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Abstract— This paper provides a data-driven model-based
solution for control problem of path following for autonomous
vehicles. The modeling of the system is based on the Linear
Parameter-Varying (LPV) framework, but the selections of the
scheduling variables and the LPV model parameters are based
on machine learning methods. The advantage of the method is
that the performances of the system can be guaranteed, while
the generated model is valid in an extended operation range.
The control design is based on the LPV method, in which the
novel vehicle model is incorporated. The effectiveness of the
method is illustrated through comparative simulation scenarios
in CarMaker simulation environment.

I. INTRODUCTION AND MOTIVATION

A challenge in the era of the self-driving vehicles is that
the vehicles must handle various situations autonomously.
At the top level of the automation the supervising role of
humans is not requested, which significantly differs from
the currently used driver assistance systems. The reliable
solutions on several tasks must be incorporated in the control
system, e.g. environment sensing, decision making or the
changing of the vehicle dynamics due to the vehicle-road-
environment interactions.

This paper focuses on the last task such as the adaption of
the vehicle control to changeable vehicle dynamic scenarios.
An appropriate adaptation requires the intervention of the
control system in wide range of the vehicle dynamics.
Nevertheless, the physical-based linear modeling and control
solutions of the driver assistant systems can be insufficient
for the autonomous actuation. Due to the linear approxima-
tion several important safety features cannot be considered in
the design. Moreover, the values of the physical parameters
can vary during the lifetime of the vehicle.

A solution of the problem is to consider the nonlinearities
in the vehicle dynamics through physical relationships, see
e.g. [1], [2], [3]. A drawback of the solution is that it
can be difficult to formulate and to involve the nonlinear
characteristics in the control design. Another approach is
to learn the dynamics of the vehicle through a machine
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learning algorithm, which produces e.g. a neural network
based controller [4], [5] and decision logic [6]. Although
machine learning methods can have promising results in the
vehicle control, these solutions do not provide theoretical
guarantees about the stability and performance issues of the
closed-loop system.

This paper provides a data-driven model-based solution
for the specific challenge of the vehicle path following. The
structure of the controller is based on the general framework
of the Linear Parameter-Varying (LPV) approach, but the
selection of the scheduling variables and the LPV model
parameters are based on machine learning methods. Using
this mixed method the performances can be guaranteed,
while the data-driven approach can provide the appropriate
intervention of the control system in the extended range of
vehicle dynamics.

There are some control design solutions, whose concepts
are close to the proposed idea of this paper. For example,
[7] presents a model predictive control solution, in which
the terminal cost and the terminal set of the control problem
are learned through iterations. In this idea the model of the
system is based on physical principles with its limitations.
Model-free control methods are presented e.g. in [8], [9]. The
advantage of these solutions is that preliminary information
about the model structure for the control is not necessary.
Although in the variables of the model-free solutions several
nonlinear features of the dynamics can be incorporated, they
can provide conservative control interventions.

In the proposed novel solution the structure of the physical
model is preserved, which makes the formulation of the
performance requirements easier. For the selection of the
scheduling variables a decision tree using a machine learning
algorithm has been generated based on big data. Moreover,
the computation of the model parameters is based on an
optimization algorithm.

The contribution of the method is a big data-driven mod-
eling process for LPV systems, whose result is applied in the
robust control design. The proposed method is independent
from the vehicle-oriented application and the properties of
the dynamics. But, in this paper the approach is presented
through the autonomous path following control of the lateral
vehicle dynamics. The result of the method is a controller,
which is able to handle the variation of the vehicle dynamic
scenarios in a wide range. The effectiveness of the method
in the extended range is illustrated through simulation in
CarMaker environment.
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Fig. 1. Methodological process for modeling, control design and evaluation

Structure of modeling and control process

In the rest of the section an overview about the modeling
and control design process is provided. The method involves
several subtasks, which are illustrated in Figure 1. The
modeling and control subtasks can be divided into four main
groups, such as: Prepocess of data, Model identification,
Control design, data acquisition and implementation using
the Simulation environment.

The layer ’Simulation environment’ contains the vehicle
dynamic simulation software. It has role in the data acquisi-
tion process for the machine learning algorithm, e.g. training
and test sets. Moreover, it is used for the evaluation of the
designed controller. In this paper the high-fidelity CarMaker
software is used for this purpose.

The role of the layer ’Preprocess of data’ is to produce
the training and test sets from the collected data. It scales
the data and it also orders them into various categories. The
results of the layer are training and test sets, which are ready
for the supervised learning process. The methods behind the
layer are presented in Subsections II-A and II-B.

The ’Model identification’ layer uses the provided labeled
sets to determine the scheduling variables of the system. It
requires the selection of the variables, which has significant
impact on the dynamics of the vehicle. Moreover, in this
layer the parameters of the LPV based vehicle model are
calculated. The solution of the identification is found in
Subsections II-C and II-D.

In the layer ’Control design’ the LPV controller based
on the resulted model is designed. The performances of the
controller is evaluated by using the ’Simulation environ-
ment’. The results of the simulation scenarios are presented
in Section IV.

II. DATA-DRIVEN MODELING PROCESS OF THE LPV
SYSTEMS

This section focuses on the modeling process of the lateral
vehicle dynamics in LPV form. The data collection, the
method of the preprocessing, the selection of the schedul-
ing variables through machine learning and the parameter
identification problems are detailed below.

A. Acquisition of data from simulations

The layer ’Simulation environment’ must provide numer-
ous simulations for the learning process. Since the learning
requires variation in high range of the vehicle operation,
several parameters of the vehicle and its environment have
been modified in order to cover a wide range of the dynamics
of the vehicle. For example, the longitudinal velocity varied
between 10− 20m/s and the car were driven on tracks with
different circuits. During the simulations all variables are
measured, which are considered to be available from an on-
broad system:

1) Longitudinal velocity (vx)
2) Angular velocity of the wheels

(ωx,y), x ∈ {front, rear}, y ∈ {left, right}
3) Steering angle (δ)
4) Yaw-rate (ψ̇)
5) Accelerations (ax, ay)
6) Side-slip angle (β). Since the measurement of β can

be difficult and expensive, this signal is only used for
building up the model. During the operation of the
control system it is not required.

The sampling time of the measurements has been set to
Ts = 0.01 sec. In this manner, more than 10 million distinct
instances have been collected.

B. Labeling the elements of the collected dataset

The learning of the vehicle dynamics requires the scaling
and the ordering of labels of the collected data. The goal of
the labeling is to provide categories, with which the charac-
teristics of the nonlinear vehicle motion can be distinguished
from each other. These results yield training and test sets,
which are ready for the supervised learning process.

The labeling of the vehicle dynamic signals is based on
their deviation from the signals of a nominal, physical model,
which is described by the physical model of the vehicle [10]:

Iψ̈ = C1α1l1 − C2α2l2 (1)

mvx(ψ̇ + β̇) = C1α1 + C2α2 (2)

where I denotes the yaw-inertia, C1, C2 represent cornering
stiffness, l1, l2 are the distances between the COG and the
axles, α1, α2 are the side-slip angles of the front and rear
wheels, which are calculated as α1 = δ−β− ψ̇l1

vx
and α2 =

−β + ψ̇l2
vx

. Moreover, ψ̇ is yaw rate, β is side-slip of the
vehicle and vx is the longitudinal velocity of the vehicle,
while δ denotes steering angle.

The computation of the nominal, physical model signals
require the state-space representation of the system ẋ =

Apx+Bpu, whose state vector is x =
[
ψ̇ β

]T
, the control

input is the steering angle u = δ and Ap, Bp are matrices of
the physical model. This representation is transformed to a
discrete representation through the sampling time Ts = 0.01,
which is the same as the sampling time of the measurements.
Using the measured input signal δ, the outputs of the discrete
system are computed for each measurement point.

The labeling of the collected data is based on the deviation
of the measured signals from the signals of the nominal
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system. In this process the yaw-rate and the side-slip angles
are involved, which are the independent states of the physical
system. The labeling is based on the relative errors of the
signals in time ti, such as

ψ̇e(ti) =
|ψ̇m(ti)− ψ̇n(ti)|

ψ̇n(ti)
(3a)

βe(ti) =
|βm(ti)− βn(ti)|

βn(ti)
(3b)

where ψ̇m and βm denote the measured outputs while ψ̇n
and βn are the outputs of the nominal system. In the method
categories have been predefined for the classification of the
instances, such as n equidistant sections between 0 and 1. It
is defined a function f, which associates the errors (3) with
the categories. A given instance in ti is labeled based on the
following value

cat(ti) = max

(
f
(
ψ̇e(ti)

)
, f
(
βe(ti)

))
, (4)

which means that the label cat(ti) is determined based on
the maximum of the errors.

C. Selection of the scheduling variables

The selection of the scheduling variables of the LPV
system is based on a decision tree algorithm. The role
of the decision tree is to determine the most influential
attributes using the previously labeled sets with cat. The
main advantage of the decision trees is that they are able to
provide reliable models even though the dataset has a highly
nonlinear structure. In this paper the C4.5 decision tree
algorithm is applied [11], [12]. The output of the decision
tree is the category of a given instance ξ, which is used as
scheduling parameter.

The method C4.5 requires two sets of data, which are
generated from the dataset S: a training set and a test set. The
training set is based on the collected data set, and it is used
for building the decision tree, while the test set is used for the
evaluation. The purpose of the C4.5 algorithm is to create
a set of rules (decision tree), by which the instances can
be correctly classified according to the selected dependent
(class) attribute. The created set of rules is ordered into a
tree structure. A decision tree consists of leaves, nodes and
branches. A node is associated with a condition (e.g. current
value of an attribute is smaller/bigger than a given value). A
branch is the outcome of a node (the condition is satisfied
or not) and leads to another node or to a leaf. Finally, a leaf
determines the class of the instance.

In the given data-driven vehicle modeling problem, the
leaves of the decision tree are associated with specific
categories cat. The resulted tree classifies the instances by
using only the measured actual attributes. The output of the
decision tree is ξ, which has the value cat for a specific leaf.

The parameter ξ is used as a scheduling variable of the
system. The values of ξ, which represent categories, can
be considered as a linear operating point of the nonlinear
system. Figure 2 illustrates an example of the results. It
can be seen that the location of the resulted categories

(represented by different colors) in the plot of the side-slip
and the lateral force on the wheel are well distinguished. The
shape of the function is close to the tire force characteristics,
see [10]. It means that the machine learning algorithm is able
to distinguish various sections, which are related to the levels
of the relative errors (3).

Fig. 2. Illustration of the calculated categories

D. Parameter selection of the LPV model

The identification of the LPV system requires the selection
of the parameters for each segments. For each segments a
linear system can be adjusted and they create a gridded LPV
system. The structure of the system is determined by the
number of the states, which is derived from the physical
model (1). In case of the lateral dynamics the data-driven
system model is formed as

ẋd = Ad(ξ)xd +Bdud(ξ), (5)

where

Ad(ξ) =

[
a11(ξ) a12(ξ)
a21(ξ) a22(ξ)

]
, Bd(ξ) =

[
b1(ξ)
b2(ξ)

]
,

and a11(ξ), a12(ξ), a21(ξ), a22(ξ) and b1(ξ), b2(ξ) are pa-
rameters and the state-vector of the system is xd = [ψ̇i βi],
the control input is ud = δ.

The lateral position of the vehicle y is computed by using
the states ψ̇ and β. The lateral acceleration v̇y is

v̇y = vx(ψ̇ + β̇) =

= vxψ̇ + vx(a21(ξ)ψ̇ + a22(ξ)β + b2(ξ)δ). (6)

The identified system description is augmented as:

ẋ = A(ρ)x+B(ρ)u (7)

and

A(ρ) =

 a11(ξ) a12(ξ) 0 0
a21(ξ) a22(ξ) 0 0

vx(1 + a21(ξ)) vxa22(ξ) 0 0
0 0 1 0

 , B(ρ) =

 b1(ξ)
b2(ξ)
vxb2(ξ)

0

 ,
where the state vector of the system is x =[
ψ̇ β vy y

]T
, the input is u = ud, moreover, the vector

of the scheduling variables is ρ =
[
ξ vx

]
.

The purpose of the identification is to find the parameters
a11(ξ), a12(ξ), a21(ξ), a22(ξ) and b1(ξ), b2(ξ), with which
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the results of the state calculation x are close to the measured
states xm. It leads to an optimization problem, which is
formed as:

min
a11(ξ),a12(ξ),a21(ξ),a22(ξ),b1(ξ),b2(ξ)

(
xm(ti)− x(ti)

)2
(8)

for all xm(ti) instances in all ti time step in the training
set. During the solution of (8) the systems can be computed
independently for fixed ξ values in the grids. Thus, the
parameter-dependent quadratic optimization problem leads
to a least-squares problem [13], [14]. The result of the
optimization is a set of polytopic systems, which represents
the LPV description of the vehicle model.

III. PATH FOLLOWING LPV CONTROL DESIGN USING THE
DATA-DRIVEN MODEL

In this section a path following control design method is
presented by using the identified data-driven vehicle model.
The control system is responsible for guaranteeing the trajec-
tory tracking of the vehicle and minimizing the interventions.

The purpose of the control design are described by the
following performances.

• Minimization of the lateral error: In order to reach
good path following property, the control system has
to minimize the lateral error between the road yref and
the lateral position of the vehicle y:

z1 = yref − y, |z1| → min, (9)

where yref is determined by the selected route of the
vehicle.

• Minimization of the yaw-rate error: Beside the lateral
error, the controller has to reduce the error between the
reference ψ̇ref and the measured yaw-rate ψ̇ in order
to reach accurate and smooth tracking:

z2 = ψ̇ref − ψ̇, |z2| → min, (10)

where ψ̇ref is determined by the curvature of the route
and the velocity of the vehicle, see [10].

• Minimization of the steering angle: The control system
has to minimize its interventions to reduce the energy
consumption:

z3 = δ, |z3| → min. (11)

The performances are summarized in the following vector
z =

[
z1 z2 z3

]T
, which can be expressed in a perfor-

mance equation

z = C1x+D11r +D12u, (12)

where C1, D11, D12 are matrices and r contains the signal
yref .

The model used for the control design is based on the
data-driven model (7), the performance equation (12) and
the measurement equation:

ẋ = Ax+Bu, (13a)
z = C1x+D11r +D12u, (13b)

yK = C2x, (13c)

where (13c) represents the measurement of yK =
[
y ψ̇

]
.

In the LPV control design, the extended state-space model
(13) is employed. Moreover, during the control design several
weighting functions are used to scale the measured signals
and to reach the specified performance level. The augmented
plant with the weighting functions are illustrated in Figure 3.
The roles of the weighting functions Wref,1 and Wref,2 are
to scale the reference signals yref and ψ̇ref . Functions Wz,1

and Wz,2 guarantee the accurate tracking performance of the
vehicle, while Wz,3 scales the control intervention. Finally,
the roles of the weighting functions Ww,1, Ww,2 and Ww,3

are to scale the noises of the measured signals.
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Fig. 3. Structure of LPV controller

The quadratic LPV performance problem is to choose the
parameter-varying controller K(ρ) in such a way that the
resulting closed-loop system is quadratically stable and the
induced L2 norm from disturbance and to performances is
less than the value γ. The minimization task is the following:

inf
K(ρ)

sup
ρ∈Fρ

sup
‖w‖2 6=0,w∈L2

‖z‖2
‖w‖2

, (14)

where Fρ bounds the scheduling variables. The yielded
controller K(ρ) is formed as

ẋK = AK(ρ)xK +BK(ρ)yK , (15a)
u = CK(ρ)xK +DK(ρ)yK , (15b)

where AK(ρ), BK(ρ), CK(ρ), DK(ρ) are variable-
dependent matrices.

IV. SIMULATION RESULTS

In this section a simulation example is presented to show
the operation and the effectiveness of the proposed control
system. The example presents the results of the decision tree
generation, the selection of the weighting functions in the
control design and the evaluation of the designed controller
through a comparative vehicle dynamic scenario.

In the generation of the decision tree the number of the
categories of the error is set to n = 6, which means that
the values of the error function are divided into 6 groups.
Using these groups, several decisions have been created and
their results are summarized in Table I. The first column
of Table I shows the signals, which are used by the given
decision tree. The second column represents the number of
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the minimal objects, which influences the size of the tree.
Third column gives the percentage of the correctly classified
instances. As a contribution, the best result is produced by the
largest tree, which consists of almost 70 elements. However,
due to the increased size it is not recommended to use in
practice. Therefore in the fourth case, the tree uses only two
signals (δ, ψ̇) and it also leads to an appropriate classification
capability with more than 94%. In the rest of the example
the setting of the fourth tree is selected.

TABLE I
RELATIONSHIP BETWEEN THE TREE SIZE AND ITS CORRECTNESS

Signals Min. obj. Corr. Class. Inst. Size

δ, ψ̇, ax, ωfl, ωrr 500 98.1% 69
δ, ψ̇, ax, ωfl, ωrr 1000 97.5% 41
δ, ψ̇, ax, ωfl, ωrr 2000 96.7% 33
δ, ψ̇ 5000 94.5% 17
δ, ψ̇ 10000 93.7% 11

Table II illustrates the corresponding confusion matrix,
which represents the percentages of the classification for
all scenarios. The first row represents the output of the
decision tree, while the last column shows the correct class
of the instances. It is shown that the misclassification is rare.
Moreover, the misclassified instances are usually only 1 class
away from the correct class. The designed decision tree has
a appropriate classification performance and it can be used
effectively in selection of the scheduling variables.

TABLE II
CONFUSION MATRIX

ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5 ξ = 6
47.4 0.67 0 0 0 0 cat = 1
2 30.3 1.1 0 0 0 cat = 2
0 0.38 18.2 0.1 0 0 cat = 3
0 0 0.24 1.8 0 0 cat = 4
0 0 0 0.24 0.7 0 cat = 5
0 0 0.23 0 0 0.7 cat = 6

The design of the LPV controller requires the selection
of the weighting functions, in which the disturbances and
the reference signals are scaled and the performances are
specified. In the given lateral vehicle control problem the
weighting functions on the reference signals are selected as

Wref,1 =
0.1

100s+ 1
,Wref,2 =

0.01

100s+ 1
. (16)

Furthermore, the role of functions Wz,1 and Wz,2 are to
guarantee the accurate trajectory tracking of the vehicle:

Wz,1 = 10
1− n

10

s2 + 2s+ 1
,Wz,2 =

1

s+ 1
. (17)

Weighting function Wz,3 scales the control intervention and
it provides a balance between minimization in the control
energy:

Wz,3 = 0.01
1s+ 1

2s+ 1
. (18)

The further three functions scales the noises on the measured
signals, such as Ww,1 = 0.002, Ww,2 = 0.001, Ww,3 =
0.05.

In the following, a comparative simulation example is
presented, in which the vehicle with different controllers and
varying velocity is driven along a sharp bend with asphalt
pavement. Firstly, the vehicle is controlled by a nominal LPV
controller, which is designed based on the physical model of
the vehicle without ξ. In the second case the vehicle is driven
by the proposed control system. Figure 4 shows the path of
the vehicle in both cases and Figure 5 presents the variation
of the velocity. It can be seen in Figure 4, when the vehicle is
controlled by the nominal controller, it leaves the track at the
beginning of the bend. However, when the car is driven by
the proposed control algorithm, the vehicle is able to follow
the track with a low lateral error.
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Fig. 4. Positions of the vehicles during the simulations

The performance of the yaw-rate tracking is illustrated
in Figure 6. As it shows, the proposed control system can
guarantee the yaw-rate tracking for varying velocities. The
delay of the tracking is below a low value 0.2sec.

The scheduling parameter ξ is calculated by using the
selected decision tree. Based on the analysis in Table I, the
chosen decision tree uses two signals: the steering angle
and the yaw rate. Figure 7 illustrates the variation of ξ
together with ψ̇ and δ. The scheduling parameter covers three
categories [0; 1; 2], which are associated with the specific
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identified models. The decision tree yields the category 2
when the steering angle and the yaw-rate signals reach their
peak values. By selecting the appropriate category, the stable
motion and tracking performance of the vehicle can be
guaranteed.

Finally, the resulting steering angle is illustrated separately
in the Figure 8. As it shows, the values of the steering angle is
between (−9, 2deg), which is a physically reasonable range
for the steering signal.

V. CONCLUSIONS

The simulation results has illustrated the operation of the
proposed LPV control. The advantage of this solution is that
the performances of the system can be guaranteed, while
the generated model is valid in an extended operation range.
Through the collected big data scheduling variables of the
system are selected, which represent the current nonlinear
characteristics of the vehicle dynamics. The comparative
example presented that the proposed data-driven modeling
and control design method can be an alternative solution of
the physical-based approaches.
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