
IFAC PapersOnLine 52-28 (2019) 120–125

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2019.12.358

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2019.12.358 2405-8963

Road surface estimation based LPV

control design for autonomous

vehicles
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Abstract: The paper proposes a new road surface estimation algorithm for autonomous vehicles
using a machine-learning based method, which is in cooperation with the lateral control of
the vehicle. The algorithm uses large datasets, which can be collected e.g. from the on-board
sensors of the vehicle, or it also can be provided by vehicle dynamic simulation softwares. The
result of the surface estimation is built-in the lateral control system as a scheduling parameter.
Furthermore, the lateral control design is based on the Linear Parameter Varying (LPV) method,
which guarantees the safe motion of the vehicle against varying parameters of the system. Finally,
a comprehensive simulation is presented to show the efficiency and the operation of the proposed
control system.
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1. INTRODUCTION AND MOTIVATION

In the last few years, the automotive companies have
shifted their focal towards the development of the highly-
automated, autonomous vehicles. This new trend has
brought numerous challenges for the automotive industry.
One of these challenges is the design of the optimal, robust
controllers, which are able to maintain the required perfor-
mances under various circumstances. This means that the
autonomous vehicles have to be able to work on different
roads and even under extreme weather conditions. This
capability of the control system involves several measure-
ments and estimations in order to appropriately adjust
itself to the actual driving-situation. Therefore, the accu-
racy of the estimation of the adhesion coefficient between
the tire and the road crucially influences the operation of
the autonomous vehicle.

Over the past few decades, several methods have been
developed for the estimation problem of road surfaces.
These solutions can be divided into three main categories:
1. Camera and vision-based methods, 2. Model-based
approaches, 3. Machine-learning based algorithms. In the
followings these methods are revised briefly.

� This work has been supported by the grant ’2018-1.2.1-NKP-
00008: Exploring the Mathematical Foundations of Artificial Intelli-
gence’. The work of Balázs Németh was partially supported by the
János Bolyai Research Scholarship of the Hungarian Academy of
Sciences and the ÚNKP-19-4 New National Excellence Program of
the Ministry for Innovation and Technology. The work of Dániel
Fényes was partially supported by the ÚNKP-19-3 New National
Excellence Program of the Ministry for Innovation and Technology.

Camera and vision-based approaches use the images of
the on-board camera to estimate the road surface and the
adhesion coefficient. Islam et al. [2018] presents a method
to classify different road surfaces using the RGB channels
and their intensity histograms, whose accuracy is around
78.6%. Sun and Jia [2018] combines the camera-based
and the machine learning approaches. It presents several
machine learning algorithm such as: K-NN, Neural Net-
work and SVM and naive-Bayesian SVM, which classify
the road surface using the image of the on-board camera.
They conclude that the best results is given by the naive-
Bayesian SVM algorithm.

Another group of the estimation methods is the model-
based estimators. For example, Müller et al. [2003] de-
scribes a method to estimate the adhesion coefficient using
the slip of the vehicle. The accuracy of this solution is
close to 80%. Another model-based estimator is presented
in Rath et al. [2013]. This approach uses a simple quarter
car and the LuGre friction models to estimate the actual
µ value.

The last group includes the machine-learning and deep-
learning based solutions. In the past few decades, the
passenger cars have been equipped with a lot of sensors
such as accelerometers, gyroscopes, GPS etc. These sensors
are used for different purposes. For example: ABS, ASR,
ESP systems. Although these systems use only the current
measurements of the devices, the information, which is
provided by them, can be collected and stored on an in-
ternal, or a cloud-based memory. A SVM (Support vector
machine) based solution is presented in Li et al. [2012].
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Fényes was partially supported by the ÚNKP-19-3 New National
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Fényes was partially supported by the ÚNKP-19-3 New National
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Sciences and the ÚNKP-19-4 New National Excellence Program of
the Ministry for Innovation and Technology. The work of Dániel
Fényes was partially supported by the ÚNKP-19-3 New National
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This technique requires relatively large steering angle in
order to accurately estimate the adhesion coefficient.

The datasets, which are created from the saved signals, can
provide good bases for any machine/deep learning tech-
niques. These algorithms can catch the hidden knowledge
from the datasets, which can be used for other nontrivial
problems. For example, in this case, the road surface /
adhesion coefficient estimation problem can be solved by
using these techniques. Song et al. [2017] describes a BP
neural network-based technique, which is able to estimate
the adhesion coefficient at constant velocity with relatively
high accuracy.

One of the main contributions of the paper is a machine-
learning based road surface estimation method, which
uses only the available signals from the on-board system.
Since, the accurate estimation of the adhesion coefficient
cannot not possible in all vehicle dynamic situation, the
estimation solution classifies the road surface into three
categories: dry ∈ {0.7−1.0}, wet ∈ {0.4−0.7}, icy ∈ {0.0−
0.4}. As it can be seen, each category covers a predefined
range of the adhesion coefficient from 0.0 up to 1.0. Asa
further contribution, the result of the estimation has been
built-in in the lateral control design, which is based on
the LPV (Linear Parameter Varying) method, in which
the estimate of the road surface is used as a scheduling
parameter.

The paper follows the following structure: In the next
section, the acquisition of the collected data is presented.
Third section presents the machine-learning algorithm and
its application in the lateral control design. The LPV-
based control design is detailed in the fourth section. Fi-
nally, a comprehensive illustration of the proposed control
system is given in the last section.

2. DATA ACQUISITION AND BIG DATA ANALYSIS

As all machine-learning algorithms demand a lot of data
to provide reliable results, the most significant step of this
research is the data acquisition. In this paper, the large
amount of data is provided by the high-fidelity simulation
software, CarSim. In the simulation environment several
simulations have been performed, in which some param-
eters of the car and its environment were modified, such
as longitudinal velocity of the vehicle and the adhesion
coefficient between the tire and the road. Each value of
the adhesion coefficient is associated with a distinctive
road surface (icy, wet, dry). During the simulations several
signals have been measured and collected: longitudinal
acceleration, lateral acceleration, longitudinal velocity, lat-
eral velocity, yaw rate, angular velocity of wheels, steering
angle of front wheels, angle of steering wheel, side-slip
angle of the vehicle, slip angles of the wheels, torques of
the wheels, roll rate.

Since the goal of the estimation of the adhesion coefficient
is to determine the peak value of this attribute, not in
general µ, the instances, in which the adhesion coefficient
is close to its peak value must be found. For this purpose,
several criteria can found in the literature e.g. in Li et al.
[2012]. It uses the values of yaw-rate, steering speed, lateral
acceleration, longitudinal speed with some limitations to
select the appropriate instances. However, in this paper, a

new criterion is used based on a stability condition, which
was presented by Fenyes et al. [2018]. The original stability
condition can be written as:

−ε <
|1 + α1|

|1 + δ − β − l1ψ̇
vx

|
− 1 ≤ ε, (1)

where ε is an experimentally defined parameter, l1 is the
distance between the CG of the vehicle and the front axle
and α1 is the mean value of the slips of the front wheels.

The basic idea of this criterion relies on the deviation of the
dynamical behaviors of the real vehicle and the linearized
model. This deviation is large when the vehicle has high
values of speed and steering angle, which indicates that the
vehicle gets close to the peak value of µ. Therefore, after
some changes, this condition can be used as a selection
criterion for the current case:

ε <
|1 + α1|

|1 + δ − β − l1ψ̇
vx

|
− 1

or
|1 + α1|

|1 + δ − β − l1ψ̇
vx

|
− 1 < −ε, (2)

In this case, the parameter ε should be as small as possible
in order to not exclude too many instances.

2.1 Pace regression

There are a lot of machine-learning algorithms that can
be used to estimate specific parameters/variables. Some
of them yield complex models, which are hard to be used
in online control system. Therefore, the so-called Pace
Regression method is applied, which fits a simple linear
model to the given problem. A brief introduction to this
algorithm is given in this section, more detailed description
can be found in Wang and Witten [1999]. Assume that the
dataset consists of n independent instances, k measured
variables and one output variable (the estimated variable).
From the dataset, a matrixX can be created. ζ∗ is a vector
containing the parameters. Then, the output is determined
as:

y = Xζ∗ + ε, (3)

where ε is the noise vector whose elements are sampled
from N(0, σ2).

It is also assumed that σ2 is known or, at least, it can be
estimated (σ̂2). M(ζ) denotes a fitted, linear model that
has an unique parameter vector ζ while the true model is
denoted by M(ζ∗). The aim of the modeling task is to find
a model from the entire model spaceM = {M(ζ) : ζ ∈ Rk}
whose predictive accuracy is the greatest on the given
dataset.

3. ESTIMATION ALGORITHM

The whole control system, including the estimation al-
gorithm, is divided into 5 parts: 1. Data collection, 2.
Prepocess of data, 3. Regression, 4. Resulted model and
5. Control system. Each part is described briefly in this
section:
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uses only the available signals from the on-board system.
Since, the accurate estimation of the adhesion coefficient
cannot not possible in all vehicle dynamic situation, the
estimation solution classifies the road surface into three
categories: dry ∈ {0.7−1.0}, wet ∈ {0.4−0.7}, icy ∈ {0.0−
0.4}. As it can be seen, each category covers a predefined
range of the adhesion coefficient from 0.0 up to 1.0. Asa
further contribution, the result of the estimation has been
built-in in the lateral control design, which is based on
the LPV (Linear Parameter Varying) method, in which
the estimate of the road surface is used as a scheduling
parameter.

The paper follows the following structure: In the next
section, the acquisition of the collected data is presented.
Third section presents the machine-learning algorithm and
its application in the lateral control design. The LPV-
based control design is detailed in the fourth section. Fi-
nally, a comprehensive illustration of the proposed control
system is given in the last section.

2. DATA ACQUISITION AND BIG DATA ANALYSIS

As all machine-learning algorithms demand a lot of data
to provide reliable results, the most significant step of this
research is the data acquisition. In this paper, the large
amount of data is provided by the high-fidelity simulation
software, CarSim. In the simulation environment several
simulations have been performed, in which some param-
eters of the car and its environment were modified, such
as longitudinal velocity of the vehicle and the adhesion
coefficient between the tire and the road. Each value of
the adhesion coefficient is associated with a distinctive
road surface (icy, wet, dry). During the simulations several
signals have been measured and collected: longitudinal
acceleration, lateral acceleration, longitudinal velocity, lat-
eral velocity, yaw rate, angular velocity of wheels, steering
angle of front wheels, angle of steering wheel, side-slip
angle of the vehicle, slip angles of the wheels, torques of
the wheels, roll rate.

Since the goal of the estimation of the adhesion coefficient
is to determine the peak value of this attribute, not in
general µ, the instances, in which the adhesion coefficient
is close to its peak value must be found. For this purpose,
several criteria can found in the literature e.g. in Li et al.
[2012]. It uses the values of yaw-rate, steering speed, lateral
acceleration, longitudinal speed with some limitations to
select the appropriate instances. However, in this paper, a

new criterion is used based on a stability condition, which
was presented by Fenyes et al. [2018]. The original stability
condition can be written as:

−ε <
|1 + α1|

|1 + δ − β − l1ψ̇
vx

|
− 1 ≤ ε, (1)

where ε is an experimentally defined parameter, l1 is the
distance between the CG of the vehicle and the front axle
and α1 is the mean value of the slips of the front wheels.

The basic idea of this criterion relies on the deviation of the
dynamical behaviors of the real vehicle and the linearized
model. This deviation is large when the vehicle has high
values of speed and steering angle, which indicates that the
vehicle gets close to the peak value of µ. Therefore, after
some changes, this condition can be used as a selection
criterion for the current case:

ε <
|1 + α1|

|1 + δ − β − l1ψ̇
vx

|
− 1

or
|1 + α1|

|1 + δ − β − l1ψ̇
vx

|
− 1 < −ε, (2)

In this case, the parameter ε should be as small as possible
in order to not exclude too many instances.

2.1 Pace regression

There are a lot of machine-learning algorithms that can
be used to estimate specific parameters/variables. Some
of them yield complex models, which are hard to be used
in online control system. Therefore, the so-called Pace
Regression method is applied, which fits a simple linear
model to the given problem. A brief introduction to this
algorithm is given in this section, more detailed description
can be found in Wang and Witten [1999]. Assume that the
dataset consists of n independent instances, k measured
variables and one output variable (the estimated variable).
From the dataset, a matrixX can be created. ζ∗ is a vector
containing the parameters. Then, the output is determined
as:

y = Xζ∗ + ε, (3)

where ε is the noise vector whose elements are sampled
from N(0, σ2).

It is also assumed that σ2 is known or, at least, it can be
estimated (σ̂2). M(ζ) denotes a fitted, linear model that
has an unique parameter vector ζ while the true model is
denoted by M(ζ∗). The aim of the modeling task is to find
a model from the entire model spaceM = {M(ζ) : ζ ∈ Rk}
whose predictive accuracy is the greatest on the given
dataset.

3. ESTIMATION ALGORITHM

The whole control system, including the estimation al-
gorithm, is divided into 5 parts: 1. Data collection, 2.
Prepocess of data, 3. Regression, 4. Resulted model and
5. Control system. Each part is described briefly in this
section:
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Data collection: The acquisition and collection of data
have been already presented in the Section 2. As men-
tioned, the data is provided by the CarSim simulation
software.

Prepocess: The prepocess step includes the data sepa-
ration, which has been presented, and one more task: Since
all of the measurements contains noises, the signals must
be filtered before using them in the estimation. Therefore,
all measured attributes are averaged over a time period T :

Âi,t =

t∑
n=t−T

Ai,n

T
(4)

where Ai,t is the tth instance of ith attribute.

Regression: The filtered and separated data is used
in the regression step. As mentioned in the Section 2,
all values of the adhesion coefficient is associated with a
category of the road surface (icy, wet, dry). In this case,
all road surface types are represented by their averaged
adhesion coefficients. (dry: 0.85, wet: 0.55, icy: 0.2) The

Fig. 1. Result of the regression

results of the Pace Regression algorithm can be seen in
Figure 3. The figure shows that the estimation algorithm is
very good at separating the icy and wet cases. But it has a
significant overlay at the wet and dry cases. Although this
overlay is relatively large, it does not cause any dangerous
situation. Moreover, in order to avoid fluctuation in the
estimation, the numerical value µ̂, which is provided by the
estimation, is converted into the corresponding predefined
categories (dry, wet, icy) in the following way:

round(10M(µ̂i))

10
∈ C(µ̂) (5)

µ̃ = R(C(µ̂)) (6)

where i = 1..n, n is an experimentally defined value, M
gives the median value of a set and C(µ̂) denotes the
category (dry, wet, icy), which the given instance belongs
to. R gives the mean value of the category.
Finally, µ̃ is used in the following.

Resulted model: The result of the Pace Regression
algorithm can be used as a scheduling parameter in the
LPV control design. All of the considered road surfaces is
associated with a gridded model, which are used in the
control design. Moreover, the yielded control system can
select the best fitting controller using the road surface
information. In this manner, the stability and the safe
motion of the vehicle is guaranteed.

Control system: As mentioned, the control system uses
the estimation of the road surface to calculate the optimal
controller and the control input for the vehicle. The design
of the lateral controller is presented in the next section.

4. LPV-BASED VEHICLE CONTROL DESIGN AND
VELOCITY SELECTION STRATEGY

The goal of this section is to provide a control strategy,
in which the design of the steering actuation is coordi-
nated and the safe motion of the autonomous vehicle is
guaranteed. The steering control design based on the LPV
method is presented. It uses the result of the µ̃ estimation
through a scheduling variable.

Design of lateral LPV control

The design of the steering control is based on the formula-
tion of the lateral dynamics in a linear model (Rajamani
[2005])

mvx(ψ̇ + β̇) = Fy(α1) + Fy(α2), (7a)

Jψ̈ = Fy(α1)l1 − Fy(α2)l2, (7b)

v̇y = vx(ψ̇ + β̇), (7c)

where m is the vehicle mass, J is the yaw-inertia and
α1 = δ − β − ψ̇l1/vx, α2 = β + ψ̇l2/vx. As an assumption
in the vehicle control problems, the lateral tire force Fy

is approximated in a linear form, such as Fy = Cα. The
representation of (7) is transformed into the parameter-
varying state-space model

ẋ = A(ρ)x+B(ρ1)u, (8)

where the state vector is x =
[
ψ̇ β vy y

]T
, the control

input is u = δ and ρ = µ is the selected scheduling variable
of the system. Moreover, A(ρ), B(ρ) are matrices of system
(8).

The goal of the control design is to guarantee the requested
motion of the vehicle with minimum steering control in-
tervention. Thus, the following performances are specified.

• Minimization of the lateral error The designed con-
trol must reduce the error between the lateral position
of the vehicle y and the reference path yref :

z1 = yref − y, |z1| → min. (9)

• Minimization of the yaw-rate error The improvement
of the path tracking requires the consideration of the
turning motion of the vehicle through the yaw-rate,
such as

z2 = ψ̇ref − ψ̇, |z2| → min, (10)

where ψ̇ref represents the reference yaw-rate of the
vehicle, which depends on the longitudinal velocity
Rajamani [2005].

• Minimization of the actuation The path tracking of
the vehicle must be guaranteed through minimum
steering intervention, which leads to the performance

z3 = δ, |z3| → min. (11)

The specified performances are compressed into a vector

z = [z1 z2 z3]
T
, which leads to the performance equation

z = C1x+D11r +D12u, (12)

where C1, D11, D12 are matrices and r contains the signals
yref and ψ̇ref .

The design of the LPV control requires the system dy-
namics in the state-space form (8) and the performance
equation (12). Moreover, it is necessary to scale the input
and output signals of the plant, as it is illustrated in Figure
2. In practice, the scaling of the signals during the design
process is performed through transfer functions Gáspár
et al. [2017]. The role of Wref,1,Wref,2 is to scale the

signals yref , ψ̇ref . Similarly, Ww,1,Ww,2 scale the noises
on the lateral position and on the yaw-rate measure-
ments. Noises wy and wψ̇ are incorporated in the vector

w =
[
r wy wψ̇

]T
. The priority among the performances is

guaranteed by Wref,i, i = {1, 2, 3}. The transfer functions
Wref,i, i = {1, 2} are selected in a second-order form to
reach the smooth tracking of the reference signals. How-
ever, in case of Wref,3 a first-order proportional transfer
function can be enough to guarantee the minimization of
δ.
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Fig. 2. Closed-loop interconnection structure

The quadratic LPV performance problem is to choose
the parameter-varying controller K(ρ) in such a way that
the resulting closed-loop system is quadratically stable
and the induced L2 norm from the disturbance and the
performances is less than the value γ. The minimization
task is the following:

inf
K(ρ)

sup
ρ∈Fρ

sup
‖w‖2 �=0,w∈L2

‖z‖2
‖w‖2

, (13)

where Fρ bounds the scheduling variables. The yielded
controller K(ρ) is formed as

ẋK = AK(ρ)xK +BK(ρ)yK , (14a)

u = CK(ρ)xK +DK(ρ)yK , (14b)

where xK is the state vector of the dynamic controller,
AK , BK , CK , DK are ρ dependent matrices.
yK is the vector of the lateral error and yaw-rate error
measurements, which is formed as

yK = C2x+D21r, (15)

where C2, D21 are matrices.

The existence of a controller that solves the quadratic LPV
γ-performance problem can be expressed as the feasibility
of a set of LMIs, which can be solved numerically. The
constraints set by the LMIs are not finite. The infiniteness
of the constraints is relieved by a finite, sufficiently fine
grid. To specify the grid of the performance weights for the
LPV design the scheduling variables are defined through
lookup-tables, see Wu et al. [1996], Szabó et al. [2011].

5. SIMULATION EXAMPLE

In the last section, a comprehensive simulation example is
presented to show the efficiency and the operation of the
proposed control system.

In the simulation, the vehicle is driven along a section of
the Waterford Hill track, which contains a sharp bend. The
adhesion coefficient (road surface) is set to the category
’dry’ from the beginning to the second bend. From the
second bend the road surface is set to the category ’icy’.
The simulation has been performed twice.

In the first case, the vehicle is driven by a nominal
controller without information about the road surface.
Whilst, in the second run, the car is controlled by the
proposed control algorithm. The paths of the vehicle are
illustrated in Figure 3. It can be seen that the vehicle,
which is controlled by the nominal controller, leaves the
road at the second bend, where the type of the road surface
changes. However, the car, which is driven by the proposed
algorithm, is able to follow the track despite the change in
the road surface.
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The design of the LPV control requires the system dy-
namics in the state-space form (8) and the performance
equation (12). Moreover, it is necessary to scale the input
and output signals of the plant, as it is illustrated in Figure
2. In practice, the scaling of the signals during the design
process is performed through transfer functions Gáspár
et al. [2017]. The role of Wref,1,Wref,2 is to scale the

signals yref , ψ̇ref . Similarly, Ww,1,Ww,2 scale the noises
on the lateral position and on the yaw-rate measure-
ments. Noises wy and wψ̇ are incorporated in the vector

w =
[
r wy wψ̇

]T
. The priority among the performances is

guaranteed by Wref,i, i = {1, 2, 3}. The transfer functions
Wref,i, i = {1, 2} are selected in a second-order form to
reach the smooth tracking of the reference signals. How-
ever, in case of Wref,3 a first-order proportional transfer
function can be enough to guarantee the minimization of
δ.
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The quadratic LPV performance problem is to choose
the parameter-varying controller K(ρ) in such a way that
the resulting closed-loop system is quadratically stable
and the induced L2 norm from the disturbance and the
performances is less than the value γ. The minimization
task is the following:

inf
K(ρ)

sup
ρ∈Fρ

sup
‖w‖2 �=0,w∈L2

‖z‖2
‖w‖2

, (13)

where Fρ bounds the scheduling variables. The yielded
controller K(ρ) is formed as

ẋK = AK(ρ)xK +BK(ρ)yK , (14a)

u = CK(ρ)xK +DK(ρ)yK , (14b)

where xK is the state vector of the dynamic controller,
AK , BK , CK , DK are ρ dependent matrices.
yK is the vector of the lateral error and yaw-rate error
measurements, which is formed as

yK = C2x+D21r, (15)

where C2, D21 are matrices.

The existence of a controller that solves the quadratic LPV
γ-performance problem can be expressed as the feasibility
of a set of LMIs, which can be solved numerically. The
constraints set by the LMIs are not finite. The infiniteness
of the constraints is relieved by a finite, sufficiently fine
grid. To specify the grid of the performance weights for the
LPV design the scheduling variables are defined through
lookup-tables, see Wu et al. [1996], Szabó et al. [2011].

5. SIMULATION EXAMPLE

In the last section, a comprehensive simulation example is
presented to show the efficiency and the operation of the
proposed control system.

In the simulation, the vehicle is driven along a section of
the Waterford Hill track, which contains a sharp bend. The
adhesion coefficient (road surface) is set to the category
’dry’ from the beginning to the second bend. From the
second bend the road surface is set to the category ’icy’.
The simulation has been performed twice.

In the first case, the vehicle is driven by a nominal
controller without information about the road surface.
Whilst, in the second run, the car is controlled by the
proposed control algorithm. The paths of the vehicle are
illustrated in Figure 3. It can be seen that the vehicle,
which is controlled by the nominal controller, leaves the
road at the second bend, where the type of the road surface
changes. However, the car, which is driven by the proposed
algorithm, is able to follow the track despite the change in
the road surface.
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The velocity of the car varies during the simulations, as
depicted in Figure 5(a). Furthermore, the result of the road
surface estimation can be found in Figure 5 (b). As the
figure shows, initially, the road surface is set to ’dry’ and
it changes after 25s. The algorithm frequently yields ’No
data’ category, which means that the µ is not close to its
peak value, therefore the estimation cannot be executed.
Figure 5 shows, when the vehicle reaches the low µ segment
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Fig. 4. Velocity profile and µ estimation

the value of µ is close to its peak value, and the estimation
algorithm provides ’icy’, which is a correct classification.
At that moment, the control system reconfigures itself and
adjust its parameters to the current road surface. It is the
reason, why the vehicle does not leave the road at the
second bend.

Finally in Figure 5, the calculated steering angle and the
yaw-rate tracking are illustrated. As the figure indicates
the tracking of the yaw-rate is accurate, the maximum of
the tracking delay is below 0.3s.

6. CONCLUSIONS

In this paper, a new big-data based road surface estimation
algorithm has been presented. The result of this algorithm
has been built-in the lateral control design as a scheduling
parameter. Moreover, a novel selection criterion has been
presented, which was able to separate the instances, in
which the adhesion coefficient was close to its peak value.
The comprehensive simulation study has been presented
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that the proposed control system has a high effectiveness
in the handling of the road surface variations.
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