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Abstract

It is becoming increasingly recognised that disordered proteins may be fuzzy, in that they can exhibit a
wide variety of binding modes. In addition to the well-known process of folding upon binding (disorder-to-
order transition), many examples are emerging of interacting proteins that remain disordered in their
bound states (disorder-to-disorder transitions). Furthermore, disordered proteins may populate ordered
and disordered states to different extents depending on their partners (context-dependent binding).
Here we assemble three datasets comprising disorder-to-order, context-dependent, and disorder-to-
disorder transitions of 828 protein regions represented in 2157 complexes and elucidate the sequence-
determinants of the different interaction modes. We found that fuzzy interactions originate from local
sequence compositions that promote the sampling of a wide range of different structures. Based on this
observation, we developed the FuzPred method (http://protdyn-fuzpred.org) of predicting the binding
modes of disordered proteins based on their amino acid sequences, without specifying their partners. We
thus illustrate how the amino acid sequences of proteins can encode a wide range of conformational
changes upon binding, including transitions from disordered to ordered and from disordered to disordered
states.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
A recent major advance in molecular biology has
been the discovery of disorderedproteins, which do
not fold into well-defined three-dimensional
structures but remain conformationally heteroge-
neous in their native estates [1]. Specific interactions
of disordered proteins first have been interpreted
within the folding upon binding scenario, where
protein that are disordered in their free states adopt
well-defined structures in their bound forms [2]
driven by specific contacts [3]. Such binding mode
recapitulates that of ordered protein complexes,
where well-defined interaction patterns are pre-
requisites for recognition. [4].
Recent experimental and computational results,

however, reveal a greater complexity in the binding
scenarios of disordered proteinsare more compli-
cated. First, the stabilisation of preformed structures
may not improve affinity [5,6]. Second, conforma-
thor(s). Published by Elsevier Ltd. This is
ses/by-nc-nd/4.0/).
tions along the binding trajectory are highly hetero-
geneous [7,8], and the bound-state structures may
not be sampled even in the transition states of
binding [9]. At the same time, structural heteroge-
neity enables the recognition of multiple partners
[10]. The intricate relationship between ordering and
binding affinity is [11] is further illustrated by
disordered proteins, which retain conformational
disorder in their bound states [12]. Such fuzziness,
characterised by structural heterogeneity and a
multitude of interaction patterns by multivalent
motifs, is in particular a pre-requisite for protein
liquid-liquid phase separation [13,14].
The view that conformational heterogeneity is an

important functional feature in protein assemblies is
gaining recognition [15,16]. Fuzzy proteins are not
only characterised by the persistence of disorder in
their bound states, but also by the variability in
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binding modes depending on the interaction partners
[17,18]. Thus, it is increasingly clear that there is a
continuum in the structural changes of disordered
proteins upon binding ranging from decreasing to
increasing disorder, (Fig. 1). The spectrum of these
binding modes can be quantified using conforma-
tional entropy (DSconf): from disorder-to-order
regions (DORs), where DSconf is reduced, to
disorder-to-disorder regions (DDRs), where DSconf
remains high or increases upon binding [19,20].
Binding modes of context-dependent regions may
also depend on the partners and cellular environ-
ments [21]. While we have reached a good
consensus about the prediction of the degree of
disorder of proteins in their monomeric states
[22,23], understanding their behaviour in the bound
state requires the development of sequence-based
prediction methods. Current algorithms only address
the problem of disorder-to-order transitions of linear
peptides [24e26], but cannot characterize the
continuum of interaction modes.
To elucidate the sequence determinants of the

different binding modes of disordered protein
regions (Fig. 1), in particular, to delineate the driving
forces of fuzzy interactions, we assembled three
datasets (Methods, Figs. S1eS3), representing
disorder-to-order, disorder-to-disorder and context-
dependent transitions of 828 regions coupled to their
complex formation (Fig. 2, Tables S1eS3). We
found that binding modes of disordered regions are
determined by their local sequence biases, rather
than their absolute sequence or structural proper-
ties. Thus, we developed the FuzPred method, to
predict the continuum of interaction modes of
Fig. 1. Bindingmodes of disordered proteins sample a w
region (14e24 AA, skyblue) of the merozoite surface protein 2
monoclonal antibody m6D8 (PDB: 4qxt [63]). Ribosomal S6
marine, slate) upon binding to S100B, corresponding to the aut
N-terminal region (15e45 AA, lime) of ribonucleoside-diphosph
its partner (PDB: 1zyz, 1zzd [64]). The p150 subunit of the
translation initiation factor 4E, but its N-terminal flanking regio
1rf8 [65]). Upon interactions between leukemia fusion protein
[66]) both partners retain considerable conformational heteroge
purpose of the FuzPred method is to provide sequence-based
points on the order (blue) to disorder (red) continuum.
disordered regions from folding to unfolding (i.e.
increasing heterogeneity) upon binding (Fig. 1). In
contrast to previous methods focusing on short
disorder-to-order binding motifs, the FuzPred
approach quantifies the probabilities of the binding
modes, which are estimated from the sequences
without prior information on their specific partners.
The FuzPred method thus links probabilities of
structural transitions to biomolecular recognition
modes and thereby serves as a basis of structure-
function relationships.
Results

Datasets representing different binding modes
of disordered protein regions

We defined three distinct classes along the
continuum of binding modes (Fig. 1), coupled with
the interactions of disordered protein regions (Fig.
2). Disorder-to-order regions gain a well-defined
conformation upon binding, whereas disorder-to-
disorder regions remain disordered while interacting
with their partners [27,28]. Context-dependent
regions exhibit both types of behaviours, depending
on the partners or experimental conditions (Fig. 2).
Datasets representing these classes were derived
from two sources. The Protein Data Bank (PDB),
provided the structures of protein regions in their free
and bound states (Fig. S1). In PDB, DORs were
defined based on missing electron density in the
monomeric state and well-defined conformation in all
ide spectrum of structure and dynamics. The sequence
of Plasmodium falciparum folds upon interacting with the
kinase 1 adopts different secondary structures (skyblue,
oinhibited and active forms (PDB:5csf, 5csi, 5csj [27]). The
ate reductase large chain conditionally folds depending on
eukaryotic initiation factor 4F (orange) wraps around the
n (215e235 AA) is not constrained in the assembly (PDB:
AF9 (gray) and elongation factor AF4 (orange) (PDB:2lm0
neity The partner proteins are shown by gray surfaces. The
predictions of binding modes to locate proteins on specific



Fig. 2. Illustration of the three different bindingmodes of disordered proteins considered in this work. Disorder-
to-Order transition. An example of this binding mode is the case of cell-cycle kinase inhibitor p27Kip1. The free state,
illustrated here by the structural ensemble PED2AAA [67], becomes ordered upon binding the Cdk2/cyclin complex
(PDB:1jsu). Disorder-to-Disorder transition. An example of this binding mode is given by the cyclin-dependent kinase
inhibitor Sic1, which is disordered in its free state, illustrated here by the structural ensemble PED9AAA, and remains
disordered upon interacting with the Cdc4 ubiquitin ligase, as shown by the structural ensemble PED5AAC [68]. Context-
Dependent binding. An example of this binding mode is given by the PCNA-associated factor p15PAF. The region of
residues 51e71 (salmon) in the free state, illustrated here by the structural ensemble PED6AAA, becomes ordered upon
interacting with PCNA, but the region flanking the PIP-motif may also remain to be disordered upon PCNA sliding or DNA
interactions [69] (coordinates as a courtesy of Dr. Francisco Blanco).
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representative complexes (Methods, Fig. 3 and S1,
Table S1). DDRs in the PDB were defined based on
missing electron density in the monomeric states, as
well as in all representative complexes (Methods,
Fig. 3 and S1, Table S1). Our data assembly differs
from previous ones [24,25] as we have collected all
available complexes of the same protein region (Fig.
S3), which enabled us to assess the preference for a
given binding mode (Fig. 3 and S1). The PDBTOT
dataset contains only those protein regions, which
were observed in a uniform binding mode in all
representative complexes. Those protein regions,
which hadmissing electron density in the monomeric
state, were observed in both structured and dis-
ordered state in the bound form (Methods, Fig. 3
and S1) and were classified as context-dependent
regions (PDBCDR, Table S3).
The Fuzzy Complexes Database (FuzDB, http://

protdyn-database.org) [29] assembles those protein
regions that remain conformationally heterogeneous
in their bound states, and such fuzziness contributes
to function [29]. Thus, the FuzDB links functional to
structural data and provides molecular insights into
the mechanisms of disorder-to-disorder or fuzzy
regions (Fig. S2). DDRs may be directly involved in
the binding interface or may impact binding via
allosteric effects [30e32]. As the molecular mechan-
isms by which disorder-to-disorder regions contri-
bute to interactions may not be straightforward to
elucidate [33,34], the examples from FuzDB [29]
provide clear evidence for the functional importance
of disorder-to-disorder transitions via well-charac-
terised mechanisms [30,31,35]. We defined fuzzy
regions with extensive conformational exchange in
the complex form as disorder-to-disorder regions in
the FuzDBTOT dataset (Fig. S2, Table S2). Disorder-
to-order regions in FuzDBTOT were based on
structural data of the FuzDB complexes (Table S2).
The three datasets (Tables S1eS3) comprising

828 nonoverlapping protein regions represent three
distinct binding modes of disordered regions upon
binding (PDBTOT: DOR/DDR, FuzDBTOT: DOR/
DDR, PDBCDR: CDR). Both unbound and bound
states of DORs, DDRs and CDRs were confirmed by
experimental evidence. We also eliminated trunca-
tion artefacts and polymorphic cases [4], where the
well-defined disordered binding motif occupied multi-
ple positions [36,37]. Taken together these three

http://protdyn-database.org
http://protdyn-database.org
mailto:Image of Fig. 2|eps


Fig. 3. Illustration of the procedure for the assignment of a binding mode to a protein region. Using the example
of glycogen synthase kinase 3b, we show here how we defined disorder-to-order (DO) regions (O, blue) as those not
visible in the free form structure in the PDB (H, heterogeneous), but could be observed in the bound state structures in the
PDB (upper left). Disorder-to-disorder (DD) regions (D, orange) are defined as those that are heterogeneous in both free
and bound forms in the PDB (upper right). Context-dependent (CD) regions (C, lime) can sample both ordered and
heterogeneous states in their bound structures. Different binding modes of GSK3 are represented by complex structures
along the insulin (left, PDB: 4nm3) and Wnt (right, PDB: 4nm5) pathways [70]. GSK-3 is displayed by teal, axin by purple,
the autoinhibitory N-terminal peptide (left) and the inhibitory LRP6 peptide (right) are yellow.
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datasets represent an extensive collection of binding
modes in 2157 complexes.

Sequence and structural features associated
with different binding modes

Using these three datasets, we aimed to identify
those compositional and structural properties that
distinguish proteins and regions in the three
classes of binding modes. Disorder-to-order and
disorder-to-disorder regions were represented in
both PDBTOT (Table S1) and FuzDBTOT (Table S2)
datasets. These proteins exhibit markedly different
structural preferences: we found in particular that
proteins in the PDBTOT (Table S1) dataset are
more structured than in FuzDBTOT (Table S2)
regarding both secondary (p ¼ 5.2 � 10�7 KS-
test; p ¼ 3.6 � 10�7 by MW-test) and tertiary
structure propensities (p < 2.2 � 10�16 KS-test;
p < 2.2 � 10�16 MW-test, Fig. S4). Within each
dataset, proteins containing disorder-to-order and
disorder-to-disorder regions have rather similar
characteristics (Fig. S5), suggesting that their
local properties determine the binding modes of
protein regions.
Our results indicate that DORs and DDRs exhibit a

significant difference in length, composition and
disorder propensities in both PDBTOT and FuzDBTOT
datasets (Fig. 4). DORs are considerably shorter
than DDRs (p ¼ 6.8 � 10�6 KS-test, p ¼ 1.2 � 10-
�5 MW-test in FuzDBTOT), and their amino acid
compositions are shifted towards charged residues
(Fig. 4 and S6). DORs are frequently associated with
aggregation-promoting residues (e.g. Q and N),
reflecting the role of disorder-to-order transition in
amyloid formation (Fig. 4 and S6). DDRs are
enriched in P and S as compared to DORs,
suggesting a possible role of P cis-trans isomerisa-
tion and S phosphorylation in modulating transitions
towards increased conformational heterogeneity.
Both DORs and DDRs may vary from being fully
structured to fully disordered consistently in PDBTOT
and FuzDBTOT datasets, although a significant
difference can be observed between these two

mailto:Image of Fig. 3|eps


Fig. 4. Sequence-based characteristics of disordered protein regions with distinct binding modes.
Characterization of protein regions with disorder-to-order transitions (left) in PDBTOT (dark blue) and in FuzDBTOT (light
blue), context-dependent transitions (middle) in PDBCDR (lime), and disorder-to-disorder transitions (right) in PDBTOT
(dark yellow) and in FuzDBTOT (yellow) datasets. Difference in composition from globular protein regions is listed in the
order of their increasing abundance in fuzzy regions (Fig. S6). Statistical significance of the differences in the properties of
the different binding modes (DORs versus DDRs in PDBTOT; DORs in PDBTOT versus CDRs in PDBCDR; and DDRs in
PDBTOT versus CDRs in PDBCDR) are shown in the table below by Kolmogorov-Smirnov (KS) and Mann-Whitney (MW)
tests. Disorder-to-order (DORs) and disorder-to-disorder region (DDRs) in the PDBTOT dataset significantly differ in length,
composition and propensity of disorder, while exhibit similar degree of regular secondary structures. The propensity of
disordered residues in CDRs is comparable to DORs and is significantly different from DDRs.
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binding modes (Fig. 4). In both PDBTOT and
FuzDBTOT datasets, DORs are predicted to be
more structured than DDRs in the free form.
The challenge of predicting the binding modes,

especially DDRs from the sequence, is illustrated
by the application of a range of methods developed
for the prediction of disorder in the free states of
proteins (Fig. S7). The probability of adopting a
given binding mode is different from being dis-
ordered in the unbound state, which can explain
why some DDRs are predicted to be fully ordered
(Fig. 4). Furthermore, DDRs may be short seg-
ments within well-structured proteins, serving as
key elements for regulation [38]. It is also worth
noting that DORs and DDRs have similar second-
ary structure preferences (Fig. 4). This under-
scores that fuzzy interactions may stem from well-
folded secondary structure elements occupying
multiple positions within a shallow binding inter-
face [39,40].
Context-dependent regions represent a combina-

tion of DORs and DDRs, with composition resem-
bling fuzzy regions and dynamical properties alike
disorder-to-order regions. CDRs are not distin-
guished in specific residues in contrast to DORs
(Fig. 4 and S6). The unbiased composition, how-
ever, is coupled to more constrained dynamics and
slightly increased preference for secondary structure
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(Fig. 4). These observations suggest that CDRs are
flexibl structured motifs, which can be stabilised
under specific conditions.

Region-specific probabilities of different inter-
action modes

To relate sequence features to different interaction
modes, we used a binary logistic model [41], with two
classes, disorder-to-order and disorder-to-disorder
regions (Methods, Fig. 3). Thus, we discriminated
between the interaction modes of protein regions
(DOR vs. DDR), rather than between the bindingmotif
from the rest of the protein. The probability pDO(R)
expresses our degree of confidence in assigning a
region R to the DOR class, and pDD(R) ¼ 1- pDO(R),
correspondingly, to the DDR class. Althoughwe found
that both disorder propensity and amino acid compo-
sition (AR,GLB, computed in reference to globular
proteins, see Extended methods) significantly differ
Fig. 5. Comparison between disorder-to-order (DOR, red
Values of average disorder (IDR), composition (AR,GLB) and
algorithm [57]. AR,GLB is computed in reference to that of globul
Local biases in average disorder (DIDR,Fl), composition (
properties was computed in reference to the flanking regions.
between the two classes of binding modes (Fig. 5A
and B), we could not obtain a robust model to
discriminate between them even using additional
terms, such as the Kyte-Doolittle hydrophobicity [42]
(HR, Fig. 5C). This could be rationalised by the wide
variation in structural and dynamic properties of the
different binding modes (Fig. 4).
In order to solve this problem, we noted that linear

peptide motifs often exhibit dynamic interactions,
and they have characteristic compositional features
as compared to the flanking sequences [43]. Based
on these observations, we determined the sequence
biases in the binding regions as compared to their
flanking segments (Fig. 6A, Extended methods) in
disorder propensity (DIDR,Fl), amino acid composi-
tion (DAR,Fl) and hydrophobicity (DHR,Fl). We thus
found that all these three parameters (DIDR,Fl,
DAR,Fl, DHR,Fl) significantly deviate between DORs
and DDRs (Fig. 5DeF) using different flanking
window sizes (residues 5e30, Fig. S8) and disorder
) and disorder-to-disorder (DDR, pink) regions. (A)e(C)
hydrophobicity (HR). IDR is computed by the Espritz NMR
ar proteins. HR is given by the Kyte-Doolittle scale. (D)e(F)
DAR,Fl) and hydrophobicity (DHR,Fl). The bias in these
R and Fl are shown on Fig. 6. For details see Methods.



Fig. 6. Prediction of different binding modes of disordered regions by the FuzPred method. We illustrate the
procedure in the case of the region R of residues 695e703 (blue) of ribosomal S6 kinase 1 (RSK1) (UniProt ID: Q15418),
which binds the protein S100B (PDB: 5csj [27]). (A) Defining the scoring function. SF(R) is evaluated based on local
sequence biases using the DIDR,Fl, DAR,Fl, DHR,Fl terms. Flanking sequences used to evaluate the SF(R) terms are shown
in black. (B) Binding mode probabilities. SF(R) is computed for different windows of 5e9 residues, which include residue
700 (Ri). For each binding window an SF(Ri) and a pDD(Rj) is assigned. Window size of 9 aa is not shown for clarity. (C)
Assignment of binding modes. The predicted pDO (dark gray) and pDD (light gray) probabilities characterise the most
likely interaction mode. In the case of RSK1, the pDO (dark gray) and pDD (light gray) probabilities indicate two binding sites:
a more stable one, which is observed in the crystal structure and an additional, more labile binding site (residues
716e721), with polymorphic secondary structures [27]. The bipartite binding interface is linked by a region (residues
704e715), with comparable pDO and pDD probabilities, indicating a context-dependent binding mode.
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prediction algorithms (Fig. S9) and robustly discri-
minate between the different interaction modes in a
logistic regression model (Methods, Table S4,
Fig. S10).
Thus, we expressed the scoring function to predict

different modes of binding as a function of the local
sequence biases:

SF ðRÞ ¼ l1*DIDR;FL þ l2*DAR;Fl

þ l3*DHR;Fl þ g (1)

where l1, l2 and l3 are the linear coefficients of the
predictor variables and g is a scalar constant
(intercept).
Within the logistic regression model, the prob-

ability of belonging to the DOR class can be derived
as
pDO ðRÞ ¼ exp SF ðRÞ
1 þ exp SF ðRÞ (2)

where SF(R) is the scoring function for region R.
Thus, the probability of different interaction modes

depends on local sequence biases in composition,
hydrophobicity and dynamics as compared to the
flanking regions (Fig. 6A). In contrast to ordered binding
modes, which exhibit a significant bias, fuzzy interac-
tions lack such biases of the binding motifs. Further-
more, they have an increased preference for disorder
as compared to their neighbouring segments, which
facilitates the formation of alternative contacts and a
possible exchange between them. The local sequence
biases, taken together, govern the different interaction
modes of intrinsically disordered protein regions.

mailto:Image of Fig. 6|eps
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Residue-specific probabilities of different bind-
ing modes

To be able to perform sequence-based predictions
without information on the specific interaction part-
ners, we assign a given residue Ai to different
possible binding regions (Fig. 6B) and evaluate the
SF(R) scoring functions for each of them (see
Methods). Thus, for each possible interaction region,
a distinct probability for disorder-to-order transition
pDO(Ri) is computed. This procedure provides a set
of probabilities pDO(Ri) for all possible interacting
regions of Ai (Fig. 6B). The most likely binding mode,
defined as the probability for disorder-to-order and
disorder-to-disorder transitions of residue Ai upon
protein interactions (pDOðAiÞ and pDDðAiÞ) will be
the median of such pDO(Ri) distributions (see
Methods, Fig. 6B).
Thus, for each residue, binding modes are defined

by two probabilities for increasing and decreasing
order (pDOðAiÞ and pDDðAiÞ) (Fig. 6C). These
Fig. 7. Application of the FuzPred method to p53 tumor
FuzPred is illustrated in case of the human p53 tumor suppr
representative complexes (p53 is displayed by marine, partner
transitions (pDO, dark gray) indicate that the N-terminal trans
PDB:1ycr [46]), as well as to HMGB1 (~35e56 aa, PDB:2ly4 [4
with BRCA (PDB:1kzy [50] or DNA (PDB:2ady [49]) is consist
pDO and pDD (light gray) probabilities for the N-terminal reco
folding. The oligomerisation domain (325e356 aa) is predic
probability than the N-terminal transactivation domain. High p
dominantly disordered in complexes. Only short (5e6 aa motifs
1 (PDB:4zzj), into highly polymorphic structures.
individual residue probabilities will provide a con-
tinuous scale to characterise the most likely binding
mode, whether an interaction site tends to gain
structure, remains heterogeneous or even increases
flexibility upon binding (Fig. 6C).

FuzPred application and performance on differ-
ent binding modes of disordered proteins

The FuzPred method has been developed to predict
different binding modes of disordered protein regions,
as illustrated by applying the method to p53 tumor
suppressor (Fig. 7). p53 is involved in a number of
cellular processes, including cell cycle arrest, DNA
repair, senescence or apoptosis and all these activities
are tightly controlled by a complex interaction networks
[44]. Only the central, DNA-binding domain of p53
structured, the N-terminal transactivation domain and
the C-terminus of p53 are intrinsically disordered. p53
specifically recognises a multitude of proteins, which
bind to overlapping regions and these interactions are
suppressor. The diversity of binding modes predicted by
essor (UniProt: P04637) together with structures of some
s by gray surfaces). The probabilities for disorder-to-order
activator region folds upon binding to Mdm2 (19e26 aa,
7]). The binding mode the DNA-binding domain in complex
ent with experimental data. FuzPred predicts comparable
gnition helix (~278e291 aa, cyan), indicating conditional
ted to fold upon tetramerisation (PDB:1c26) with higher
DD probabilities reflect that the C-terminal region remains
) were observed to fold for example in complex with Sirtuin

mailto:Image of Fig. 7|eps
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further modulated by posttranslational modifications
[45]. FuzPred shows distinct bindingmodes of p53with
different partners (Fig. 7). The increased disorder-to-
order probabilities at the N-terminal transactivator
region (17e56 aa) indicate folding upon binding, as
observed in complex with Mdm2 (19e26 aa, PDB:1ycr
[46]) or HMGB1 (~35e56 aa, PDB:2ly4 [47]). The
folding probabilities, however, are rather moderate,
indicating mobility of these structured binding elements
within the complex, in line with experimental data [48].
FuzPred predicts amore pronounced disorder-to-order
transition for the oligomerisation domain (325e356
aa), which was observed to form stable tetramers
(PDB:1c26) [49]. Higher order organisation of p53
structure is critical for its transcriptional activity.
FuzPred prediction shows that the p53 DNA-binding
domain is further stabilised upon binding to DNA or
BRCA (PDB:1kzy [50]). Interestingly, the DNA recog-
nition helix (~278e291 aa) exhibits comparable
probabilities for disorder-to-order and disorder-to-dis-
order transitions, indicating a dynamic binding mode
(Fig. 7). The p53 C-terminus forms specific complexes
with a variety of proteins (Sirtuin, CBP, S100b, Cyclin
A2) via short motifs [51]. FuzPred predictions indicate
a negligible disorder-to-order transition of the C-
terminus, which is consistent with the polymorphic
nature of the bound regions (PDB:4zzj) (Fig. 7).
The FuzPred performance in distinguishing the

three classes (disorder-to-order, disorder-to-disor-
der and context-dependent) of binding modes is
summarised in Table 1. We did not identify these
binding elements from the proteins, rather compared
the respective protein regions with different interac-
tion modes. Our results indicate that FuzPred can
reliably distinguish between regions with different
binding modes, especially between disorder-to-order
and disorder-to-disorder transitions (DOR vs. DDR,
Table 1). Testing FuzPred on protein regions, which
were observed in the same binding mode in at least
three complexes, considerably improves the results
(Table 1). The slightly lower performance on
differentiating between context-dependent binding
modes from disorder-to-disorder transitions indicate
that many DDRs may conditionally fold (Table 1).
Table 1. FuzPred performance on the different bind
are displayed in %. The analysis compares disorder
content-dependent (CDR) interactions to each othe
PDBCDR (Methods) and were not included in the para

Classes

PDBTOT

DOR vs DDR 85.8
DOR vs CDR 82.0
DDR vs CDR 80.2

The bold column is where comparison with other methods c
Comparison of FuzPred with other methods

The scope of FuzPred is different from other
algorithms, as it predicts different binding modes
(Figs. 1 and 2), rather than identifying stable binding
motifs. Therefore, it is not straightforward to compare
its performance on disorder-to-order regions to other
predictors (Anchor2 [52], MoRFchibi [25] and Dis-
opred3 [26]), which aim to identify only such binding
elements in disoredered proteins. Because of differ-
ences in datasets, class definitions and approaches,
the following factors have to be considered for the
comparison. (i) FuzPred discriminates between dif-
ferent classes of binding modes, such as disorder-to-
order, disorder-to-disorder, or context-dependence,
whereas the other methods discriminate between
disorder-to-order and everything else, which may
include disorder-to-disorder, order-to-disorder, and
context-dependent binding. This also means that
FuzPred discriminates between different regions,
whereas the other methods between binding regions
and the protein. (ii) In the datasets used for the
FuzPred development (Methods), experimental evi-
dence is available for each protein region in both the
free and bound forms, which enables an unambig-
uous classification of the binding modes (Fig. 3). In
the MoRF dataset (with the exception of 53 cases)
[53], as well as the original Anchor dataset [24], the
free state disorder is derived from disorder predic-
tions. Another important factor is the redundancy of
bound state structures in FuzPred datasets (Fig. S3),
which increases the confidence in the binding modes
(Methods). Our dataset assembly also considered
additional factors, such as polymorphism of regular
secondary structures, or truncation artefacts, which
were not analysed in other methods (Methods).
For comparing FuzPred performance on disorder-

to-order binding elements to other methods, we
filtered only those disorder-to-order regions in PDB-
TOT, which mediated intermolecular interactions
(PDBINT, Methods). The negative sets were defined
in two different ways. First, we assessed how the
different methods discriminate disorder-to-order
regions from disorder-to-disorder regions, which do
not fold upon binding. In the Anchor and MoRF
ing modes of disordered proteins. AUC values
-to-order (DOR), disorder-to-disorder (DDR) and
r. Context-dependent regions are derived from
metrisation.

Datasets

FuzDBTOT PDBREF

82.4 92.1
e e
e e

ould be made.
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datasets, we defined DDRs as disordered regions
flanking the structured binding site, as they have not
been observed to fold in the bound state [24,25]. In the
Anchor and MoRF datasets, FuzPred has slightly
better performance than the other methods in dis-
criminating disorder-to-order and disorder-to-order
regions (Table 2). On the PDBINT dataset, however,
which has experimental evidence also for disorder-to-
disorder transitions (unlike Anchor and MoRF data-
sets), FuzPred performs significantly better than the
other methods (Tables 2 and S5). This result
demonstrates that FuzPred was developed to differ-
entiate between different bindingmodes, whereas the
other methods aimed to discriminate between a
disorder-to-order motif and the rest of the protein.
This point is illustrated by comparing FuzPred

predictions with context-dependent regions considered
as disorder-to-order binding motifs rather than as a
distinct class of binding modes, which decreases the
Matthews coefficients of FuzPred from 0.69 to 0.43 on
the PDBINT dataset (Table S5) further demonstrate the
consequences of mixing different binding modes in the
reference set, we compared the performance of
FuzPred to other methods in identifying disorder-to-
order binding sites using the protein as a reference,
similarly other approaches (Table 3). Using this
method of comparison, FuzPred still performs con-
siderably better than the other methods on the PDBINT
dataset, where disorder-to-order are distinguished
from context-dependent regions (Table 3). FuzPred
predictions, however, are less powerful on the Anchor
[24] and MoRF [25] datasets, where binding motifs
also include context-dependent regions, and the
negative class (protein) comprises a variety of regions
with a wide range of binding modes.
Taken together, FuzPred performs very well in

discriminating different binding modes, especially in
identifying fuzzy interactions. In addition, the FuzPred
method can be employed to predict disorder-to-order
binding motifs and distinguish them from context-
dependent regions, which may only fold with specific
partners or cellular conditions.
Table 2. FuzPred performance on disorder-to-ord
regions as compared to other disordered binding
PDBINT was defined as disorder-to-order regions w
interactions in PDBTOT (Methods, Table S1), whereas
set comprised disordered sites, which fold upon bindi
sets in PDBINT were defined as fuzzy regions in PD
datasets as disordered regions flanking the folded bin

Methods

PDBINT

FuzPred 91.2
MoRFChibi 51.6
Anchor2 68.7
Disopred3 59.2

This is the comparison of the dataset of this article, the other
requested by the reviewers).
Discussion and conclusions

At the molecular level, the wide variety of protein-
protein interactions that are required to reliably perform
the myriad cellular processes taking place in living
organisms may be established through the modulation
of protein conformational ensembles. It is increasingly
recognised that such adaptive transitions form a
continuum from decreasing to increasing order
(Fig. 1). In order to better understand the sequence-
dependent rules that regulate such binding modes, we
have shown in this work that biases in composition of
the interaction site versus the local context are crucial
(Fig. 5). In particular, a strong bias as compared to the
flanking regions promotes ordering of the interaction
site, while similarity to the local environment likely
results in redundant, alternative contacts leading to
conformationally heterogeneous, fuzzy complexes.We
have demonstrated that the FuzPred approach (Fig. 6)
can robustly discriminate between these two scenarios
and identify fuzzy interactions (Fig. 7, Table 1).
Furthermore, by predicting the probabilities of both

disorder-to-order and disorder-to-disorder transitions,
the FuzPred method provides a continuous scale to
characterise versatile binding modes of disordered
protein regions. Furthermore, this approach could be
useful to identify context-dependent regions, which
can structurally adapt to different cellular conditions.
In conclusion, the FuzPred method (http://protdyn-

fuzpred.org) can contribute to the endeavour of
characterising the wide range of protein binding
modes, without prior information on their partners.
FuzPred provides a parameter (pDO/pDD) to locate a
protein on a specific point of the order-to-disorder
continuum (Fig. 1). This information canbeparticularly
useful in understanding the functional roles of dis-
ordered proteins in the absence of information about
their binding partners. More generally, this approach
makes it possible to extend to protein interactions the
highly successful sequence-based methods intro-
duced in the last decades to predict the structures
and behaviours of proteins in their free states.
er binding sites versus disorder-to-disorder
site prediction methods. The positive set in

ith at least 1 residue mediating intermolecular
in Anchor [24] andMoRF [25] datasets the positive
ng as defined in the original references. Negative
BTOT (Methods, Table S1), in MoRF and Anchor
ding motif (Methods).

Datasets

MoRF Anchor

63.2 59.2
60.7 58.6
49.5 69.2
55.6 51.6

datasets were published elsewhere (their inclusion was

http://protdyn-fuzpred.org
http://protdyn-fuzpred.org


Table 3. FuzPred performance on disorder-to-order binding sites versus the protein as
compared to other disordered binding site prediction methods. The positive set in PDBINT
was defined as disorder-to-order regions with at least 1 residue mediating intermolecular
interactions in PDBTOT (Methods, Table S1), whereas in Anchor [24] and MoRF [25] datasets the
positive set comprised disoredered sites, which fold upon binding as defined in the original
references (as in Table 2). Negative sets were defined as all other residues in the corresponding
disordered proteins (not as regions as in Table 2) with stratified sampling applied.

Methods Datasets

PDBINT MoRF Anchor

FuzPred 70.2 59.7 59.5
MoRFChibi 58.4 74.8 68.6
Anchor2 61.6 55.8 70.1
Disopred3 59.3 64.9 58.8

This is the comparison of the dataset of this article, the other datasets were published elsewhere (their
inclusion was requested by the reviewers).

2299Fuzzy Protein Interactions
Materials and Methods

Datasets

PDBTOT (Fig. S1, Table S1)

We searched for conformationally heterogeneous
regions in the Protein Data Bank (PDB) using crystal
structures with a resolution higher than 3 Å. These were
defined as residues with missing coordinates, based on the
coordinate file and not only on the PDB file header. Protein
sequences with posttranslational modifications or nonstan-
dard amino acids were excluded. Unobserved residues,
which were due to truncation artefacts were eliminated.
First, monomeric structures were analysed, and hetero-
geneous regions �5 AA were selected (1251 monomeric
structures). For analysing binding modes, missing residues
were also identified in the corresponding complex struc-
tures. Sequences of protein regions were projected onto
their UniProt reference, and only perfectly matching
sequences (both in monomeric and complex structures)
were accepted (1738 complexes). The flowchart of the
assembly of the PDBTOT dataset is displayed in Fig. S1.
The resulting set was redundant, with multiple instances of
evidence, i.e. complex structures involving the same protein
regions. Proteins in PDBTOT had <75% sequence similarity
using the CD-hit program [54].
The ordered or heterogeneous character of all residues

was assigned in all the complexes based on experimental
data (Fig. 3). The PDBTOT dataset contained those
protein segments (513 regions, � 5 AA), which were
heterogeneous in the monomeric state, and was
observed only in one state (structured/heterogeneous)
in all the complexes (Fig. 3). The PDBTOT dataset
contained 175 disorder-to-order (DOR) regions, which
were invisible in monomeric structures, but were
observed in the corresponding complexes (Table S1). A
total of 338 protein regions, which retained conforma-
tional heterogeneity in both free and bound states, were
classified as disorder-to-disorder regions (Table S1).
Unambiguously classified regions were excluded from
the PDBTOT dataset and were analysed for context-
dependence. As the PDBTOT contains higher resolution
structures than those in FuzDB [29], the assembled
proteins (Fig. S4) have different structural and dynamical
properties. The PDBTOT is shifted towards shorter, more
ordered protein segments (Figs. S4 and S5).

FuzDBTOT (Fig. S2, Table S2)

The FuzDBTOT dataset (Table S2) was assembled based
on the Fuzzy Complexes Database v3.3 (http://protdyn-
database.org) [29]. Conformational heterogeneity of fuzzy
regions was assessed by a range of techniques (e.g. X-ray,
NMR, FRET, CD, AUC, SAXS), including lower resolution
methods (e.g. size-exclusion chromatography, fluorescence
anisotropy, atomic force microscopy). Only dynamical
protein regions were included, which interchange between
a multitude of conformations within the assembly (Fig. S2).
Out of the total 106 complexes in the FuzDB v3.3 database,
92 dynamic assemblies were considered with 121 fuzzy
regions �5 AA. The location of the DDRs (i.e. start and end
residues) were defined based on experimental evidence
given in the FuzDB database. Disorder-to-order (DOR)
regions have not been systematically collected in the
FuzDB, and these had to be defined based on experimental
evidence and literature search. Folded secondary structure
elements, with ms-ms movements, were excluded from this
category (in cases where experimental data was available),
resulting in 30 DORs � 5 AA in the FuzDBTOT (Table S2).
The flowchart of the assembly of the FuzDBTOT dataset is
displayed in Fig. S2.

PDBCDR (Fig. S1, Table S3)

Structures of protein segments may be observed or
remain invisible, depending on the cellular context. In
case, at least five consecutive residues were observed in
more than one state (ordered/heterogeneous) in different
complexes, it was defined as a context-dependent region
(CDR, Fig. 3). 164 CDRs with alternative dynamical
characters were identified in 1063 complexes (Fig. S1,
Table S3). The PDBCDR dataset was more redundant than
the PDBTOT dataset, with 6 versus 2 complexes repre-
senting one protein region in average (Fig. S3). CDRs can
adopt different states in different assemblies, but may also
serve as dynamical switches within the same assembly.
Importantly, the interconversion between heterogeneous
and structured/ordered states is not induced by posttran-
slational modifications (PTMs).

http://protdyn-database.org
http://protdyn-database.org
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PDBREF (Table S1)

From PDBTOT we derived a dataset of DORs and DDRs,
which were represented in at least three bound-state
structures (Fig. S3) with the same sequence. In addition,
we filtered those regions, where monomeric structures did
not contain metal ions or small molecules, which might
have influenced the degree of disorder in the free state.
The PDBREF dataset contained 130 DOR and 318 DDR
residues.

Structure predictions

Prediction of secondary structure

Preferences for secondary structures were computed by
the GOR4 algorithm [55]., which resulted in a good
agreement between the predicted and observed second-
ary structures of disordered binding regions [56].

Prediction of disorder

Espritz [57], Iupred [58], Dynamine [59], Disopored3 [26]
disorder prediction algorithms were applied to 121 DDRs in
FuzDBTOT (Table S2) using different options and thresholds.
Residues were classified as ordered or disordered, and the
propensities of disordered residues were determined in the
analysed regions. The Espritz NMR method [57] with
threshold ¼ 0.3089 resulted in the best agreement with the
experimentally validated DDRs in FuzDBTOT (Fig. S10).

Quality assessment e segmental overlap measure

Prediction accuracy was assessed using the segmental
overlap measure (SOV) [60]:
SOV ¼ 100

N

Xn

i¼1

X
Si

minov
�
Sobs;Spred

�þ d
�
Sobs;Spred

�
maxov

�
Sobs;Spred

� � lðSobsÞ (3)
where Sobs and Spred are the observed and predicted
segments, minov(Sobs;Spred) is the overlap between Sobs
and Spred,maxov(Sobs;Spred) is the total extent of (Sobsþ S-
pred), l(Sobs) is the length of the observed region and
d(Sobs;Spred) is the mininum of [maxov(Sobs;Spred) -
minov(Sobs;Spred); minov(Sobs;Spred); l(Sobs)/l(Spred)] and
the summations goes over the number of conformational
states: ordered or disordered.

The scoring function

Terms

The terms for the scoring function, such as the local bias
in disorder (DIDR,Fl), composition (DAAR,Fl) and hydro-
phobicity (DHR,Fl) are defined in Supplementary informa-
tion (Extended methods).
Training sets

We aimed to develop a universal and robust model,
which is applicable to proteins with different structural and
dynamical characteristics. Thus, we divided both PDBTOT
and FuzDBTOT into training and test sets. First, we aimed
to keep the training set size at minimum and probe how
transferrable the model is between the two datasets. Thus,
the FuzDB training set (FuzDBTrain) was assembled from
complexes, where both DORs are fuzzy regions were
represented with 20 DDRs and 13 DORs. We also defined
different PDBTrain datasets with comparable size (20
DDRs and 20 DORs). We carried out parametrisation
independently on these datasets and cross-validated the
results (Fig. S11). We also developed a scoring
function on a unified dataset, which contained both
(UniDBTrain ¼ PDBTrain þ FuzDBTrain).
Strikingly, different parametrisations of the SF(R)

scoring function on the FuzDBTrain, PDBTrain, and
UniDBTrain training sets had comparable performances
on the FuzDBTest and PDBTest dataset, respectively
(Fig. S11). These results imply that the degree of order/
disorder of proteins may not be critical for predicting the
degree of fuzziness. For further probing of this point,
cross-validation of FuzPred on the FuzDBTOT and
PDBTOT datasets was carried out. The SF(R) scoring
function trained on the FuzDBTrain set resulted in
AUC ¼ 85.6% on PDBTOT, while the scoring function
parametrised on PDBTrain led to AUC ¼ 83.9% on
FuzDBTOT. These results reflect the robustness of the
method on datasets with remarkably different structural
and dynamical properties.
After these initial tests, we also probed the sensitivity of

the parameters on the size of the training set (Table S4).
The final coefficients of the scoring function were
determined based on the logistic regression analysis of
different training sets in PDBREF using the three bias terms
(as in eq. (1)).

Training the scoring function

A binary logistic regression (Extended methods) model
was applied to discriminate between disorder-to-order and
disorder-to-disorder regions. Initially, we used amodel with
six independent variables: average disorder (IDR), compo-
sition (AR,GLB) and hydrophobicity (HR) of the region of
interest; the local bias in disorder (DIDR,Fl), composition
(DAR,Fl) and hydrophobicity (DHR,Fl) ofR as compared to its
flanking segments (Extended methods). The average
composition was given in reference to that of globular
proteins [61]. The coefficients and the significance of the
predictor contributions were probed by step-wise analysis,
which corroborated that only the local biases (DIDR,Fl,
DAR,Fl, DHR,Fl) provide significant contributions (Fig. S12).
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Thus, the SF(R) scoring function (eq. (1)) was based on
these three terms, and the coefficients and the significance
of the predictor contributions were determined by logistic
regression for many different training sets derived from
PDBREF.

Residue-based scoring

For evaluating the contribution of individual residues to
dynamical adaptations, a running window was defined with
a given size (w) and the FuzPred score of the window for
each possible position was determined (Fig. 6B). The
window sizes were based on the length of the disorder-to-
order regions in the PDBTOT dataset (Table S1). The score
of a given residue was obtained from the distributions of
the SF(R) scores:
pDOðAiÞ¼median fpDO ðRiÞgn ¼ median

�
exp SF ðRiÞ

1 þ exp SF ðRiÞ
�

n

(4)
where pDO(Ri) is the probability of disorder-to-order
transition with a given binding region Ri, n is the number
of possible binding regions of Ai between a given length
range (5e9 residues). The disorder-to-order transition
probability of Ai is computed as the median of the
distribution fpDO ðRiÞgn. The probability for disorder-to-
disorder transition is obtained as pDD(Ri) ¼ 1-pDO(Ri).

Assessment of performance

ROC curves

The DO and DD characters of individual residues
Ri were assigned based on the comparison of the
respective pDOðRiÞ and pDDðRiÞ probabilities. Receiver
operating characteristic (ROC) curves were computed
using the R program. The true positive rate (TPR) was
calculated as a function of the false positive rate (FPR,
sensitivity) using the experimentally observed disorder-to-
order, disorder-to-disorder and context-dependent
regions. The area-under-the-curve (AUC) was determined
by the R program.

Testing the method

The performance of the method was assessed on both
the PDBTest dataset (Table S1), FuzDBTOT [29] datasets
(Table S2). To probe the robustness of the method, we
randomly varied the size and composition of the training
and test datasets and obtained very similar results using a
wide range of training/test sets.

Comparison to other methods

A cross-validation was carried out to evaluate the
performance of FuzPred versus methods, which were
developed to predict disordered regions that fold upon
binding: Anchor [52], MoRFchibi [25] and Disopred3 [26].
DORs predicted by FuzPred were compared to the ID
binding sites in the respective test datasets; while the
flanking regions, which did not adopt a folded structure in
the complex, were considered as DDRs. In return, the
disordered binding site predictions were applied to DORs
in PDBINT (Table S1) with at least one residue within 3.5 Å
from the partner. The performance was assessed on a
residue basis.

Statistical analysis

Statistical significance of the deviation between two
distributions was computed by Kolmogorov-Smirnov and
Mann-Whitney tests as implemented in the R program.
Statistical significance of the difference between two ROC
curves were computed by the method DeLong et al. [62].
Bootstrapping of the amino acid composition was carried
out using 1000 samples.
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