XMI/2.5.1/
https://www.omg.org/spec/XMI/2.5.1/
https://virtuoso.openlinksw.com
https://virtuoso.openlinksw.com
http://docs.oracle.com/cd/E11882_01/appdev.112/e11828/fine_grained_acc.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e11828/fine_grained_acc.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e11828/fine_grained_acc.htm
https://eclipse.org/sirius/
https://code.google.com/a/eclipselabs.org/p/spray/
https://code.google.com/a/eclipselabs.org/p/spray/

Scalable Modeling Technologies in the Wild 31

92. Strüber, D., Selter, M., Taentzer, G.: Tool support for clustering
large meta-models. In: BigMDE 2013, p. 7. ACM (2013)

93. The Apache Software Foundation: Apache HBase. url: http:
//hbase.apache.org/, last accessed Nov. 2019

94. The Eclipse Foundation: Eclipse - The Eclipse Foundation open
source community website. url: https://eclipse.org/, last
accessed Nov. 2019

95. The Eclipse Foundation: Remote Application Platform (RAP).
url: http://eclipse.org/rap/, last accessed Nov. 2019

96. The Eclipse Foundation: Web Modeling Framework (previously
genmymodel.com). url: https://projects.eclipse.org
/proposals/web-modeling-framework/, last accessed Nov.
2019

97. The MONDO Project: Work Package 4 – Scalable Collabora-
tive Modelling. Deliverable 4.4: Prototype Tool for Collaborative
Modeling (2016). url: http://hdl.handle.net/20.500.
12004/1/P/MONDO/D4.4

98. Tolone, W., Ahn, G.J., Pai, T., Hong, S.: Access control in col-
laborative systems. ACM Comput. Surv. 37(1), 29–41 (2005).
DOI 10.1145/1057977.1057979

99. Tolvanen, J.: MetaEdit+: Domain-specific modeling and product
generation environment. In: Software Product Lines, 11th Int.
Conf. SPLC 2007, Kyoto, Japan, pp. 145–146 (2007)

100. Trujillo, S., Garate, J.M., Lopez-Herrejon, R.E., Mendialdua, X.,
Rosado, A., Egyed, A., Krueger, C.W., de Sosa, J.: Coping with
variability in model-based systems engineering: An experience
in green energy. In: T. Kühne, B. Selic, M.P. Gervais, F. Terrier
(eds.) Modelling Foundations and Applications, pp. 293–304.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

101. Vacchi, E., Cazzola, W., Pillay, S., Combemale, B.: Variabil-
ity support in domain-specific language development. In: SLE,
LNCS, vol. 8225, pp. 76–95. Springer (2013)

102. Vaquero-Melchor, D., Palomares, J., Guerra, E., de Lara, J.: Ac-
tive domain-specific languages: Making every mobile user a mod-
eller. In: 20th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS, pp. 75–
82. IEEE Computer Society (2017)

103. Völter, M.: Md* best practices. Journal of Object Technology
8(6), 79–102 (2009)

104. White, J., Hill, J.H., Gray, J., Tambe, S., Gokhale, A.S., Schmidt,
D.C.: Improving domain-specific language reuse with software
product line techniques. IEEE Software 26(4), 47–53 (2009)

Abel Gómez is a researcher of the Internet Interdisciplinary
Institute, a research center of the Universitat Oberta de
Catalunya, Spain. Previously, he has hold different posi-
tions at the Universidad de Zaragoza, the École des Mines
de Nantes & Inria, and the Universitat Politècnica de Valèn-
cia; being this latter institution where he obtained his PhD
degree in Computer Science.

His research interests fall in the broad field of Model-
Driven Engineering (MDE), and his research lines have
evolved in two complementary directions: on the one hand,
the development of core technologies to support MDE ac-
tivities; and on the other hand, the application of MDE tech-
niques to solve Software Engineering problems. More infor-
mation is available at https://abel.gomez.llana.me.

Xabier Mendialdua is a researcher of the Dependable Soft-
ware Team at Ikerlan S. Coop. Since 1994 he has been in-
volved in multiple projects in several domains as automated

warehouse management systems, monitoring systems, wind
power and railway. His main activity is focused in the design
and development of dependable software for embedded con-
trol systems and his research activities have been involved on
applying model-driven and product-line approaches for the
engineering of control systems.

Dr. Konstantinos Barmpis is a Research Associate in the
Department of Computer Science at the University of York,
in the field of MDE (Model-Driven Engineering), DSLs
(Domain-Specific Languages), Distributed Systems and Repos-
itory Mining, as part of the CROSSMINER project funded
by the European Commission for the H2020 initiative. In
addition to 19 papers in peer-reviewed journals, conferences
and workshops, he has been one of the creators and main
contributors of the Hawk open-source project on scalable
model indexing, as well as the CROSSFLOW open-source
project on parallel and distributed heterogeneous analysis
workflow creation and execution. He holds a doctorate of
engineering (EnGD) from the University of York, in large-
scale complex IT systems. More information is available at
https://www-users.cs.york.ac.uk/~kb.

Gábor Bergmann is an assistant professor at the Budapest
University of Technology and Economics, a research fel-
low at the MTA-BME Lendület Research Group on Cyber-
Physical Systems, as well as co-founder and MDE Expert
at IncQueryLabs Ltd. His main research interest is model-
driven systems engineering with a special focus on model
queries. He has received his PhD in software engineering
from Budapest University of Technology and Economics.
Contact him at bergmann@mit.bme.hu.

Jordi Cabot received the B.Sc. and Ph.D. degrees in com-
puter science from the Technical University of Catalonia. He
was a Leader of an INRIA and LINA Research Group at
École des Mines de Nantes, France, a Post-Doctoral Fellow
with the University of Toronto, a Senior Lecturer with the
Open University of Catalonia, and a Visiting Scholar with the
Politecnico di Milano. He is currently an ICREA Research
Professor at Internet Interdisciplinary Institute.

His research interests include software and systems mod-
eling, formal verification and the role AI can play in soft-
ware development (and vice versa). He has published over
150 peer-reviewed conference and journal papers on these
topics. Apart from his scientific publications, he writes and
blogs about all these topics in several sites. He is a member
of the IEEE and the ACM.

Xabier De Carlos is a researcher in Data Analytics and
Artificial Intelligence at Ikerlan S. Coop., with skills in
model driven engineering, embedded systems development,
databases and development of data visualization and moni-

http://hbase.apache.org/
http://hbase.apache.org/
https://eclipse.org/
http://eclipse.org/rap/
https://projects.eclipse.org/proposals/web-modeling-framework/
https://projects.eclipse.org/proposals/web-modeling-framework/
http://hdl.handle.net/20.500.12004/1/P/MONDO/D4.4
http://hdl.handle.net/20.500.12004/1/P/MONDO/D4.4
https://abel.gomez.llana.me
https://projects.eclipse.org/projects/modeling.hawk
https://github.com/crossminer/scava/tree/master/crossflow
https://www-users.cs.york.ac.uk/~kb
bergmann@mit.bme.hu

32 Abel Gómez et al.

toring applications for industrial domains. His PhD disserta-
tion focused on Model Driven Engineering and Databases.
Xabier has participated in public FP7 and H2020 projects
funded by the European Commission, and also in industrial
projects.

Csaba Debreceni recently received his Ph.D. in Computer
Engineering from the Budapest University of Technology
and Economics. He is currently a Senior Researcher at Inc-
Query Labs Ltd. His main research interest is model-driven
development especially on collaborative modeling.

Antonio Garmendia has a Ph.D. in Computer and Telecom-
munication Engineering from the Universidad Autónoma in
Madrid. As a Ph.D. student, he made a research visit to the
Philipps-University Marburg (Germany). He is a member of
the “Modelling and Software Engineering” research group
(http://www.miso.es) at UAM. His research interests are
in scalability in Model-Driven Engineering (MDE) and the
construction of graphical modeling environments. He has
participated in the MONDO EU project on scalability in
MDE.

Dimitris Kolovos is a Professor of Software Engineering
in the Department of Computer Science at the University of
York, where he researches and teaches automated and model-
based software engineering. He is also an Eclipse Founda-
tion committer, leading the development of the open-source
Epsilon model-based software engineering platform, and an
associate editor of the Software and Systems Modelling jour-
nal. He has co-authored more than 150 peer-reviewed papers
and his research has been supported by the European Com-
mission, UK’s Engineering and Physical Sciences Research
Council (EPSRC), InnovateUK and by companies such as
Rolls-Royce and IBM.

Juan de Lara is full professor at the Universidad Autónoma
of Madrid, where he leads the modelling and software engi-
neering research lab (http://miso.es) together with Es-
ther Guerra. His main research interests are in Model-driven
Engineering, including meta-modelling, model transforma-
tions, flexible modelling and domain-specific languages. He
has published more than 200 papers in international journals
and conferences and has been the PC co-Chair of ICMT12,
FASE12, and ICGT17. He is associate editor of the Journal
on Software and Systems Modeling, JOT and IET Software.

http://www.miso.es
http://miso.es

	Introduction
	Background: Towards an MBE Development Process
	Challenges
	The MONDO platform
	MONDO Solutions for Offshore Wind Power
	Evaluation
	Related Work
	Conclusions

