
Highly complex automated vehicle and
transportation technologies are evolving
as a means of addressing the problems
of traffic congestion, energy consump-
tion and emissions. The increasing com-
plexity of control and decision tasks has
resulted in the combined application of
various control systems, e.g. model-
based robust and optimal control, non-
linear control and machine learning-
based solutions. One of the most impor-
tant fields is related to the control of
automated and autonomous vehicles, in
which several driving features must be
automated to reduce the role of human
intervention, e.g. sensing the environ-
ment, making decisions, trajectory
design, control and intervention with
smart actuators [1].

The increasing complexity of the control
systems poses the challenge of applying
control methods that will guarantee per-
formance specifications. Road stability,
manoeuvrability and safety are primary
performance requirements in safety-crit-
ical systems, which must always be
guaranteed by the control during the
operation of the system. Other variables,
including comfort, energy consumption

and emissions reduction are considered
“secondary performances”, which must
be considered by the control system, but
may be violated in critical situations,
e.g., if a vehicle collision or pedestrian
accident is predicted. 

The complexity of the control requires
novel analysis, synthesis and validation
methods that can guarantee the primary
performances and possibly the sec-
ondary performances as well. Model-
based control design methods have
advantages in terms of theoretical guar-
antees for the performances, but the
high complexity of the control-oriented
model and the large number of perform-
ance specifications in the control design
must be limited for numerical reasons in
the mathematical computation of the
control and the practical implementa-
tion possibilities. However, in the case
of learning-based techniques the control
system may have high complexity, e.g.,
convolutional neural networks, and
there are effective methods for the
learning solutions. Although the dif-
ferent types of enhanced learning con-
trol methods can solve various control
tasks effectively, their achieved per-

formance level is not theoretically guar-
anteed. The quantity and quality of the
learning samples can be selected at any
size, but this does not guarantee the
avoidance of performance degradation
in an emergency scenario or robustness
against faults and disturbances. The val-
idation of learning-based automated
vehicle control systems poses similar
challenges. There exist conventional
test scenarios for the validation of the
model-based controllers in driver assis-
tance systems, but the evaluation of
control systems in automated vehicles
may require huge number of scenarios.
The problem is to find a theoretically
emphasized process for the limitation
on the test scenarios, with which the
guarantees on performance require-
ments can be evaluated.

Although learning control can provide
partial theoretical results, a general sys-
tematic solution does not exist. We aim
to provide a design framework based on
the robust Linear ParameterVarying
(LPV) analysis and synthesis, in addi-
tion to learning methods, to guarantee
performances [2].

Design framework to achieve
guaranteed performances
In the structure of the control system a
learning control and a robust LPV con-
trol operate together under the moni-
toring of a supervisor, see Figure 1. The
learning control is designed to consider
the specifications on primary and sec-
ondary performances through its agents.
It uses various information sources as
measured signals in yL. The robust LPV
control guarantees the primary perform-
ances, while several secondary per-
formances might not be considered in
its design. It uses only onboard signals
of the automated vehicle, yK. Its
scheduling variable ρL comes from the
supervisor, which applies both con-
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Figure�1:�Scheme�of�the�design�framework�with�the�control�components�and�the�supervisor.



trollers and monitors both to vehicle
motions and the traffic environment. In
general, especially under normal travel-
ling conditions, the supervisor uses a
control signal which is calculated by
machine learning control. However,
dangerous situations may occur in
which guaranteeing primary perform-
ances is essential. In these cases, the
supervisor uses the control signal of the
robust controller, overriding the current
control signal.

The role of the supervisor is to monitor
the signals of the control elements and
to make a decision about the interven-
tion. The rule of differentiation between
nominal and critical scenarios is repre-
sented by an optimization process in the
supervisor, which is based on its input
signals uL and uK as follows. The
control signal u is formed as
u=ρLuK+ΔL, where ρL elements of ϱL

and ΔL elements of ΛL are ρL, ΔL are
scalar values and ϱL, ΛL represent their
domains. Since ϱL, ΛL are considered in
the design of the robust LPV controller
as scheduling variable and known
uncertainty, u in the environment of uK

guarantees the minimum level of the
primary performances. Thus, if uL is
inside of the environment of uK, u=uL is
selected. But, if uL is outside of the
environment of uK, then u≠uL and u is
computed through the saturation of uL.
Thus, the control signal achieves at least
the minimum performance level on the
primary performances in both cases
and, moreover, the secondary perform-
ances can also generally be achieved. 

The rationale behind the application of
the robust LPV formalism is that this
method is well elaborated and is used to
address various industrial problems [2].
The advantage of the proposed solution

is that it is independent of the internal
structure of the learning control
methods, i.e., it can be used for deep
learning, reinforcement learning and
other methods. Another advantage is
that the negative impacts of the degra-
dation in the external information
sources (e.g. loss of internet communi-
cation) on the performances can be
avoided, since yK contains only onboard
measurements. 

Applications within automated
vehicle control systems
The proposed method has been applied
at various levels of automated vehicle
control tasks in simulation environ-
ments. On the level of local control, the
method is applied to the design of
steering control. Deep-learning-based
end-to-end learning solutions have high
impact on automated driving, which
uses visual signals for the actuation of
the steering system. In practice, the
learning can be performed through rein-
forcement learning or machine learning
through the samples of a vehicle driven
by an expert driver. As a result, steering
control can provide an acceptable path
following functionality and traveling
comfort, but unfortunately, the perform-
ances are not guaranteed theoretically.
The robust LPV control can be designed
based on a simplified physical vehicle
model, in which the path following can
be theoretically guaranteed. 

On the level of vehicle functionalities,
the proposed framework has been
applied to cruise control design. Several
performances must be involved in the
control design, e.g. travelling time,
speed limits, vehicle tracking, energy
consumption. The control solution can
be achieved with complex nonlinear
optimization algorithms, but its imple-

mentation has numerical limitations.
The motivation of learning control is to
reduce online computation through
neural networks which are trained
through supervised learning methods on
the offline solutions of the optimization
problem. Since keeping speed limits
and distances from the surrounding
vehicles are safety performances, they
can be guaranteed by the robust LPV
control, which is designed based on a
simplified vehicle model.

On the level of multi-vehicle interac-
tions, the method has been applied to
the solution of overtaking tasks of auto-
mated vehicles. The role of the over-
taking strategy is to find a trajectory for
the automated vehicle with which safe
motion can be guaranteed. It requires
information about the objects in the
vehicle’s environment, from which the
classification of the objects and their
motion prediction can be performed.
The learning process has been per-
formed through various multi-vehicle
scenarios, whose results are a route and
a speed profile. Despite the large
training set, there may be multi-vehicle
scenarios which result in inappropriate
vehicle motion. Figure 2 illustrates an
example in which an automated vehicle
overtakes a slower vehicle [3]. The
highlighted scenarios are related to the
same time. The control strategy with
guaranteed performance ensures a safe
completion of the overtaking
manoeuvre, even if the machine
learning control provides unacceptable
vehicle motion.
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Figure�2:�Illustration�of�the�overtaking�maneuvre�in�connection�with�the�guaranteed

performance.


