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OPERATORS ON ANTI-DUAL PAIRS:

GENERALIZED KREIN–VON NEUMANN EXTENSION

ZSIGMOND TARCSAY AND TAMÁS TITKOS

Abstract. The main aim of this paper is to generalize the classical concept of
positive operator, and to develop a general extension theory, which overcomes
not only the lack of a Hilbert space structure, but also the lack of a normable
topology. The concept of anti-duality carries an adequate structure to define
positivity in a natural way, and is still general enough to cover numerous
important areas where the Hilbert space theory cannot be applied. Our running
example – illustrating the applicability of the general setting to spaces bearing
poor geometrical features – comes from noncommutative integration theory.
Namely, representable extension of linear functionals of involutive algebras
will be governed by their induced operators. The main theorem, to which
the vast majority of the results is built, gives a complete and constructive
characterization of those operators that admit a continuous positive extension
to the whole space. Various properties such as commutation, or minimality
and maximality of special extensions will be studied in detail.

1. Introduction

One of the most natural questions that arises when someone dealing with par-
tially defined objects in mathematics is whether there exists an extension sharing
some prescribed properties. A great many authors have studied abstract extension
problems for operators on Hilbert spaces, that go at least back to M. G. Krein [17]
and J. von Neumann [19]. (For various different developments of their groundbreak-
ing work see e.g. [4–6, 8, 12, 13, 22, 26], and the references therein.) The following
extension problem was posed by P. R. Halmos [11]: Assume that a positive oper-
ator A : D → H is given, where D is a linear subspace of the complex Hilbert
space H . Positivity here means that (Ax |x) ≥ 0 for all x ∈ D. The question is:
under what conditions can we guarantee the existence of an everywhere defined

bounded positive extension Ã of A? Of course, if there is any then A itself must be
bounded. Hence, extending it to the closure by continuity, we may suppose that D
is closed. Consider the matrix representation of A with respect to the orthogonal
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decomposition H = D ⊕D⊥

[A] =

(
A11 ∗
A21 ∗

)
,

where A11 : D → D and A21 : D → D⊥ arise in the usual way, whereas the second
column (of symbols ∗) waits to be filled to obtain a positive operator. It is easy to
see that every positive extension of A has representation of the form

[Ã] =

(
A11 A∗

21

A21 X

)
,(1.1)

where A11 : D → D and X : D⊥ → D⊥ are positive. So, extending A to a positive

operator Ã is equivalent to find X ≥ 0 such that the operator matrix (1.1) is
positive. (For a more general completion problem for block operators see [7].) This
form helps us to demonstrate also that such an extension need not exist even in the
most simple case. Indeed, assume that H is of the form H = K⊕K with a complex
Hilbert space K and assume that A11 is the zero operator, while A21 = A∗

21 is
any positive but nonzero bounded operator on K. Then an elementary calculation
shows that there is no positive completion at all.

The main aim of this paper is to develop a general extension theory which
overcomes the problem of not having orthogonal decomposition when we drop the
Hilbert space structure. This level of generality is indeed necessary in our consider-
ations, because we intend to investigate extendibility of “positive” mappings acting
on spaces without inner product. In order to introduce the appropriate analogues
of standard operator classes, that cover the original Hilbert space setting, and is
general enough to be applicable for objects like operator kernels and representable
functionals, we are going to consider anti-dual pairs. That is, two appropriately
chosen complex linear spaces intertwined by a sesquilinear and separating map,
called anti-duality. This is a slight modification of the well known dual pair setting
(see [21, Chapter IV]), the only difference we make is the conjugate linearity in the
second variable. Having an anti-duality at hand also allows us to introduce vari-
ous topologies, and hence continuity and boundedness of maps acting between the
spaces in question.

The organization of the paper is as follows. Section 2 contains a short overview
of concepts that are needed in later sections of the paper. In particular, we are
going to introduce the notions of positivity and symmetry of operators in context
of anti-dual pairs. It will turn out that these operators are weakly continuous,
which suggests that the most adequate topologies for our investigations are the
weak topologies.

In Section 3 we present a quite general extension theorem, which can be consid-
ered as the main result of the paper. In fact, this result will serve as the base of our
further investigations throughout. Roughly speaking, we are going to characterize
(in both topological and algebraic ways) operators possessing positive extension to
the whole space. In addition, the construction which is based on the ingenious paper
of Z. Sebestyén [24] has some useful theoretical consequences, including an explicit
formula for the obtained positive extension, as well as for its “quadratic form”.
Also, it will turn out that this extension is minimal in some sense, thus we shall
call it Krein-von Neumann extension, in accordance with the classical literature.
We emphasize that in this paper we restrict ourselves to continuous extensions,
and thus the operators we are going to deal with are typically not densely defined.
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Hence, the maximal (Friedrichs) extension, apart from trivial cases, does not ex-
ist. Nevertheless, we will show that the set of positive extensions bounded by a
fixed positive operator always possesses a maximal element. Closing that chapter
we will also show how the abstract result can be used for positive definite operator
functions. The special case when the anti-duality is the evaluation on the pair of a
fixed Banach space and its conjugate topological dual will be considered in Section
4. On the one hand, we will obtain a strengthening of the main result of [26], on
the other hand, we will conclude that Halmos’ original result follows indeed as an
immediate consequence of our main theorem. Finally, we apply our results to ob-
tain representable positive extensions of linear functionals given on a left ideal of
an involutive algebra.

2. Preliminaries

In this section we collect all the necessary ingredients from the theory of topo-
logical vector spaces, anti-dual pairs, and their special linear operators which we
are going to use throughout.

2.1. Anti-dual pairs and related topologies. We start by recalling the notion
of anti-duality, which is just a slight (and technical) modification of dual pairing.
Although there is no crucial difference between these two notions, we choose anti-
duality in order to stay formally as close as possible to the Hilbert space case. Let
E,F be complex vector spaces. A function 〈·, ·〉 : F × E → C is called anti-duality
if it is sesquilinear (that is to say, linear in the first argument and conjugate linear
in the second one) and 〈·, ·〉 separates the points of F and E (that is to say, if
〈f, x〉 = 0 for all x ∈ E then f = 0F and if 〈f, x〉 = 0 for all f ∈ F then x = 0E).
The triple ((E,F ), 〈·, ·〉) is called an anti-dual pair, and it is denoted shortly by
〈F,E〉. Observe that if 〈F,E〉 is an anti-dual pair then 〈E,F 〉

′
is also an anti-dual

pair where 〈·, ·〉
′
: E × F → C is given by

(2.1) 〈x, f〉
′
:= 〈f, x〉, x ∈ E, f ∈ F.

The most natural anti dual pair is a linear space and a linear subspace of its
conjugate algebraic dual, intertwined by the evaluation as anti-duality. In fact,
every anti-dual pair can be written in the above form. Indeed, if 〈F,E〉 is an anti-
dual pair, then due to the identification

x 7→ ϕx; ϕx(f) := 〈f, x〉 for all f ∈ F,

E may be regarded as a linear subspace of F ∗, the algebraic dual of F . Similarly,
due to the mapping

f 7→ ψf ; ψf (x) := 〈f, x〉 for all x ∈ E,

F can be identified as a linear subspace of Ē∗, the algebraic anti-dual space of
E. Our prototype of anti-dual pairs is the system ((H,H), (· | ·)) where H is a
Hilbert space with inner product (· | ·). This particular anti-dual pair has the useful
feature that H can be identified with its topological dual along the maps x 7→ ϕx

and f 7→ ψf , according to the Riesz representation theorem. A similar feature is
obtained in the general setting if we endow E and F with appropriate topologies.
For this purpose the most natural at hand are the weak topologies σ(E,F ) and
σ(F,E) on E and F , respectively: σ(E,F ) is the smallest topology making ϕx

continuous for all x ∈ E, and similarly, σ(F,E) is the smallest topology on F such
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that all the functionals of the form ψf (f ∈ F ) are continuous. Both (E, σ(E,F ))
and (F, σ(F,E)) are locally convex Hausdorff spaces such that Ē′ = F and F ′ = E,
where Ē′ and F ′ refer to the topological anti-dual and dual spaces of E and F ,
respectively. We call an anti dual pair 〈F,E〉 w∗-sequentially complete, if F is
σ(F,E) sequentially complete. In order to demonstrate that being w∗-sequentially
complete does not mainly depend on the spaces but on the way of how to intertwine
them, we cite an example of Wilansky.

Example 2.1. Let us denote by c and ℓ1 the spaces of convergent and absolute
summable complex sequences, respectively. Define an anti-duality by

〈x, y〉1 :=

∞∑

n=1

x(n)y(n), x ∈ ℓ1, y ∈ c.

Clearly, 〈ℓ1, c〉1 is an anti-dual pair, which is not w∗-sequentially complete, as the
sequence of Kronecker delta’s (δn(n) = 1 and δn(k) = 0 if k 6= n) is a w∗-Cauchy
but not w∗-convergent sequence in ℓ1. On the other hand, the anti-dual pair 〈ℓ1, c〉2
with

〈x, y〉2 := x(1) · lim
n→∞

y(n) +

∞∑

n=1

x(n+ 1)y(n)

is w∗-sequentially complete according to the Banach-Steinhaus theorem (for the
details see Example 7 of 8-2 and Problem 108-109 of 8-2 in [30]).

We remark also here that a linear space and its algebraic conjugate dual inter-
twined by evaluation is always w∗-(sequentially) complete. A Banach space and
its topological conjugate dual form also a w∗-sequentially complete anti-dual pair,
according to the Banach-Steinhaus theorem. More generally, a barrelled space and
its topological conjugate dual form a quasi-complete, and hence a w∗-sequentially
complete anti-dual pair. Nevertheless we mention that the a Banach space is w∗-
complete if and only if the space is finite dimensional.

Besides the weak topology, the strong topology will be particularly important
for our investigations. Recall that if 〈F,E〉 is an anti-dual pair, then the polar of
A ⊆ F is the absolutely convex set

A◦ =
{
x ∈ E

∣∣∀a ∈ A : |〈a, x〉| ≤ 1
}
.

The strong topology β(E,F ) on E is obtained as the linear topology induced by
polars of σ(F,E)-bounded subsets of F . Similarily, the strong topology β(F,E) on
F is induced by polars of σ(E,F )-bounded subsets of E. Now we turn to investigate
special linear operators acting between two sides of anti-dual pairs.

2.2. Positive- and symmetric operators on anti-dual pairs. If an anti-dual
pair 〈F,E〉 is given, we will use the short notation A : E ⊇ domA → F for linear
operators acting on a subspace domA of E with values in F . We prefer this setting
instead of considering duality with conjugate linear operators as in [1]. An operator
A : E ⊇ domA→ F is called positive if it satisfies

〈Ax, x〉 ≥ 0 for all x ∈ domA,

and symmetric if

〈Ax, y〉 = 〈Ay, x〉 for all x, y ∈ domA.
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It is obvious that these are direct generalizations of the well-known notions of
Hilbert space theory. The main advantage is that this setting allows us to han-
dle structures without Hilbert space structure analogously. As the next example
will illustrate, operators on anti-dual pairs appear very naturally for example in
noncommutative integration theory.

Example 2.2. Let A be a ∗-algebra with algebraic conjugate-dual Ā ∗, and let
I ⊆ A be a left-ideal. Then 〈Ā ∗,A 〉 is an anti-dual pair with 〈f, a〉 := f(a). If a
positive linear functional f : I → C is given, we can associate a positive operator
Af : I → Ā ∗ as 〈Afa, b〉 := f(b∗a). It will turn out later that positive extendibility
of f to the whole algebra can be characterized by means of Af . Furthermore, the
canonical extension of f itself will be gained from the canonical extension of Af .

Recall one of the main advantages of weak topology, namely that a linear oper-
ator T acting on a topological vector space (V,TV ) with values in (F, σ(F,E)) is
continuous if and only if the linear functionals

(2.2) ϑx : V → C; ϑx(h) := 〈Th, x〉

are continuous for each x ∈ E. For the sake of simplicity we introduce the following
terminology: if two anti-dual pairs 〈F1, E1〉1 and 〈F2, E2〉2 are given, we will call a
map T : E1 → E2 weakly continuous if T is σ(E1, F1)-σ(E2, F2) continuous. The
set of weakly continuous linear operators T : E1 → E2 is denoted by L (E1;E2). By
replacing 〈F2, E2〉2 with 〈E2, F2〉2

′ (see (2.1)) one can characterize weak continuity
of an operator T : E1 → F2. Indeed, according to (2.2), T is weakly continuous if
and only if for all x2 ∈ E2 there exists f1 ∈ F1 such that

(2.3) 〈Tx1, x2〉2 = 〈f1, x1〉1 (= 〈x1, f1〉1
′) for all x1 ∈ E1.

The (necessarily weakly continuous) operator T ∗ : E2 → F1 satisfying

〈Tx1, x2〉2 = 〈T ∗x2, x1〉1, x1 ∈ E1, x2 ∈ E2.

is called the adjoint of T . In particular, the adjoint A∗ of an operator A ∈ L (E;F )

belongs again to L (E;F ) and satisfies 〈Ax, y〉 = 〈A∗y, x〉 for all x, y ∈ E. Hence it
makes sense to speak about self-adjointness A = A∗ of an operator A ∈ L (E;F ).
An everywhere defined symmetric operator (that is, an operator S : E → F such

that 〈Sx, y〉 = 〈Sy, x〉, x, y ∈ E) is automatically weakly continuous, and hence
self-adjoint. If A : E ⊇ domA → F is an operator such that 〈Ax, x〉 is real for
all x ∈ domA then the sesquilinear form tA(x, y) := 〈Ax, y〉 (x, y ∈ domA) is

hermitian, thus A is symmetric. Indeed, 〈Ax, y〉 = tA(x, y) = tA(y, x) = 〈Ay, x〉
holds for all x, y ∈ domA. Let us summarize these observations in the following
proposition.

Proposition 2.1. Let 〈F,E〉 be an anti-dual pair.

(a) Every symmetric operator A : E → F is weakly continuous and self-adjoint.
(b) An operator A : E → F is symmetric if and only if 〈Ax, x〉 is real for each

x ∈ E.
(c) Every positive operator A : E → F is weakly continuous and self-adjoint.

As our main interest in this paper lies in positive extensions, we present a proto-
type of positive operators. In rest of the paper we are mainly interested in positive
operators on an anti-dual pair. In the next example we present the prototype of
such positive operators.
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Example 2.3. Let 〈F,E〉 be an anti-dual pair andH a Hilbert space. If T : E → H

is a σ(E,F )-σ(H,H) continuous linear operator then its adjoint T ∗ : H → F is
σ(H,H)-σ(F,E) continuous so that T ∗T ∈ L (E;F ) is positive:

〈T ∗Tx, x〉 = (Tx |Tx) ≥ 0, x ∈ E.

We will see later that, under some natural conditions on F , each positive operator
A ∈ L (E;F ) possesses a factorization of the form A = T ∗T with a suitable T and
H of Example 2.3.

3. Main theorem – Extensions of positive operators

The central problem of this section is to provide necessary and sufficient con-
ditions under which a linear operator A : E ⊇ domA → F possesses a positive
extension to the whole E. The following set associated to A will play a key role in
our treatment:

(3.1) W (A) := {Ax |x ∈ domA, 〈Ax, x〉 ≤ 1} ⊆ F.

The construction below is motivated by the work of Sebestyén [24]. Here we em-
phasize that no topological conditions on domA are assumed.

Theorem 3.1. Let 〈F,E〉 be a w∗-sequentially complete anti-dual pair and let
A : E ⊇ domA→ F be a linear operator with domain domA, which is assumed to
be only a linear subspace. Then the following statements are equivalent.

(i) There is a positive operator Ã ∈ L (E;F ) extending A,
(ii) W (A) is β(F,E)-bounded in F ,
(iii) W (A) is σ(F,E)-bounded in F ,
(iv) To any y in E there is My ≥ 0 such that

(3.2) |〈Ax, y〉|
2
≤My〈Ax, x〉 for all x ∈ domA.

If one (and hence all) of the above conditions is satisfied then there exists a distin-
guished extension called the Krein-von Neumann extension which is minimal in the

following sense: AN ≤ Ã holds for any positive extension Ã ∈ L (E;F ) of A.

Proof. We start by proving that (iv) implies (i). Let us consider the following inner
product on the range space ranA of A:

(3.3) (Ax |Ax′)
A
:= 〈Ax, x′〉, x, x′ ∈ domA.

First of all note that (· | ·)
A
is well defined: if Ax = Ax′ and Ay = Ay′, then

〈Ax, y〉 = 〈Ax′, y〉 = 〈Ay, x′〉 = 〈Ay′, x′〉 = 〈Ax′, y′〉.

Furthermore, if 〈Ax, x〉 = 0 for some x ∈ domA then (iv) implies 〈Ax, y〉 = 0 for
all y ∈ E, hence Ax = 0, which means that (ranA, (· | ·)

A
) is a pre-Hilbert space.

Consider now the completion HA of ranA equipped with that inner product. Let
us consider the densely defined canonical embedding operator

(3.4) J : HA ⊇ ranA→ F ; J(Ax) := Ax, x ∈ domA.

For any y in E, we see by (iv) that

|〈Ax, y〉|
2
≤My(Ax |Ax)A , x ∈ domA,

hence the linear functional

HA ⊇ ranA ∋ Ax 7→ 〈Ax, y〉,
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is continuous with respect to the norm induced by (· | ·)
A
. That means that J is

σ(ranA,HA)-σ(F,E) continuous and thus it admits a unique continuous extension
to HA by w∗-sequentially completeness of F . As it will not cause ambiguity, this
extension will be denoted by the same symbol J ∈ L (HA;F ). The adjoint operator
J∗ ∈ L (E;HA) fulfills

(Ax′ | J∗x)
A
= 〈J(Ax′), x〉 = 〈Ax′, x〉 = (Ax′ |Ax)

A

for every x, x′ ∈ domA, whence we gain the useful identity

(3.5) J∗x = Ax, x ∈ domA.

And here we have arrived: for any x in domA we find that JJ∗x = J(Ax) = Ax,
hence JJ∗ ∈ L (E;F ) is a positive extension of A. The extension obtained by this
construction will be denoted by AN .

E F
AN

HA

J∗ J

Figure 1. Factorization of the Krein-von Neumann extension.

If A ∈ L (E;F ) is any positive extension of A then clearly W (A) ⊆ W (Ã).
Hence, to see that (i) implies (ii) we may assume that A is everywhere defined, i.e.,
A ∈ L (E;F ). We have to show that W (A) is bounded in the β(F,E) topology,
that is, B◦ absorbs W (A) for each σ(E,F )-bounded subset B of E. Note that we
have A = JJ∗ and that W (A) ⊆ J〈BA〉, where BA refers to the closed unit ball in
HA. Since BA is weakly compact, J〈BA〉 is absorbed by the barrel B◦, according
to the absorbing lemma. Hence B◦ absorbs W (A) as well, proving that (i)⇒ (ii).

As the topology β(F,E) is stronger then σ(F,E), (ii) implies (iii) obviously.
Assume now thatW (A) is weak-* bounded in F and take y from E. By continuity

we see that 〈·, y〉 is bounded on W (A) whence we conclude that

My := sup
{
|〈Ax, y〉|

2 ∣∣ x ∈ domA, 〈Ax, x〉 ≤ 1
}
< +∞,

which clearly implies (iv). The equivalence of (i)-(iv) has been proved.
In order to prove minimality of AN , we are going to show first that

〈ANy, y〉 = sup
{
|〈Ax, y〉|2

∣∣ x ∈ domA, 〈Ax, x〉 ≤ 1
}
, y ∈ E.(3.6)

Indeed, using density of ranA in HA, we conclude for all y ∈ E that

〈JJ∗y, y〉 = (J∗y | J∗y)
A
=
{
|(Ax | J∗y)

A
|2
∣∣ x ∈ domA, (Ax |Ax)

A
≤ 1
}

= sup
{
|〈Ax, y〉|

2 ∣∣ x ∈ domA, 〈Ax, x〉 ≤ 1
}
.

Consider now a positive extension Ã ∈ L (E;F ) of A. Then

〈JJ∗y, y〉 = sup
{
|〈Ax, y〉|

2 ∣∣x ∈ domA, 〈Ax, x〉 ≤ 1
}

≤ sup
{
|〈Ãx, y〉|

2 ∣∣x ∈ E, 〈Ãx, x〉 ≤ 1
}

≤ sup
{
〈Ãx, x〉〈Ãy, y〉

∣∣ x ∈ E, 〈Ãx, x〉 ≤ 1
}

= 〈Ãy, y〉,
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holds for any y ∈ E. Hence JJ∗ ≤ Ã, indeed. �

For the sake of brevity and clarity we introduce now a short term to express
that 〈F,E〉 is a given anti-dual pair where the topological space (F, σ(F,E)) is
sequentially complete, domA is a linear subspace of E, and A : domA → F is a
linear operator that satisfies one (and hence all) of the properties (i)-(iv) in Theorem
3.1. Following Halmos’ terminology we will say shortly that A is a subpositive
operator on the w∗-sequentially complete anti-dual pair 〈F,E〉. Observe that (3.6)
provides a useful explicit formula for the “quadratic form” of AN . From the density
of ranA in HA we can establish another one, namely,

0 = inf{(J∗y − Ax | J∗y −Ax)
A
|x ∈ domA}

= 〈JJ∗y, y〉+ inf
{
−〈Ax, y〉 − 〈Ax, y〉+ 〈Ax, x〉

∣∣ x ∈ domA
}

for every y ∈ E, which gives us

〈ANy, y〉 = sup
{
〈Ax, y〉+ 〈Ax, y〉 − 〈Ax, x〉

∣∣ x ∈ domA
}
, y ∈ E,(3.7)

after rearrangement.
The simple example below demonstrates that w∗-sequentially completeness of F

was really essential in the main theorem.

Example 3.1. Let H be a Hilbert space and let A be an unbounded positive
self-adjoint operator in H , with (dense) domain domA. Let E denote the domain
of A1/2, i.e., E := domA1/2. Then clearly, 〈H,E〉 forms and anti-dual pair with
respect to the duality induced by the inner product, but H is not sequentially
complete with respect to the corresponding weak topology. It is readily seen that
A : domA→ H fulfills condition (iv) of Theorem 3.1: indeed, for y ∈ E,

|(Ax | y)|
2
= |(A1/2x |A1/2y)|

2
≤ ‖A1/2y‖2(Ax |x), x ∈ domA.

Although condition (iv) is satisfied, the implication of Theorem 3.1 does not remain
true because of the lack of w∗-sequentially completeness. Indeed, assume that A

extends to a positive operator Ã : E → H . Recall that a self-adjoint operator

may not have any proper symmetric extension, hence A = Ã and, in particular,
domA = domA1/2. But thus is impossible because domA $ domA1/2 whenever A
is unbounded (see [28, Corollary 2.4]).

Notice that the set of positive extensions of a given positive operator A has no
maximal element (unless domA is dense): for example, in the trivial case when
domA = {0}, every positive operator is an extension of A. However, the next
theorem says that we will get a maximum among positive extensions, bounded by
a positive operator B.

Theorem 3.2. Let A be a subpositive operator on the w∗-sequentially complete
anti-dual pair 〈F,E〉. Let B ∈ L (E;F ) be a positive operator such that AN ≤ B,
then there exists a positive operator AB

max ∈ L (E;F ), AB
max ≤ B such that for

every positive extension Ã ∈ L (E;F ) of A, 0 ≤ Ã ≤ B, one has Ã ≤ AB
max. In

other words,

AB
max = max{Ã ∈ L (E;F ) | 0 ≤ Ã ≤ B,A ⊂ Ã}.

Furthermore, a positive operator 0 ≤ Ã ≤ B is an extension of A if and only if

AN ≤ Ã ≤ AB
max:

(3.8) [AN , A
B
max] = {Ã ∈ L (E;F ) | 0 ≤ Ã ≤ B,A ⊂ Ã}
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Proof. By assumption, B−AN ≥ 0 is a positive extension of B−A, hence (B−A)N
exists. Set

AB
max := B − (B −A)N .

We have apparently 0 ≤ AB
max ≤ B, and A ⊂ AB

max. If 0 ≤ Ã ≤ B extends A then

B −A ⊂ B − Ã implies (B − A)N ≤ B − Ã and hence Ã = B − (B − Ã) ≤ AB
max.

In order to prove (3.8) let AN ≤ Ã ≤ AB
max. Take x ∈ domA, then for every y ∈ E

we have

|〈Ãx−Ax, y〉|
2
= |〈(Ã−AN )x, y〉|

2

≤ 〈(Ã−AN )x, x〉〈(Ã−AN )y, y〉

≤ 〈(AB
max −AN )x, x〉〈(Ã−AN )y, y〉 = 0,

because ANx = AB
maxx = Ax. Hence Ãx = Ax, that is, A ⊂ Ã. �

The next theorem tells us that the Krein–von Neumann extension preserves
certain commutation properties as well. We remark in advance that the proof is
a bit unusual: although the claim concerns continuous operators, the proof itself
applies unbounded operator techniques.

Theorem 3.3. Let A : domA→ F be a subpositive operator on the w∗-sequentially
complete anti-dual pair 〈F,E〉. Suppose that there are two weakly continuous op-
erators B,C ∈ L (E;E) leaving domA invariant, and that the spectrum of BC
restricted to domA is bounded. Assume in addition that B and C satisfy

(3.9) C∗A ⊂ AB, and B∗A ⊂ AC,

then the Krein-von Neumann extension of A satisfies

C∗AN = ANB, and B∗AN = ANC.

Proof. Let us introduce two linear operators B̂ and Ĉ on the dense linear subspace
ranA ⊆ HA by letting

B̂(Ax) := ABx, Ĉ(Ax) := ACx, x ∈ domA.

Observe that B̂ and Ĉ satisfy

(B̂(Ax) |Ay)
A
= (Ax | Ĉ(Ay))

A
, x, y ∈ domA

because from (3.9) it follows that

(ABx |Ay)
A
= 〈ABx, y〉 = 〈Ax,Cy〉 = (Ax |ACy)

A
.

We see therefore that B̂ and Ĉ are closable operators and their closures satisfy

(B̂∗∗h | k)
A
= (h | Ĉ∗∗k)

A
, h ∈ dom(B̂∗∗), k ∈ dom(Ĉ∗∗).(3.10)

We are going to prove first that B̂∗∗ and Ĉ∗∗ are adjoints of each other, i.e.,

Ĉ∗ = B̂∗∗, B̂∗ = Ĉ∗∗.

By [25, Theorem 3.1] that will be shown once we prove that the operator matrix

Π :=

(
tIA −B̂∗∗

Ĉ∗∗ tIA

)
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has full range, i.e., ranΠ = HA ×HA, for some t ∈ R, t 6= 0 (here IA stands for the
identity operator of HA). From (3.10) it is easy to deduce that

‖Π(h, k)‖2 ≥ t2‖(h, k)‖2, (h, k) ∈ domΠ,

and since Π is a closed operator, its range is closed. On the other hand, with

Π0 :=

(
tIA −B̂

Ĉ tIA

)
,

we have Π = Π∗∗
0 , hence it suffices to show that Π0 has dense range. To do so

observe that(
tIA −B̂

Ĉ tIA

)(
tIA B̂

−Ĉ tIA

)
=

(
t2IA + B̂Ĉ 0

0 t2IA + ĈB̂

)
,

and here the latter one has range

{(A(t2I +BC)x,A(t2I + CB)y) |x, y ∈ domA} ⊂ HA ×HA.(3.11)

By assumption, we have that the restriction t2I + BC|domA : domA → domA is
weakly continuously invertible whenever t is large enough. The same holds true for
t2I +CB because of the Jacobson lemma. Hence we conclude that the set in (3.11)
is identical with ranA× ranA, and therefore ranA× ranA ⊆ ranΠ0, which proves
our claim.

Next we show that ranJ∗ ⊆ dom(B̂∗∗) and J∗B = B̂∗∗J∗. Let y ∈ E and

x ∈ domA, then (Ĉ(Ax) | J∗y)
A
= 〈ACx, y〉 = 〈Ax,By〉 = (Ax | J∗By)

A
, whence

we have J∗y ∈ dom(Ĉ∗) and Ĉ∗J∗y = J∗By. Since we have Ĉ∗ = B̂∗∗, this proves

J∗B = B̂∗∗J∗. Similarly, J∗C = ĈJ∗. And now we have arrived:

ANB = JJ∗B = JB̂∗∗J∗ = (JB̂∗J∗)∗ = (JĈ∗∗J∗)∗ = (ANC)
∗ = C∗AN ,

and similarly, ANC = B∗AN . The proof is complete. �

We have proved above that the auxiliary operators B̂ and Ĉ (more precisely,
their closures) are adjoint of each other, but we do not know whether they are
bounded or not. If the underlying anti-dual pair comes from a Banach space E and
its conjugate dual space F = Ē′ then one can imitate the proof of [14, Theorem

2.2] to show that B̂, Ĉ are bounded operators with common norm bound
√
r(BC),

the spectral radius of BC.

We close this section by a quick application of our main theorem. Namely, we are
going to deal with so called positive definite operator functions see e.g. [3,27] for the
Hilbert space case, and [15, 18] for the Banach space setting. As these frameworks
were too restrictive for various applications, many authors dealt with the case of
functions taking values in a locally convex topological vector spaces in duality (see
for example [4] and the references therein). Our setting is as follows: let 〈F,E〉 be a
w∗-sequentially complete anti-dual pair and Z be a non-void set. Let us denote by
F the vector space of functions u : Z → E which have finite support, and denote
by F̄ ∗ the algebraic conjugate dual of F . A function K : Z × Z → L (E;F ) is
called a positive definite function (or shortly, a kernel) if it satisfies

(3.12)
∑

s,t∈Z

〈K(s, t)u(s), u(t)〉 ≥ 0, for all u ∈ F .
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We can naturally associate a positive operator AK : F → F̄ ∗ with K by setting

〈AKu, v〉 :=
∑

s,t∈Z

〈K(s, t)u(s), u(t)〉, u, v ∈ F .

For given two kernelsK,L we writeK � L if their associated positive operators sat-
isfy AK ≤ AL. Using this correspondence one can consider a kernel K as subspace
of F × F̄ ∗ of the form {(u,AKu) |u ∈ F}, say the graph of K. In the follow-
ing theorem we will characterize whether a subspace implemented by an operator
A : F0 → F̄ ∗ can be extended to be a graph of a kernel.

Theorem 3.4. Let F0 be a linear subspace of F , and assume that a positive
operator A : F0 → F̄ ∗ is given. Then the following assertions are equivalent:

(i) There exists a kernel K : Z × Z → L (E;F ) so that A ⊆ AK ,
(ii) For every v ∈ F there is Mv ≥ 0 such that

|〈Au, v〉|2 ≤Mv · 〈Au, u〉 for all u ∈ F0.

Moreover, there is a K that is smallest in the sense that K � L for any kernel
L with A ⊆ AL.

Proof. It is obvious that (i) implies (ii). For the converse observe that F and F̄ ∗

intertwined by the evaluation form a w∗-sequentially complete anti-dual pair, thus
we can apply Theorem 3.1. Therefore the smallest (Krein-von Neumann) extension
AN of A exists. Our only duty is to show that AN is induced by a suitable kernel
K. To this aim, for any fixed s ∈ Z and x ∈ E introduce the function us,x ∈ F by
setting

us,x(s
′) := δs(s

′) · x, s′ ∈ Z,

where δs is the usual Dirac-function concentrated at s. For s, t ∈ Z define a linear
operator K(s, t) : E → F by

〈K(s, t)x, y〉 := 〈ANus,x, ut,y〉, x, y ∈ E.

By the symmetry of AN we conclude that

〈K(s, t)x, y〉 = 〈ANus,x, ut,y〉 = 〈ANut,y, us,x〉 = 〈K(t, s)y, x〉,

whence it is clear thatK(s, t) ∈ L (E;F ) (and also thatK(s, t)∗ = K(t, s)). Finally,
since every u ∈ F can be expressed as u =

∑
s∈Z

us,u(s) we have

〈ANu, v〉 =
∑

s,t∈Z

〈Aus,u(s), ut,v(t)〉 =
∑

s,t∈Z

〈K(s, t)u(s), v(t)〉,

which means that AN is induced by the kernel K. �

4. The Banach space setting

In this section we are going to investigate the special case when the anti-duality
is the evaluation on the pair of a fixed Banach space E and its conjugate topological
dual Ē′. We will obtain a strengthening of the main result of [26], and we will show
that Halmos’ original result is indeed a corollary of our main theorem.

We remark that the Banach-Steinhaus theorem forces Ē′ to be weakly sequen-
tially complete, and hence everything has been proved in the preceding sections
remains valid also for the anti-dual pair 〈Ē′, E〉.
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We start our investigations with a suitable generalization of the Schwarz in-
equality (cf. Kadison [16, Theorem 1], and also Lemma 2.1 and Corollary 2.2 in
[29]).

Proposition 4.1. Let E be a Banach space and let Ai : E → Ē′ (1 ≤ i ≤ n)
be positive operators. Then for every set of vectors xi ∈ E 1 ≤ i ≤ n the following
inequality holds

∥∥∥
n∑

j=1

Ajxj

∥∥∥
2

≤
∥∥∥

n∑

j=1

Aj

∥∥∥ ·
n∑

j=1

〈Ajxj , xj〉.(4.1)

Moreover, C := ‖
∑n

j=1 Aj‖ is the smallest constant satisfying (4.1).

Proof. Consider the direct sum Hilbert-space K :=
⊕n

j=1HAj
, and define a linear

operator V : E → K by V x := (A1x,A2x, . . . , Anx) for x ∈ E. It is easy to

check that V is continuous by norm bound ‖V ‖2 ≤ ‖
n∑

j=1

Aj‖. A straightforward

calculation shows that its adjoint acts as V ∗(A1x1, . . . , Anxn) :=
∑n

j=1Ajxj , for

all x1, x2, . . . , xn ∈ E. Since ‖V ∗‖ = ‖V ‖, we infer that

∥∥∥
n∑

j=1

Ajxj

∥∥∥
2

= ‖V ∗(A1x1, A2x2, . . . , Anxn)‖
2

≤ ‖V ∗‖2 · ‖(A1x1, A2x2, . . . , Anxn)‖
2

≤
∥∥∥

n∑

j=1

Aj

∥∥∥ ·
n∑

j=1

〈Ajxj , xj〉.

In order to prove minimality, let us fix a constant C ≥ 0 that satisfies (4.1) with
‖
∑n

j=1Aj‖ replaced by C. Then for x ∈ E the following inequalities hold

∥∥∥
n∑

j=1

Ajx
∥∥∥
2

≤ C ·

n∑

j=1

〈Ajx, x〉 ≤ C ·
∥∥∥

n∑

j=1

Aj

∥∥∥ · ‖x‖2,

thus we have ‖
∑n

j=1 Aj‖ ≤ C, indeed. �

As an immediate consequence of the preceding proposition (n = 1) we have

‖Ax‖2 ≤ ‖A‖〈Ax, x〉, x ∈ E.(4.2)

Now we rephrase our main theorem in the Banach space setting, extending the
results obtained in [26, Theorem 3.1] and also [2, Theorem 2.2].

Theorem 4.2. Let E be a Banach space, and let A : E ⊇ domA→ Ē′ be a linear
operator. Then the following statements are equivalent.

(i) A has a (continuous) positive extension Ã ∈ L (E; Ē′),
(ii) There is a constant M ≥ 0 such that

‖Ax‖2 ≤M · 〈Ax, x〉, x ∈ domA,(4.3)

(iii) For any y ∈ H there exists My ≥ 0 such that

|〈Ax, y〉|
2
≤My · 〈Ax, x〉, x ∈ domA.
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In any case, there exists the Krein-von Neumann extension AN of A that is the
smallest among the set of positive extensions of A. The norm of AN satisfies

(4.4) ‖AN‖ = inf{M ≥ 0 | ‖Ax‖2 ≤M · 〈Ax, x〉, x ∈ domA}.

If B,C ∈ L (E;E) are continuous operators leaving domA invariant such that
C∗A ⊂ AB and B∗A ⊂ AC then the Krein-von Neumann extension of A satisfies

(4.5) C∗AN = ANB, and B∗AN = ANC.

Proof. The equivalence between (i) and (iii) is clear from Theorem 3.1. That (i)

implies (ii) follows from (4.2) with M = ‖Ã‖. To see that (ii) implies (iii), fix y ∈ E

and observe that

|〈Ax, y〉|
2
≤ ‖Ax‖2‖y‖2 ≤M · ‖y‖2 · 〈Ax, x〉, x ∈ domA.

Hence (iii) holds with My =M · ‖y‖2.
To prove (4.4), let MA denote the corresponding infimum. It follows from (4.2)

that MA ≤ ‖AN‖. To see the converse, take y ∈ E, ‖y‖ ≤ 1, then for every
x ∈ domA,

|〈Ax, y〉|
2
≤ ‖Ax‖2 ≤M · 〈Ax, x〉,

hence 〈Ay, y〉 ≤M , according to formula (3.6). Consequently, ‖AN‖2 ≤M2 follows
from

sup
y,z∈E,

‖y‖=‖z‖=1

|〈ANy, z〉|
2
≤ sup

y,z∈E,
‖y‖=‖z‖=1

〈ANy, y〉〈ANz, z〉 ≤M2.

The rest of the statement follows immediately from Theorem 3.3. �

We remark here that implication (ii)⇒(iii) could be deduced also from (iii)⇒(iv)
of Theorem 3.1 because inequality (4.3) expresses just that W (A) is bounded in
the functional norm, i.e., W (A) is β(Ē′, E)-bounded.

As an immediate consequence of Theorem 4.2 we recover [24, Theorem 1] con-
cerning positive extendibility of suboperators on a Hilbert space.

Corollary 4.3. Let H be a Hilbert space and let A : H ⊇ domA→ H be a linear
operator. Then the following assertions are equivalent:

(i) A has a (continuous) positive extension Ã ∈ B(H),
(ii) There is a constant M ≥ 0 such that

‖Ax‖2 ≤M · (Ax |x), x ∈ domA,

(iii) For any y ∈ H there exists My ≥ 0 such that

|(Ax | y)|2 ≤My · (Ax |x), x ∈ domA.

In any case, there exists is the Krein-von Neumann extension AN of A whose norm
satisfies

‖AN‖ = inf{M ≥ 0 | ‖Ax‖2 ≤M · (Ax |x), x ∈ domA}

If B,C ∈ B(H) are bounded operators leaving domA invariant such that C∗A ⊂ AB

and B∗A ⊂ AC then the Krein-von Neumann extension of A satisfies

C∗AN = ANB, and B∗AN = ANC.

Note that for a positive operator A ∈ B(H) one has ‖A‖ ≤ M if and only if
A ≤ M · I, I being the identity operator of H . Combining this observation with
Theorem 3.2 one immediately gets the following statement.
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Corollary 4.4. Let A : domA→ H be a positive operator satisfying the conditions
of Corollary 4.3. Then, for every constant M ≥ ‖AN‖ there is a positive extension

AM
max of A with ‖AM

max‖ ≤M such that for any positive extension Ã of A, ‖Ã‖ ≤M

one has Ã ≤ AM
max. In other words,

AM
max = max{Ã ∈ B(H) | Ã ≥ 0, A ⊂ Ã, ‖Ã‖ ≤M}.

Furthermore, one has equality

[AN , A
M
max] = {Ã ∈ B(H) | Ã ≥ 0, A ⊂ Ã, ‖Ã‖ ≤M}.

As a concluding result of this section we prove Halmos’ result on positive com-
pletions of incomplete matrices (see [11, §5, Corollary 2]).

Corollary 4.5. Let A :=

(
A11 A12

A21 ∗

)
be an “incomplete” operator matrix in a

Hilbert space H = H0 ⊕ H⊥
0 with domA = H0. Assume that A11 ≥ 0 and that

A21 = A∗
21, then the following assertions are equivalent:

(i) there exists A22 ≥ 0 that makes A positive, i.e.,

(
A11 A12

A21 A22

)
≥ 0,

(ii) A∗
21A21 ≤M ·A11, for some constant M ≥ 0,

(iii) ranA∗
21 ⊆ ranA

1/2
11 .

Proof. Assume first (i) and prove (ii): Suppose that B :=

(
A11 A12

A21 A22

)
≥ 0. Since

for every positive operator B one has B2 ≤ ‖B‖ ·B, we have for x ∈ H0 that

‖A11x‖
2 + ‖A21x‖

2 =

∥∥∥∥B
(
x

0

)∥∥∥∥
2

≤ ‖B‖

(
B

(
x

0

) ∣∣∣∣
(
x

0

))
= ‖B‖(A11x |x).

Since A2
11 ≤ ‖A11‖ ·A11, this obviously gives (ii).

The equivalence of (ii) and (iii) follows immediately from the Douglas factoriza-
tion theorem [9]. Finally, assuming (ii) we clearly have

∥∥∥∥A
(
x

0

)∥∥∥∥
2

≤ ‖A11‖(A11x |x) +M(A11x |x), x ∈ H0,

hence A fulfills (ii) of Corollary 4.3. Consequently, A has a bounded positive exten-
sion, or equivalently, A can be filled in to get a positive operator. �

Finally we mention that Friedrichs extension of unbounded operators acting
between reflexive Banach spaces and their duals has been investigated by Farkas
and Matolcsi in [10].

5. Functional extensions on *-algebras

The goal of this section is to show that how abstract operator extensions can be
applied for positive functionals on a *-algebra.

Let A be a not necessarily unital complex ∗-algebra. Recall that a linear
functional f on A is called representable if there exist a Hilbert space H , a *-
representation (that is, a *-homomorphism) π : A → B(H) and a vector ξ ∈ H

such that
f(a) = (π(a)ξ | ξ), a ∈ A .

It is clear that every representable functional is positive, nevertheless the converse
is not true in such generality.
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Consider now a left ideal I of A and a linear functional f : I → C. In
this section we provide necessary and sufficient conditions under which f admits
a representable extension to A (cf. also [26] for the Banach-* algebra setting).
Recall that if f : I → C is a linear functional, then we can associate an operator
A : I → Ā ∗ to f by setting

(5.1) 〈Aa, x〉 := f(x∗a), x ∈ A , a ∈ I .

Clearly, A is positive if and only if f is positive, i.e., f(a∗a) ≥ 0 holds for all a ∈ I .
In what follows we are exclusively interested in representable extensions of func-

tionals. Recall that f is said to be Hilbert bounded if there is constant M ≥ 0 such
that

(5.2) |f(a)|
2
≤Mf(a∗a) for all a ∈ I ,

and admissible if for any x in A there exists λx ≥ 0 such that

(5.3) f(a∗x∗xa) ≤ λxf(a
∗a) for all a ∈ I .

Theorem 5.1. Let A be a ∗-algebra, I ⊆ A be a left ideal, and let f : I → C be
a linear functional. The following assertions are equivalent:

(i) there is a representable functional f̃ ∈ A ∗ extending f ,
(ii) f is admissible and Hilbert bounded.

If there is any, then there is a minimal one (denoted by fN ) among the set of
representable extensions.

Proof. Implication (i)⇒(ii) is trivial so we only have to prove that if a functional f
on a left ideal I of A satisfies (5.2) and (5.3) then f admits a minimal representable
extension. We are going to imitate the proof of [23, Theorem 1], combined with the
construction of the proof of Theorem 3.1: suppose that f is admissible and Hilbert
bounded and consider the positive operator A : I → Ā ′, defined by (5.1). Since
the following chain of inequalities holds true for all a ∈ I and x ∈ A

|〈Aa, x〉|
2
= |f(x∗a)|

2
≤Mf(a∗xx∗a) ≤ λx∗Mf(a∗a) = λx∗M〈Aa, a〉,

we conclude that A fulfills condition (iv) of Theorem 3.1, and thus the Krein-
von Neumann extension AN = JJ∗ : A → Ā ∗ exists. Consider the auxiliary
Hilbert space HA, and for every x ∈ A define the operator πf (x) ∈ B(HA) as the
continuous extension of the densely defined bounded operator

πf (x)(Aa) := A(xa), a ∈ I .

Note that boundedness of πf (x) is guaranteed by admissibility (5.3):

‖πf (x)(Aa)‖
2
A = 〈A(xa), xa〉 = f(a∗x∗xa) ≤ λxf(a

∗a) = λx‖Aa‖
2
A.

We claim that πf : A → B(HA) is a *-homomorphism. It is straightforward that
πf is linear and multiplicative. To see that πf preserves involution, fix x ∈ A and
a, b ∈ I , then

(πf (x)(Aa) |Ab)A = 〈A(xa), b〉 = f(b∗xa)

= f((x∗b)∗a) = 〈Aa, x∗b〉 = (Aa |πf (x
∗)(Ab))

A
,

hence πf (x)
∗ = πf (x

∗), indeed. Our next goal is to show the existence of a vector
ζf ∈ HA such that f(a) = (πf (a)ζf | ζf )A , a ∈ I . To this aim consider the densely
defined linear functional

(5.4) ϕ : HA ⊇ ranA→ C; ϕ(Aa) = f(a), a ∈ I ,
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which is well defined and continuous because of Hilbert boundedness (5.2):

|ϕ(Aa)|
2
≤Mf(a∗a) =M‖Aa‖2A, a ∈ I .

By the Riesz representation theorem, ϕ is represented by a unique vector ζf ∈ HA:

(5.5) f(a) = (Aa | ζf )A , a ∈ I .

We claim that

(5.6) fN (x) := 〈Jζf , x〉, x ∈ A

defines a representable functional such that f ⊂ fN . To see this, observe first that
the following useful identity holds true

(5.7) πf (x)ζf = J∗x, x ∈ A .

Indeed, let x ∈ A and a ∈ I be fixed. Then by (5.5) we have

(Aa |πf (x)ζf )A = (A(x∗a) | ζf )A = f(x∗a) = 〈Aa, x〉 = 〈J(Aa), x〉 = (Aa | J∗x)
A
.

Consequently, f(a) = (Aa | ζf )A = (J∗a | ζf )A = 〈Jζf , a〉 = fN (a) holds for a ∈ I ,
thus f ⊂ fN . On the other hand we have

(πf (x)ζf | ζf )A = (J∗x | ζf )A = 〈Jζf , x〉 = fN (x), x ∈ A ,

hence fN is representable. All that remains is to prove the minimality of fN . Let
us calculate first the value of fN on positive elements:

fN(x∗x) = 〈Jζf , x∗x〉 = (J∗(x∗x) | ζf )A = (J∗x | J∗x)
A

= sup{|(Aa | J∗x)
A
|2 | a ∈ I , ‖Aa‖2A ≤ 1}

= sup{|f(x∗a)|
2
| a ∈ I , f(a∗a) ≤ 1},

for every x ∈ A , where we used the density of ranA in HA. Let now f̃ be any

representable extension of f . Using identity f̃ = f̃N , we conclude that

f̃(x∗x) = sup{|f̃(x∗a)|2 | a ∈ A , f̃(a∗a) ≤ 1}

≥ sup{|f(x∗a)|
2
| a ∈ I , f(a∗a) ≤ 1} = fN(x∗x),

hence fN ≤ f̃ . The proof is complete. �

Following the terminology of [26], we will call fN the Krein–von Neumann ex-
tension of f . Note that in the above construction we gained an explicit formula for
fN and also for its values on positive elements.

Corollary 5.2. Suppose that f : I → C is admissible and Hilbert-bounded, then
the minimal extension fN satisfies

(5.8) fN(x) = 〈Jζf , x〉, x ∈ A ,

and

(5.9) fN(x∗x) = sup{|f(x∗a)|2 | a ∈ I , f(a∗a) ≤ 1},

In case when the algebra has a unit element the theorem can be more easily
formulated. In fact, the following simple formula may suggest that extension theory
of functionals and extension theory of operators fit nicely together, indeed.
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Corollary 5.3. Assume that A is a unital ∗-algebra with unit 1 ∈ A . Assume
further that f : I → C is admissible. Then f is Hilbert bounded, and its Krein-von
Neumann extension satisfies

(5.10) fN(x) = 〈AN1, x〉, x ∈ A .

Proof. Take a ∈ I , then

|f(a)|
2
= |f(1∗a)|

2
≤ f(1)f(a∗a),

hence f is Hilbert bounded. On the other hand, for a ∈ I ,

(Aa | J∗1)
A
= 〈Aa, 1〉 = f(a) = (Aa | ζf )A ,

hence J∗1 = ζf . This yields

〈AN1, x〉 = (J∗1 | J∗x)
A
= (ζf | J

∗x)
A
= 〈Jζf , x〉, x ∈ A ,

and hence (5.10). �

In the next theorem we provide the analogue of Theorem 3.2.

Theorem 5.4. Let f : I → C be an admissible and Hilbert bounded functional
and fix any representable functional g ∈ A ∗ such that fN ≤ g. Then there is
a representable extension fg

max ∈ A ∗ of f such that fg
max ≤ g, and for every

representable extension f̃ of f one has f̃ ≤ fg
max. In other words,

fg
max = max{f̃ ∈ A

♯ | f̃ ≤ g, f ⊂ f̃}.

Furthermore, a representable functional f̃ ≤ g is an extension of f if and only if

fN ≤ f̃ ≤ fg
max:

[fN , f
g
max] = {f̃ ∈ A

♯ | f̃ ≤ g, f ⊂ f̃}

Proof. By assumption, 0 ≤ g − fN ≤ g, hence g − fN is representable due to
[20, Proposition 9.4.22]. Clearly, g − f ⊂ g − fN , hence (g − f)N exists. Set

fg
max := g − (g − f)N ,

which is again representable by [20, Proposition 9.4.22]. One can follow the argu-
ment of the proof Theorem 3.2 to show that fg

max possesses every claimed properties.

Finally, let f̃ ∈ [fN , f
g
max], then for a ∈ I ,

|(f̃ − f)(a)|
2
= |(f̃ − fN )(a)|

2
≤M ′(f̃ − fN )(a∗a) ≤M ′(fg

max − fN )(a∗a) = 0

for some M ′ ≥ 0, because of Hilbert boundedness. Hence f ⊂ f̃ , which completes
the proof. �
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