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Abstract The management of COVID-19 appears to be a long term chal-
lenge, even in countries that have managed to suppress the epidemic after
their initial outbreak. In this paper, we propose a model predictive approach
for the constrained control of a nonlinear compartmental model that cap-
tures the key dynamical properties of COVID-19. The control design uses the
discrete-time version of the epidemic model, and it is able to handle complex,
possibly time-dependent constraints, logical relations between model variables,
and multiple predefined discrete levels of interventions. A state observer is also
constructed for the computation of non-measured variables from the number
of hospitalized patients. Five control scenarios with di↵erent cost functions
and constraints are studied through numerical simulations, including an out-
put feedback configuration with uncertain parameters. It is visible from the
results that, depending on the cost function associated to di↵erent policy aims,
the obtained controls correspond to mitigation and suppression strategies, and
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the constructed control inputs are similar to real life government responses.
The results also clearly show the key importance of early intervention, the
continuous tracking of the susceptible population and that of future work in
determining the true costs of restrictive control measures and their quantita-
tive e↵ects.

Keywords COVID-19 · epidemic model · disease control · di↵erential
equations · control theory · model predictive control · temporal logic

1 Introduction

On December 31, 2019, China alerted the World Health Organization (WHO)
on a cluster of pneumonia cases of unknown origin in Wuhan, China. On
January 7, 2020, the causative pathogen of the outbreak was identified as
a novel coronavirus, later named as SARS-CoV-2, and the disease it causes
as COVID-19. SARS-CoV-2 infections quickly spread : the first case outside
China was identified in Thailand, on 14 January, followed by reported cases
from a number of countries [6,55].

In Europe, the first cases were confirmed on January 24, 2020 in France
(where, later in April, COVID-19 was retrospectively confirmed for a patient
hospitalized in late December 2019) [49,13], and on January 27, in Germany,
Bavaria, leading to a local outbreak [7]. The first epidemic in Europe started
in the Lombardy region of Italy with the first detection on February 20, 2020
[45]. Control measures started in mid-March in most of the European countries,
including social distancing measures that reflect strong e↵ort to suppress, or
at least to slow down the spreading of COVID-19. Because of the di↵erences
in timing and stringency of the applied measures, the peak daily incidence
varied substantially among countries, and recently a resurgence of cases have
been observed [17]. By the end of July 2020, around seventeen million cases and
seven hundred thousand deaths have been reported worldwide, with significant
spreading in the Americas, Eastern Mediterranean and Southeast Asia [56].

In the absence of vaccine and e↵ective treatment, the non-pharmaceutical
intervention strategies can roughly be divided into two main categories. Mit-
igation does not aim to completely stop the transmission of the virus, only
to slow down to keep the number of infected people below the capacity of
the healthcare system. Sweden is an example of such strategy. On the other
hand, suppression aims to reduce the incidence to a very low level by strict
social distancing, and then keep that number low by localized and targeted
measures, such as e�cient surveillance, testing, tracing and quick isolation of
cases. The first outbreak was suppressed in most European and East Asian
countries, Australia, and New Zealand. Recently, following a relaxation of such
measures, a resurgence has been observed in the Western Balkans [17].

Mathematical models have been commonly used in epidemiology to evalu-
ate disease control strategies. However, disease control in this context usually
refers to a single intervention measure that is su�cient to reduce the repro-
duction number below one, leading to the eradication of the disease. The most
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commonly used measures are vaccination and drug treatment [19], or, in the
case of vector borne diseases, culling of mosquitoes and other arthropods that
transmit the pathogen into other living organisms. The current COVID-19 sit-
uation is unprecedented in the sense that governments are constantly tuning
their control measures, trying to find balance between public health concerns
and the costs of social distancing measures to the society and the economy.
Thus, using feedback, which is a standard tool in control theory, is necessary
to dynamically manage our response to the pandemic, and tailor policies to
stabilize the situation.

In a control theory framework, dynamical systems are considered as oper-
ators mapping from an input signal (function) space to an output space [47].
We distinguish between manipulable inputs which can be set (often between
certain limits) by the user and disturbance inputs from the environment that
cannot be directly influenced. The outputs are either directly measured quan-
tities or they are computed from measurements. The control goals are usually
prescribed using the outputs, e.g. they have to track a reference trajectory or
just stay between predefined limits. Such goals are often equipped with ad-
ditional constraints and optimality criteria. Possible examples for the former
are (physical) bounds on the inputs and/or on the state variables, and mini-
mal control cost or operation time for the latter. Therefore, a complex control
problem can be most often expressed in the form of constrained optimization.

Even the simplest epidemic models are nonlinear which makes the corre-
sponding control problems challenging due to complex dynamical behaviour,
possible singularities and the state dependent nature of fundamental proper-
ties like reachability or observability [29]. Parameter and input uncertainties,
or the lack of measurements of su�cient quality often add further di�culties
to the problem [43,41].

There is a wide literature on the model-based targeted manipulation of
diseases either within the host or across an entire population [4,26,1,40,52].
In [8], model predictive control is used for the optimal allocation of vacci-
nation resources between di↵erent risk groups and regions. A robust model
predictive approach for stochastic epidemic models is proposed in [53], where
quarantine policy design is shown as a possible control input. Detailed con-
trol related model analysis and vaccination input design is proposed in [12]
which tracks a prescribed output given in terms of susceptible and infected
people. A quantitative model is presented in [51] for the COVID-19 outbreak
in Wuhan, China, taking into consideration the e↵ect of di↵erent interven-
tions. In [22] an 8-compartment ODE model is presented for describing and
analyzing the COVID-19 epidemic in Italy, where the authors show di↵erent
scenarios for the implementation of countermeasures. The same model struc-
ture is used in [31] adapted to the data from Germany. A model predictive
control approach is proposed, and it is shown that the number of fatalities
can be significantly reduced even when the model and some measurements are
uncertain. Vast majority of the available control approaches assume a control
input with continuous range which is clearly useful for strategic planning, but
not straightforward to put into practice if there are distinct levels of inter-
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vention. A notable exception is [36], where starting and stopping strict social
distancing is a binary control input applied in a nonlinear model predictive
framework, and tested through simulations on nominal and uncertain models
of the COVID-19 pandemic in Brazil.

Most advanced feedback control methods need the whole state information
for computing the input, but it is not realistic to assume that the number
of individuals in each compartment can be continuously measured (especially
latent, asymptomatic or even mildly symptomatic people). Therefore, a state
estimator is needed in practice, which is known to be non-trivial to design for
nonlinear systems, and most often its stability has to be proved on a case by
case basis [29]. A general observer class with convergence proof is proposed for
low-dimensional continuous time epidemic models in [28]. An implicit observer
design approach for specially discretized SEIR models with global convergence
proof is described in [27].

Temporal logic provides a powerful framework for the modeling, analy-
sis and control of discrete time dynamical systems, which is a correct-by-
construction approach [5]. Using signal temporal logic, complex specifications
and constraints can be given for the required dynamical behaviour of a model
in a compressed form. A particularly successful application of this computa-
tion framework is model predictive control, where the requirements can be
automatically translated to a mixed integer programming problem taking into
consideration the system dynamics as constraints [18]. Most often, linear dy-
namical models are preferred for control design with temporal logic, since those
can be put into the framework of mixed integer linear programming. However,
there exist really powerful solvers capable of e�ciently handle nonlinear mod-
els as well [32].

Based on the above, the aim of this paper is to propose an optimization-
based control approach for compartmental epidemic models constructed for
the COVID-19 outbreak, which is able to take into account complex, possibly
time-dependent specifications including bounds, and even logical relations be-
tween model variables, and multiple predefined discrete levels of interventions.
Another important goal is to study the possibilities of output feedback design
by applying a dynamic state observer. As a case study, we parameterize our
model to Hungary, but it can be easily generalized to other countries as well.

2 Transmission dynamics model

2.1 Model description

We construct a compartmental model to describe the transmission dynamics
of the infection, incorporating specific characteristics of COVID-19. Our pop-
ulation N is divided into the following classes, tracking the disease status of
individuals: by S we denote the susceptibles, i.e. those who can be infected
by the disease. Latent (L) are those who have already contracted the dis-
ease but do not show symptoms and are not infectious yet. Since transmission
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may occur in the two days before the onset of symptoms [2], we consider a
pre-symptomatic infectious compartment P . Since a large fraction of infected
show only mild or no symptoms, after the incubation period, we di↵erenti-
ate infected individuals into asymptomatic (A) and symptomatic infected (I)
compartments. Those in A will always recover, while the more severe cases in
I may require hospitalization, in which case they move to compartment H,
from where they may eventually recover (R) or die (D). We note that most
transmission occurs within a few days after symptom onset, and the compart-
ment I reflects this period of e↵ective infectivity, rather than clinical status
or PCR positivity, which may continue for weeks, yet we remove them from
I and place them in R as they do not participate in chains of transmission
anymore. Several studies [54,3,14,38,39,44] have proposed somewhat similar
models for of COVID-19.

The compartmental model without any control terms reads as

S
0(t) = �� [P (t) + I(t) + �A(t)]S(t)/N, (1)

L
0(t) = � [P (t) + I(t) + �A(t)]S(t)/N � ↵L(t), (2)

P
0(t) = ↵L(t)� pP (t), (3)

I
0(t) = qpP (t)� ⇢II(t), (4)

A
0(t) = (1� q)pP (t)� ⇢AA(t), (5)

H
0(t) = ⇢I⌘I(t)� hH(t), (6)

R
0(t) = ⇢I(1� ⌘)I(t) + ⇢AA(t) + (1� µ)hH(t), (7)

D
0(t) = µhH(t). (8)
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Fig. 1 Transition diagram. Circles represent compartments and arrows represent transi-
tions between these compartments.

2.2 Model parameters

From the infectivity profile of COVID-19 [2], we can see that most transmis-
sions occur between 3 days prior to and 4 days after symptom onset, with the
pre-symptomatic infection fraction 43.7%. It is a good approximation to set
the pre-symptomatic period p

�1 as three days, and the symptomatic infectious
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Parameter Interpretation Value Reference

R0 Basic reproduction number 2.2 [44]
↵
�1 Latent period 2.5 (days) [34]

p
�1 Pre-symptomatic infectious period 3 (days) [2]
� Transmission rate 1/3 calculated
� Relative transmissibility of asymptomatic 0.75 [9]
q Prob. of developing symptoms 0.6 [9]

⇢
�1
I , ⇢

�1
A Infectious period 4 (days) [2]

⌘ Hospitalization probability of symptomatic cases 0.076 [9]
h
�1 Average length of hospitalization 10 (days) [15]
µ Probability of fatal outcome, given hospitalization 0.145 [10]
N Population size (Hungary) 9800000 [33]

Table 1 Parameters and values applied in the simulations

period ⇢�1
I

as four days, with the same infectiousness � during this period. The
estimated mean incubation period (which is the latent and pre-symptomatic
period together) of the coronavirus disease is 5.5 days [34], thus the latent
period ↵�1 is 2.5 days. Studies have shown similar durations of viral shedding
between symptomatic and asymptomatic cases [58], so we set ⇢�1

A
as four days

as well. For the probability of developing symptoms, and the relative infec-
tiousness of asymptomatic individuals, we use the CDC best estimate q = 0.6
and � = 0.75 [9]. The average stay in hospital is assumed to be 10 days, in
accordance with the seven days median reported in [15]. The in-hospital death
ratio (µ) in the USA is 0.145 [10]. The best estimate for the infection fatality
rate (IFR) is 0.0065 [9], thus the hospitalization probability ⌘ of symptomatic
cases can be inferred from the relation IFR = q⌘µ as ⌘ ⇡ 0.076.

The basic reproduction number, expressing the average number of new
infections generated by a single infected individual in a fully susceptible pop-
ulation, is given as

R0 = �

✓
1

p
+

q

⇢I
+
�(1� q)

⇢A

◆
. (9)

This formula can be derived as follows. Introduce a single infected individual
into a susceptible population, then S(t)/N ⇡ 1. A newly infected individual,
after passing through the latent phase, spends p�1 time in the pre-symptomatic
compartment, while infecting others with rate �. Then transits to the symp-
tomatic infected compartment with probability q, where it spends ⇢�1

I
time

infecting others again with rate �. Asymptomatic infection occurs with prob-
ability 1 � q, in which case the individual infects with reduced rate ��, for
time ⇢�1

A
on average. Summing up these terms, we obtain (9). We assume

that hospitalized individuals are properly isolated and do not cause significant
numbers of infections.

Many studies have investigated R0 for di↵erent countries, here we use R0 =
2.2 estimated from the Hungarian data [44]. From relation (9), given that all
other parameters are determined, we can calculate � = 1/3. We use Hungary’s
population size for N . The parameter values are summarized in Table 1.
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3 The transmission dynamics model as a control system

To design a controller for the epidemic process, the first step is to define the
manipulable parameters (control inputs) and identify the measured outputs.
The latter comprises all relevant state dependent variables that are available
for measurement. In the absence of vaccination, one needs to rely on a variety
of non-pharmaceutical measures, which are aiming to prevent the transmission
of the virus. In our model the control input, denoted by u, reflects the e↵ect
of the measures implemented to reduce the transmission rate. This variable is
introduced in the model as a scaling factor of �, i.e. � is replaced by �(1� u)
in Eqs. (1) and (2) which are therefore modified to

S
0(t) = ��(1� u(t)) [P (t) + I(t) + �A(t)]S(t)/N, (10)

L
0(t) = �(1� u(t)) [P (t) + I(t) + �A(t)]S(t)/N � ↵L(t), (11)

where 0  u(t)  umax < 1, 8t � 0. It is clear from the above equations that
u(t) = 0 corresponds to unmitigated disease spread without any restriction,
and u(t) = umax represents the strictest possible intervention level.

Analogously to R0, the time dependent e↵ective control reproduction num-
ber, denoted by Rc(t), can be given by

Rc(t) = � (1� u(t))
S(t)

N

✓
1

p
+

q

⇢I
+
�(1� q)

⇢A

◆
. (12)

An analysis of eleven European countries [21] revealed that the reproduction
number (3.6 on average) dropped to 0.66 after the strictest lockdowns, hence
we can assume umax = 0.82.

3.1 Realization of the control input by specific control measures

Banned visits to health care institutions and long-term care facilities
Suspension of flights, international travel restrictions
University and school closures
Shortened opening time of shops
Stay at home measures
Restriction of gatherings, cancel public events
Suspend public transportation
Test, trace, isolate
Closing non-essential businesses
Emergency notification
Public information and awareness campaign
Mask wearing requirements

Table 2 Typical measures applied in various countries

Public health authorities are implementing a wide range of measures in
response to the COVID-19 outbreak, see Table 3.1. There exist recent works
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about the quantitative e↵ect of di↵erent measures, usually in terms of the re-
duction of infection probabilities in di↵erent locations, e.g. in [57,50]. These
can be used to match input value ranges and various possible restrictions. The
Oxford COVID-19 Government Response Tracker [24] is a tool that system-
atically collects information on several di↵erent common policy responses on
17 indicators such as school closures and travel restrictions. Such indicators
can be composed into indices, such as the government response stringency in-
dex. Having data from more than 160 countries, one can rigorously track the
evolving policy responses around the world, and compare various countries.
We have plotted the stringency index of selected European countries (that
are similar to Hungary in population size) in Figure 2. Later we will see that
the government responses of countries are very similar to constructed control
inputs optimizing interventions with di↵erent cost functions and constraints.

Non-pharmaceutical measures aim to reduce the number of contacts be-
tween individuals, or reduce the probability of transmission when contact is
made. The transmission rate can be considered as

� = daily number of contacts⇥ transmission probability.

Social distancing measures, such as school closures, banning of gatherings, and
so on, reduce the average number of daily contacts made by an individual,
while improved hygiene, mask wearing reduce the transmission probability. In
our control system, we realize any combination of measures by changing � to
�(1�u), where the control input u represents the overall e↵ect of measures in
reducing transmission. For example, if the number of contacts are reduced to
half by social distancing measures, then �(1� u) = 0.5� thus u = 0.5 If both
the contact number and the transmission probability are reduced to half by a
combination of measures, then the transmission rate is reduced to its quarter,
corresponding to �(1�u) = 0.25�, meaning that our control input is u = 0.75.

3.2 Discretization

The predictive control algorithm proposed in the next section requires a discrete-
time dynamical model given in the general form xk+1 = F (xk, uk). Therefore,
the epidemic model (1) has to be discretized: function F has to be con-
structed s.t. xk ⇡ x(k · Ts) for any piece-wise constant input u(t) = uk,
t 2 [k · Ts, (k + 1) · Ts), where Ts is the sampling time and xk is a state
vector. From the di↵erent possible discretization methods we found that the
simple forward Euler method is suitable for our purposes. It provides su�cient
accuracy and preserves the structure of the continuous time model. We used
a sampling time Ts = 0.5 days to get the discrete time model for control syn-
thesis. It is important to note that the discrete time model is used for control
input design, but the actual trajectories of the system between the sampling
instants are computed by an appropriate ODE solver using a standard explicit
Runge-Kutta (4,5) method. In Section 5 a dynamic observer is designed for
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Fig. 2 Stringency index of control measures in some countries of similar population sizes
(Hungary, Czech Republic, Sweden, Belgium, Portugal). The data is taken from [24], and
shifted in time to match the day of 10th confirmed cases in each country.

the epidemic model, which also requires a discrete time model. To increase the
accuracy, that model is generated by a smaller (Ts = 0.1 days) sampling time.

4 Constrained state feedback control for mitigation

4.1 Some relevant concepts from predictive control theory

In the first control scenarios the entire state vector is assumed to be known.
This assumption is not realistic, but the corresponding simulation results will
show the physical limitations for controlling the epidemic process in the ideal
situation when full information is available. In Scenario 6, this assumption
will be relaxed and only the number of hospitalized COVID-19 patients (state
H in the model) and the number of deceased (state D in the model) will be
considered available.

In all scenarios we design a feedback controller, i.e. the control input is
periodically updated based on the actual measurements.

To formulate the control problem, the next step is to define the performance
specifications that have to be satisfied by the controller and the controlled
(closed loop) system. The most criteria we expect from a conscious epidemic
management can naturally be formulated by cost functions to be minimized
(e.g., healthcare costs, or the harmful e↵ects of restrictions on economy and
society) and constraints to be satisfied (e.g., upper bounds for the number
of hospitalized people and/or on the number of deaths). Model Predictive
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Control (MPC) methodology is therefore a promising approach for solving
this problem. In the MPC framework the control synthesis is transformed into
a constrained optimization task solved in every discrete time step, when the
control input has to be updated. Since the synthesis procedure boils down
to a standard optimization problem, theoretically a wide set of possible cost
functions and complicated constraints can be handled.

Formally, in case of discrete-time models and full state measurement, the
main steps of the MPC algorithm can be summarized as follows:

1. A suitable control horizon M 2 N+ is chosen, the time counter k is set to
0.

2. At time k ·Ts, state xk is measured. MPC is based on the prediction of the
future states, therefore the following notation is introduced: the (k + i)th
state predicted from the measurement made at time k will be denoted by
xk+i|k. By definition, xk|k = xk.

3. By applying the state update equation xk+1 = F (xk, uk), the M predicted
future states xk = {xk+1|k,. . .,xk+M |k} can be expressed as a function of
the (yet unknown) future control actions uk = {uk|k, . . ., uk+M�1|k}. Using
this formulation an optimization problem can be defined:

min
uk

J(uk,xk) (13a)

w.r.t. xk+i+1|k = F (xk+i|k, uk+i|k) (13b)

Gx(xk)  hx, Gu(uk)  hu (13c)

The objective function J and constraints (13c) are constructed to encode
all design specifications to be satisfied by the controller and the closed loop
system. To solve (13) an appropriate numerical solver has to be used. The
result is the optimal input sequence u⇤

k
= {u⇤

k|k, . . ., u
⇤
k+N�1|k}.

4. The first element of u⇤
k
is applied to the process, i.e. uk := u

⇤
k|k. This

control input is kept constant for Ts time period. Then k is incremented,
i.e. k := k + 1, and the iteration continues at step 2.

We add the following important remarks to the MPC algorithm described
above:

(a) In the description of the MPC above, we implicitly assumed that the sys-
tem model is perfect: the model used for prediction is the same as that
describes the true system behavior. In practical situations this rarely holds:
there are modeling uncertainties that may corrupt the prediction and thus
the control input obtained. It is known that an appropriate feedback can
significantly reduce the e↵ect of uncertainties in itself [47,29]. Moreover,
there exist advanced methods for robust control synthesis and the robust-
ness analysis of the closed loop. In this paper, no uncertainty is assumed
for the model.

(b) The numerical complexity of the optimization problem depends on the
structure of the cost functions and the constraints. Since the model is non-
linear, (13) becomes a nonlinear optimization problem. In the first control
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scenarios we are going to investigate, quadratic cost function and linear
constraints are used. Later, to formulate more complicated requirements,
temporal logic constraints are also introduced, which turn the optimization
task into a mixed integer nonlinear programming (MINLP) problem.

(c) The time horizon over which we intend to control the epidemic process
is 180 days. We assume that the external conditions do not significantly
change during this time period. Therefore, the behavior of the model be-
yond 180 days is not taken into consideration (if further control is needed,
new computations must be performed after 180 days). Since the endpoint
is fixed, the MPC is solved over shrinking horizon, i.e. M is time dependent
and defined by Mk = 180� k.

(d) If the entire state vector cannot be measured, the standard procedure is to
augment the controller with a dynamical observer providing estimation for
the true state. If the system is nonlinear, there is no general procedure for
estimator design. This task can therefore be challenging: di↵erent existing
methods have to be combined and adapted to the specific system model.
In Section 5 we present a possible state estimator for the epidemic model
above and show how it can be applied together with the MPC control.

(e) Although in the algorithm above the control input changes in every Ts time
period, this is not necessary: the frequency of control update can be easily
decreased by simple constraints on u.

4.2 Control scenarios

This section presents five control scenarios defined for the epidemic model.
Each scenario addresses a di↵erent public health goal, and presents di↵er-
ent control strategy. In all cases full state measurement is assumed and all
simulations start from the same initial condition: S0 = N � L0, L0 = 40,
P0 = I0 = A0 = H0 = D0 = R0 = 0, where N is the population of Hungary
according to Table 1. We assume that the epidemic remains undetected until
the number of hospitalized patients exceeds a small threshold Hthr. Techni-
cally, this means that the simulation runs open loop until this threshold is
reached, the controller is switched on only thereafter. In the case studies we
examined, Hthr = 10 was used. As mentioned before, the sampling time is
Ts = 0.5 days, but in each scenario the control input is updated only weekly,
i.e. in every 14th time instant. The simulations were run on a Dell Vostro 5471
computer with i7-8550U (4 cores, 1.8-4.0 GHz) processor and 8GB RAM under
MATLAB R2019b using the BARON 19.3.24 solver [30] and YALMIP version
R20200116 [35]. The code for the translation of specifications containing tem-
poral logic expressions to optimization problems was based on the BluSTL
toolbox [16].
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4.2.1 Scenario 1: Mitigation and suppression with continuous control input

In this scenario the control input is allowed to take arbitrary (continuous) val-
ues between 0 and an a-priori defined umax. The cost function and constraints
used in the MPC design are defined as follows:

J =
MX

i=0

u
2
k+i|k + wHHMk + wDDMk + w"",

Hk+i+1|k  H + ", 0  ", 0  uk+i|k  umax, 8i = 0 . . .M � 1.

(14)

So, we would like to minimize the direct harmful e↵ects of the restrictions
(measured in a 2-norm), and keep the number of hospitalized patients under a
predefined upper bound not to overload the healthcare system. The weighting
factor wD penalizing the number of deceased at the end of the horizon can be
used to balance between mitigation and suppression, the two typical goals of
COVID-19 management [20]. In the first case wD = wH = 0, so the focus is
only on the direct cost of the control measures. The controller is expected to
avoid strict measures and thus only mitigates the e↵ects of the epidemic to the
extent that the hospitalization remains below the given bound. In the second
case wD � 0, wH � 0 are set such that the corresponding terms in the cost
function are comparable with

P
M

i=0 u
2
k+i|k, so the controller tries to suppress

the epidemic even if the control actions are expensive (i.e., they have harmful
e↵ects). The upper bound H represents the limit of the healthcare capacity.
Parameters w" and " are the ingredients of the soft constraint formulation.
Soft constraint is applied to avoid the possible numerical infeasibility that
can occur in the vicinity of H by the slight di↵erence between the simulated
continuous and the predicted discrete trajectories.

First themitigation scenario is investigated. For this, simulations have been
performed with the following parameter values: H = 10000, umax = 0.82. The
results obtained are shown in Fig. 3. At the beginning of the control period
the control input is small. This shows that less strict measures are su�cient
during this time. As the epidemic progresses the control input slowly increases,
but only until the 98th day, when it reaches a higher but still moderate value
that is significantly smaller than the allowed maximum umax. After the 98th
day, the epidemic can be successfully mitigated. At the end of the control
period (from day 154) the controller eases the restrictions (the control input
decreases) since the control specifications have to be fulfilled only up to the
180th day, and this can be achieved even if the measures are relaxed (the
control cost is decreased) in the last few weeks. If the constraints have to be
satisfied on a longer time period, the control horizon has to be increased. From
this result the following conclusion can be drawn: first, if we can intervene in
time, there is no need to immediately implement strict measures, and second,
the epidemic can be mitigated by applying only moderate restrictions. The
total cost of the control strategy is J⇤

1m = 42.86.
It is important to notice the increase of the state variables at the end of

the horizon. Since finite time control policy is computed, it is not surprising
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Fig. 3 Simulation results of Scenario 1.a (Mitigation): state trajectories (top) and control
inputs with the corresponding e↵ective reproduction number Rc (bottom).

that close to the end of the control period, the controller decreases the control
input to minimize the cost. As a response, the state variables start to increase,
but this does not cause feasibility problem as long as the constraints are not
violated till the end of the horizon. This, so called “turnpike” behavior shows
that easing the measures would result in an epidemic peak. With strict con-
straint on the healthcare capacity, this could be satisfactorily avoided only if
a suitable herd immunity is reached by the end of the control horizon. It has
been documented in several papers, e.g. [31] and [59] that in case of COVID-
19 pandemic, to reach herd immunity without overwhelming the healthcare
system would take years. Consequently, defining a good terminal constraint
for this relatively small time period is not possible. What can be done is to
directly constrain the increase of the states at the final (M and M�1-th) time
instants [31]. We are going to show an example for this in Scenario 3.

Using the mitigation setup we have analyzed the maximal delay that the
system can tolerate before implementing any measure. From a control per-
spective, this means that the system runs open loop (i.e., uncontrolled) in
the time interval [0, d · Ts], where d 2 N+ and then the controller is turned
on. We seek the maximal d, for which the MPC optimization problem has a
feasible solution. For the maximal tolerable delay we have obtained 74 days
(i.e. d = 144). For larger values of d the MPC optimization has no feasible
solution. (To detect infeasibility, a hard upper bound has been introduced for



14 Tamás Péni et al.

the soft constraint violation. Specifically, in this scenario, "  0.01 has been
used.) The simulation results are plotted in Figure 5. Considering the control
input, it can be seen that as expected, the larger the delay the stricter the
measures that have to be applied. The maximal control input is 0.82, which
corresponds to total lockdown.

The controller for epidemic suppression has been designed by the following
weights in the cost function: wD = 0.0267 and wH = 0.0033. The simulation
results are plotted in Fig. 4. It is visible that the outbreak can be successfully
suppressed for the price of a strict and early lockdown, followed by a slow
gradual easing of the measures. However, a second wave of the epidemic ap-
pears at the end of the horizon as it has been observed in several countries, for
example, the curves in Figure 4 show a striking resemblance to the true epi-
demic curve of Hungary . The total cost of the control strategy is J⇤

1s = 101.8
from which the cost of the control input is

P
k
u
2
k
= 89.27.
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Fig. 4 Simulation results of Scenario 1.b (Suppression): state trajectories (top) and control
inputs with the corresponding e↵ective reproduction number Rc (bottom).

4.2.2 Scenario 2: The e↵ect of control input quantization

By definition, the control input u reflects the e↵ect of di↵erent measures im-
plemented by the government in the society. Since there is a finite number of
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Fig. 5 Simulation results of Scenario 1.a with delayed intervention. Simulation results ob-
tained at the maximal tolerable input delay (d = 74 days)

measures that can be applied (see Table 1), a control input with truly contin-
uous range cannot be realized in practice. Motivated by this, we assume now
that the control input is quantized and can take only 4 di↵erent values. Each
value corresponds to a specific measure as follows: u(1) = 0, u(2) = 0.19, u(3) =
0.41, u(4) = 0.6. Here, as an example, u(2) may correspond to school closures,
u
(3) to stay-at-home orders, and u

(4) can be interpreted as a combination of
the two. To force uk 2 {u(1)

, u
(2)

, u
(3)

, u
(4)} for all k, an additional constraint

is added to the MPC synthesis:

⇤(u = u
(1) _ u = u

(2) _ u = u
(1) _ u = u

(4)), (15)

where ⇤ is a temporal logic operator called ‘always’ and is defined as follows:
if � is an arbitrary logical expression, then

⇤[a,b]� is true at time t , 8t0 2 [t+ a, t+ b] the formula � is true. (16)

Using this definition, constraint (15) prescribes that one of the four equations
u = u

(i), i 2 {1, 2, 3, 4} has always to be true. (More details on temporal logic
operators can be found e.g. in [18]). We remark that the discrete inputs alone
do not necessitate the application of temporal logic (see, e.g. [36]). However,
this notation is intuitive, and using the temporal logic framework it is straight-
forward to add more complex (possibly time-varying) constraints as it will be
shown by the next scenario.
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Fig. 6 Simulation results of Scenario 2 (Control input quantization): state trajectories (top)
and control inputs with the corresponding e↵ective reproduction number Rc (bottom).

To analyse the e↵ect of input quantization we have performed the miti-
gation scenario defined in the previous section with the additional constraint
(15). The results are plotted in Fig. 6. It can be seen that the primary control
goal, i.e. the mitigation of the epidemic is achieved and the input and state
constraints are satisfied. It is also important to mention that the quantized
control input is similar to the continuous one obtained in Scenario 1, which
means that the optimal control strategy is very similar in the two cases. On
the other hand the quantization allows less freedom to the controller, so the
total cost is now higher: J⇤

2 = 45.88.

4.2.3 Scenario 3: Refined constraint for healthcare capacity

In this scenario we allow, but only once and only for a limited time period,
that the number of hospitalized patients (H) exceeds the limit H. This sce-
nario represents the case when there is an extra, but possibly costly reserve
in the healthcare system that can be activated if necessary, or resources are
reallocated to COVID-19 from other areas of healthcare. Formally, we intro-

duce two new parameters: Tr and H, such that H < H and the MPC design
is completed with the following constraint:

⇤(H  H) U
⇣
⇤[0, Tr](H  H) ^⇤[Tr, N ](H  H)

⌘
(17)
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where the temporal logic operator U (called ’until’) is defined as follows:

'U[a,b] is true at time t , 9t0 2 [t+ a, t+ b] st.  is true ^ (18)

8t00 2 [t, t0] ' is true (19)

In expression (17), H denotes a new upper bound that is never to be vi-
olated and Tr is the maximal time period for which H > H is allowed. The
numerical simulation for this scenario was performed with the following param-

eter values: H = 15000 and Tr = 21 days. The results obtained by performing
a mitigation scenario are depicted in Fig. 7 and 8, respectively. Compared to
the results of Scenario 1, it can be seen that the shapes of the control inputs are
similar. The main di↵erence is that the controller in Scneario 3 applies smaller
control actions over almost the entire horizon. The control input is larger only
for a short period after Tr is elapsed. This is necessary to stop the increase
of the constrained state variables, which would result in the violation of the
constraints and the loss of feasibility. Since the control input is smaller at most
times than in Scenario 1, the total cost of the control is smaller: J⇤

1m = 42.86
in Scenario 1 and J

⇤
3 = 41.43 in Scenario 3.

Similar to the other scenarios investigated so far the state variables start to
increase at the end of the control horizon. To avoid this behavior we introduce
the following simple terminal constraint:

Hk+M |k + 1  Hk+M�1|k (20)

i.e. the number of hospitalized individuals must decrease in the last step. This
constraint prevents H and the other states from increasing: strict control mea-
sures are applied till the very end of the horizon. Though the characteristic
of the state variation has been significantly improved, nothing can be guaran-
teed for the process behavior beyond the control horizon. A later outbreak can
be avoided only if the implementation of the carefully planned, strict control
policy is continued.

5 State estimator design and output feedback control

In this section the assumption of full state measurement is dropped, and
aligned with the common practice, only the number of the deceased (D) and
the number of the hospitalized individuals (H) are monitored. There are exam-
ples in the COVID-19 literature, where the global dynamics and the epidemic
curve was reconstructed from the data of hospitalized or deceased individu-
als [23,42] . In order to use the state feedback MPC controller, a dynamical
observer is designed to estimate the remaining non-measured states.
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0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

Time (days)

0

5

10
N

um
be

r o
f i

nd
iv

id
ua

ls
104

S
L
P
I
A
H
R
D

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

Time (days)

0

5000

10000

N
um

be
r o

f i
nd

iv
id

ua
ls

S
L
P
I
A
H
R
D

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

Time (days)

0

0.5

1

1.5

2

In
pu

t

u
Rc

Fig. 7 Simulation results of Scenario 3 (Temporal increase of healthcare capacity): state

trajectories (top) and control inputs (bottom) obtained with Tr = 21 and H = 15000. H

is above 10000 between days 79 and 100.

5.1 LPV observer design for the epidemic model

To design the estimator, the states are normalized first and the dynamical
model is divided into three parts. According to the three subsystems, the state
vector is partitioned as follows: s := S/N , x̄ = [L,P, I, A,H]/N and r = R/N .
Focusing on x, we notice that the corresponding dynamical equations can be
rewritten in linear parameter varying (LPV) form:

x̄k+1 = (I + TsA0 + ⇢kTsA1)x̄k

.
= A(⇢k)x̄k

where ⇢k = skvk with vk = 1� uk is the scheduling variable and

A0 =

2

66664

�↵ 0 0 0 0
↵ �p 0 0 0
0 qp �⇢I 0 0
0 (1� q)p 0 �⇢A 0
0 0 ⇢I⌘ 0 �h

3

77775
, A1 =

2

664

0 � � �� 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

775 (21)

follow from (1). By introducing C = [0 0 0 0 1], a measurement equation is
added to the model: yH = Cx̄, where yH = x̄5 = H/N . Assume ⇢ is bounded,
i.e. ⇢ 2 [⇢, ⇢] and ⇢, ⇢ are a-priori known. If we assume that up to half of
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Fig. 8 Simulation results of Scenario 3 (Temporal increase of healthcare capacity): state

trajectories (top) and control inputs (bottom) obtained with Tr = 21 and H = 15000. In
this simulation a terminal constraint for the number of hospitalized individuals has also
been introduced. H is above 10000 between days 76 and 97.

the population gets infected, then s 2 [0.5, 1] holds. This, together with the
input constraint u 2 [0, 0.7] gives the bound for ⇢: ⇢ 2 [0.15, 1]. Using these
bounds, a parameter varying observer can be designed, but in order to use it,
the scheduling variable (⇢) has to be known at each time instant. Since in our
case sk is not available for measurement, we can only approximate it by using
its di↵erence equation, as follows:

ŝk+1 = ŝk � Tsŝkvk [0 � � � � � �� 0] ˆ̄x (22)

By scheduling the model with ⇢̂ = ŝv we face the problem of observer design for
LPV systems with inaccurately measured scheduling variables. This problem
is well identified in control literature and one possible solution is proposed in
[37,11,25]. The papers discuss di↵erent variants, namely di↵erently improved
versions of the same approach introduced first in [37]. The method constructs
a parameter varying observer, scheduled by ⇢̂ such that the boundedness of
the estimation error is guaranteed as long as ⇢� ⇢̂ is bounded.

Before applying this method, it is important to check the observability
properties of the LPV model. The quickest analysis is to compute the observ-
ability matrix at di↵erent frozen (fixed) parameter values. This is a necessary
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condition for the parameter dependent observability. Taking 10 equidistant
points ⇢1 . . . ⇢10 on the interval [0.15, 1] we have found that the linear time-
invariant (LTI) models (A(⇢i), C) are all observable: the corresponding ob-
servability matrices have full rank. However, it is important to note that these
matrices are badly conditioned, they are close to singular, so the model is only
weakly observable. This may challenge the observer design process and has
e↵ect on the achievable performance of the state estimation. It is also impor-
tant to keep in mind that while the properties of the LPV model can give
information on the properties of the nonlinear system, the two systems are
not the same: the epidemic model is embedded in the LPV structure, so the
latter describes a much broader dynamical behavior.

Starting from the LPV model, the state estimator is defined in the following
form:

ˆ̄xk+1 = A(⇢̂)ˆ̄xk + L(⇢̂)(yH � ŷH) (23)

where ŷH = Cx̂. This results in the following error dynamics:

ek+1 = x̄k+1 � ˆ̄xk+1 = (A(⇢̂)� L(⇢̂)C)ek + �k (24)

where �k = (A(⇢k)�A(⇢̂k))x̄k. By fixing the feedback gain L(⇢̂) in parameter
a�ne form L0 + ⇢̂L1, the coe�cient matrices L0 and L1 can be determined
by finding positive definite Pi and general Gi, Fi matrices for i 2 {1, 2} that
satisfy the following Linear Matrix Inequalities (LMI):


Pi A

T

i
Gi � C

T
F

T

i

GiAi � FiC G
T

i
+Gi � Pj

�
� 0, i, j 2 {1, 2},

A1 = A(⇢), A2 = A(⇢).

(25)

Then with L̄i = G
�1
i

Fi, the observer gains are computed as follows: L1 =
1/(⇢� ⇢)(L̄2 � L̄1), L0 = L̄1 � ⇢L1. It is shown in [37], that the dynamics of
the estimation error (24) is input-to-state stable (ISS) with respect to input
�k. This implies that ek ! 0 as k ! 1 if �k = 0 (i.e. ⇢k = ⇢̂k) and also
that ek is bounded for all k if ⇢k � ⇢̂k is bounded. Note that the observer
design procedure considers the scheduling parameter independent of the state
prediction. Formally this is true, as ⇢k depends on sk which is not element
of x̄k. Thinking in this way, the design is correct and the properties of the
LPV observer can be independently analysed: for example, a bound for the
ISS gain can be computed for (24) by using [37]. On the other hand, in our
specific setup the dynamic equation (22) couples ⇢̂ and x̄. This makes the anal-
ysis of the observer more challenging. We therefore make the further analysis
via simulations by interconnecting the observer, the dynamics of ŝ and the
nonlinear system model.

In the possession of ŝ and x̂, the remaining state variable r can be obtained
by iterating its state update equation:

ẑk+1 = zk + Ts[0 0 ⇢I(1� ⌘) ⇢A (1� µ)h]ˆ̄xk
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Note, r̂ is thus constructed by integrating the linear combination of the other
states. We cannot prove anything for the boundedness of z � ẑ, but this is
not a serious issue as r does not influence the behavior of the other states
and it is used only in a control objective of Scenario 4. Since a lower limit
for the number of infected patients is not a strict value, some deviation from
the prescribed limit is not critical. Simulations will however reveal that z � ẑ

is actually small over the control horizon, so ẑk is a suitably precise estimate
for zk. It is also important to mention that measurement D is not used in
the observer. Since D does not influence the other state variables, measuring
it is not relevant to the observer design (but it is very useful to precisely
evaluate the cost function). It has to be admitted that the assumption of
precisely knowing the model parameters is not completely realistic. Therefore,
tracking the number of hospitalized people only may not be enough in practice
to compute the population in other compartments with the required precision.
To address this problem, the e↵ect of parameter uncertainty for a controller-
observer configuration is examined later in Subsection 5.4.

5.2 Numerical results obtained by the LPV observer

By solving (25), the following observer gains have been obtained:

L0 =

2

66664

13.4913
14.1086.
8.3603
5.5759
1.0058

3

77775
, L1 =

2

66664

1.3190
0.0767
�0.0009
�0.0019
0.0001

3

77775
. (26)

However, due to the weak observability, the error dynamics is close to the
boundary of stability, the matrices P1, P2 characterizing the Lyapunov func-
tion are numerically ill-conditioned: there are several order of magnitude dif-
ference between their eigenvalues. Further analysis is thus necessary to reveal
the performance properties of the observer, e.g. to compute an upper bound
for the magnitude of the estimation error. Papers [11,25] refine the algorithm
above and derive such a performance metric. In this paper we cannot go into
the details of this analysis procedure, we examine the observer only in numer-
ical simulations and place the focus on its application in closed loop control.

Figure 9 presents the simulation results obtained by running the system
open-loop with the control input depicted in the same figure. The initial state
was the same as we chosen above, i.e. L0 = 40, S = N � L, and the other
states are 0. In the simulation the normalized states were estimated, but they
were re-scaled to plot the results. It can be seen that noticeable, but still not
significant estimation error can be detected only in variables S and R and only
in the neighborhood of the peak of the epidemic. This is not relevant however,
since the estimator is intended to be used together with a controller, which
mitigates or suppresses the epidemic peak.
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Fig. 9 True (coloured solid line) and estimated states (dashed black line) (top figure) and
estimation error (middle figure) obtained by the state observer. The control input applied
during the simulation is plotted in the bottom figure.

5.3 Scenario 4: Output feedback control

In this section we examine how the state observer works together with the
MPC controller. For this, we repeat the simulation of Scenario 1 (subsection
4.2.1) with the following modification: the precise state measurement xk is
replaced by the estimated value x̂k. The simulation results are plotted in Figure
10. The control input and state trajectories obtained in the two scenarios can
hardly be distinguished. Since the epidemic peak, where the estimation error
would be noticeable, is mitigated, the state estimation is almost perfect over
the entire horizon. Consequently, using x̂k in the control input computation
has only negligible e↵ect on the closed-loop behavior. Compared to Scenario 1,
the control costs are almost equal in the two scenarios: J⇤

1 = 42.86, J⇤
4 = 42.98.

We can conclude that the lack of direct measurement of S is not crucial from
the point of view of state measurement if the observer is used in closed-loop
control.
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Fig. 10 Simulation results of Scenario 4 (Output feedback control): state trajectories (top)
and control inputs with the corresponding e↵ective reproduction number Rc (bottom). The
true and estimated state trajectories are plotted by coloured solid and black dashed lines,
respectively.

5.4 Scenario 5: E↵ect of parameter uncertainty

We have assumed so far that the dynamical model of the epidemic is precisely
known, that is the model (1)-(8) with parameters in table 2.2 accurately de-
scribes the dynamical behavior of the epidemic process. This is hardly the
case in a real situation. Therefore, the possible parameter uncertainties have
to be taken into account during the control design process. This leads to a
robust synthesis, which is beyond the scope of this paper. On the other hand,
to study the applicability of the proposed control method, it is important to
examine how it works in the presence of model mismatch. In this subsection we
show several simulations with the output feedback scenario presented above
with the following settings: the model structure used for prediction and state
observation is the same, but certain parameters of the controlled system are
di↵erent in each experiment. We assume that 4 parameters, namely ↵, q, �, ⌘
are uncertain, they take values from the following intervals:

↵ 2 [1/3, 1/2], � 2 [0.7, 0.8], q 2 [0.5, 0.7], ⌘ 2 [0.069, 0.083], (27)

The upper and lower bounds of the parameter domains have been determined
using the references in Table 1. Further, we assume that the other model pa-
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Case number ↵
�1

� q ⌘ cost maxH

0 3.00 0.70 0.50 0.69 33.54 9305
1 3.00 0.70 0.50 0.83 35.33 9608
2 3.00 0.70 0.70 0.69 41.22 10290
3 3.00 0.70 0.70 0.83 43.79 10504
4 3.00 0.80 0.50 0.69 36.86 9738
5 3.00 0.80 0.50 0.83 38.96 9939
6 3.00 0.80 0.70 0.69 43.38 10781
7 3.00 0.80 0.70 0.83 46.30 10893
8 2.00 0.70 0.50 0.69 37.37 9336
9 2.00 0.70 0.50 0.83 39.65 9545
10 2.00 0.70 0.70 0.69 46.03 10242
11 2.00 0.70 0.70 0.83 49.20 10765
12 2.00 0.80 0.50 0.69 40.24 9691
13 2.00 0.80 0.50 0.83 44.64 9834
14 2.00 0.80 0.70 0.69 48.28 10651
15 2.00 0.80 0.70 0.83 51.70 11105

Table 3 Model parameters of the experiments performed for uncertainty analysis.

rameters are more precisely known, and therefore their nominal values were
used in the simulations. We remark that possible uncertainty in � can be han-
dled, since due to the model structure, designing for larger � gives a feasible
controller for smaller values as well. To analyze the robustness, 16 simulations
defined by the possible combinations of the min-max values of the uncertain
parameters have been performed. Table 5.4 collects the parameters of the ex-
periments with the results obtained. The detailed simulation results obtained
for cases 7 and 15 are plotted in Figs. 11 and 12, respectively.

It can be seen that the controller worked acceptably well with uncertain
models, although the cost varied visibly for the di↵erent cases. Regarding
the constraint on the health care capacity, it is only violated in half of the
simulations and the transgression of the limit is not critical. On the other
hand, there is a room for performance improvement, and thus improving the
robustness of the controller is an important task in the future.

6 Discussion

The model-based control of the spread of the COVID-19 epidemic was pro-
posed in this paper. The dynamical model is given in the form of a set of
nonlinear ODEs containnig 8 compartments. The model parameters were de-
termined from the literature and the epidemic data recorded in Hungary be-
tween March and May, 2020. The assumed manipulable control input with
strict upper and lower bounds is the time-varying transmission rate a↵ected
by di↵erent restrictive measures planned and implemented by the authorities
to slow down disease spread.

A model-predictive control approach was proposed which uses the discrete-
time version of the dynamical model and is able to take into consideration
complex specifications and constraints containing even integer variables and
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Fig. 11 Simulation results of Scenario 5 (Output feedback control) with model uncertain-
ties. State trajectories (top) and control inputs with the corresponding e↵ective reproduction
number Rc (bottom) in case 7 of table 5.4. The true and estimated state trajectories are
plotted by coloured solid and black dashed lines, respectively.

logical relations in the form of temporal logic expressions. The control goals
are then automatically translated to a MINLP problem, capable of handling
the nonlinear system dynamics. To address the realistic situation when not all
state variables are observed continuously, a state observer is proposed using
the theory of LPV systems, assuming that only the number of hospitalized and
deceased patients are known on a daily basis. In the numerical simulations
we found that the number of people in the other 6 compartments can be
computed with su�cient precision using the observer if the model parameters
are known, although the model itself is numerically only weakly observable
due to the possible di↵erent orders of magnitudes of the susceptible and the
infected population. This underlines the importance of regularly tracking the
susceptible population (which is a scheduling parameter in the state observer),
since the on-line estimation of the other states could be significantly improved
by that. In practice, this can be achieved by large scale serological surveys.

Five control scenarios were shown and analyzed with di↵erent goals and
assumptions. The scenarios cover the well-known cases of mitigation, when
the direct cost of the intervention (control) is minimized with a constraint
on healthcare capacity, and also suppression, where the cost is assigned to



26 Tamás Péni et al.
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Fig. 12 Simulation results of Scenario 5 (Output feedback control) with model uncertain-
ties. State trajectories (top) and control inputs with the corresponding e↵ective reproduction
number Rc (bottom) in case 15 of table 5.4. The true and estimated state trajectories are
plotted by coloured solid and black dashed lines, respectively.

infection, hospitalization and fatalities. It is worthwhile to note that there is
a striking resemblance between the constructed control inputs and real life
government responses, measured by a stringency index, both for mitigation
and suppression strategies. We have also monitored the time varying e↵ective
reproduction number Rt, which became a very popular measure of the current
epidemic situation during the COVID-19 pandemic. For suppression, we see
that very strict measures (lockdown) are necessary initially, and they can be
slowly relaxed later. This corresponds to a sharp drop in Rt to levels way
below one. On the other hand, for mitigation, the stringency of the control is
increased much more slowly, and maximized at a moderate level, while Rt is
being kept around the critical value 1 for a long time period.

We emphasize that the proposed flexible approach is able to directly handle
predefined discrete levels of restrictions. The output feedback design case (i.e.,
the combination of the controller and observer) was also examined through sev-
eral simulations assuming uncertainties in selected parameters. It is justified
by the computational results that an early intervention is of key importance
in satisfying the control goals and constraints. The feasibility analysis corre-
sponding to the model predictive control problem is also useful to assess the
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practical (physical, biological) limits of the planned interventions and iden-
tify late actions. Future work will be focused on the sensitivity and further
robustness analysis of the approach and on the specification of even more re-
alistic goals and constraints. Among the latter, assigning individual costs to
di↵erent types of restrictions (see Table 2) and putting the optimal selection
between them into the framework of optimal control may add further value to
the research.
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