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Abstract

A pivotal question in Automatic Speech Recognition (ASR) is
the robustness of the trained models. In this study, we inves-
tigate the combination of two methods commonly applied to
increase the robustness of ASR systems. On the one hand, in-
spired by auditory experiments and signal processing consider-
ations, multi-band band processing has been used for decades
to improve the noise robustness of speech recognition. On the
other hand, dropout is a commonly used regularization tech-
nique to prevent overfitting by keeping the model from becom-
ing over-reliant on a small set of neurons. We hypothesize that
the careful combination of the two approaches would lead to
increased robustness, by preventing the resulting model to over-
rely on any given band.

To verify our hypothesis, we investigate various approaches
for the combination of the two methods using the Aurora-4 cor-
pus. The results obtained corroborate our initial assumption,
and show that the proper combination of the two techniques
leads to increased robustness, and to significantly lower word
error rates (WERs). Furthermore, we find that the accuracy
scores attained here compare favourably to those reported re-
cently on the clean training scenario of the Aurora-4 corpus.
Index Terms: multi-band processing, band-dropout, robust
speech recognition, Aurora-4

1. Introduction

Owing to the advent of deep learning, the gap between hu-
man performance and machine performance in speech recog-
nition is closing rapidly [1], to the extent where we are on
the precipice of human parity in specific cases of conversa-
tional speech recognition [2, 3], as well as in medical dicta-
tion [4]. The gap, however still persists in many cases, particu-
larly in adverse environments, such as dysarthric speech [5] or
the presence of noise [6, 7]. This prevailing disparity has lead
researchers to urge a closer collaboration between the field of
ASR and Human Speech Recognition (HSR) [8, 9, 10, 11, 12].

Two prominent examples of ASR taking inspiration from
human speech perception are that of spectro-temporal process-
ing [13], and multi-band processing (reported first by Duch-
nowski [14]). In this study, we combine these methods with
that of channel dropout (inspired by the dropout method intro-
duced by Hinton et al. [15]) which drops out entire frequency
bands in the training phase, so as to prevent the resulting model
to overly rely on any given band. We do so applying various
policies to select the bands for dropout.
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Figure 1: Schematic diagram of multi-band processing

1.1. Multi-band speech recognition

Motivated by psycho-acoustic evidence [16], signal processing
considerations [17], and the potential for parallelization, in the
multi-band processing paradigm (see Figure 1) the input speech
signal is first decomposed into spectral bands, then these bands
are processed independently before the information from dif-
ferent bands is merged in order to produce the aimed recog-
nition result. There are thus three key issues to be addressed
in this paradigm, namely the approach used for separating the
speech signal into bands, the method of band processing, and
lastly, the mechanism used for combining the information ex-
tracted from the different bands [18]. In this study, we follow
the pipeline described in Kovacs et al. [19]. Thus we create
ten overlapping bands by applying a set of Gabor filters on the
mel-scale spectrogram, and then process the resulting features
using a Time-Delay Neural Network (TDNN) with a bottleneck
consisting of 20 neurons. Lastly, to combine the information re-
sulting from the different bands, we trained an additional Deep
Rectifier Neural Network (DRNN) using the output from the
bottleneck layers as its input.

1.2. Channel dropout

An additional motivation factor for the multi-band paradigm
was that of robustness. This was based on the assumption
that certain noises that are limited to particular frequency bands
would leave unaffected the band processing methods that oper-
ate on the other bands. However, when using ANNSs as a method
of combination, there is a risk that during the process of training
the network would learn to overly rely on information originat-
ing from particular bands. This means that if a noise heavily
affects any of those bands, the final recognition result will also
be heavily affected. In an attempt to minimize this risk, we ap-
plied channel dropout [20] on the merger network that dropped
out entire frequency bands (i.e. all features resulting from the
bottleneck layer of the selected band processing networks).



1.3. Related work

One can find many precursors of our work in the speech recog-
nition literature. For one, the present study is a deeper ex-
ploration of ideas presented in the earlier works of the au-
thors [19, 20]. The work reported here is also clearly related
to the full combination method of multi-band processing [21]
where a neural network is trained on each combination of bands.
In our case, however, it is not necessary to explicitly train 2~
(where N is the number of bands used) different networks, as
dropout can be also regarded as an ensemble technique [22].
And given that the multi-band approach is a special case of
multi-stream processing, the present study is also closely related
to the multi-stream framework of Mallidi et al. [23], which is
dropping certain streams whilst training the network for band
combination. But similarly to the full-combination method,
Mallidi et al. trains a large set of deep networks instead of one.
Furthermore, although the dropped streams are replaced by ze-
ros in both our work and that of Mallidi et al., the motivation
behind this is different (in our case the motivation is the same
as it is in dropout [15], in [23] this serves as a way to prepare the
merger network for zeros in its input). Lastly, the approach pre-
sented here does not rely on explicit performance-monitoring,
which means that our solution is simpler to implement, and can
evaluate sound files faster than that of Mallidi et al.

2. Methods

In this section we discuss the key methods applied in the present
study. First, we briefly describe the approach used to extract the
band specific features that constitute the input of the merger
network. This is followed by a short discussion of the merger
network itself. It should be noted that these discussions are kept
intentionally short, as detailed description of these methods are
available in the earlier publications of the authors (see [18, 19])
Lastly, we finish the section by a detailed description of the band
selection methods applied for choosing the bands to be dropped.

2.1. Processing of individual bands
Here, each individual band was processed in three main stages:

1. Time-frequency processing: we calculated 45-channel log
mel-scaled spectrogram using the HTK Toolkit [24], with
160 sample hops, using 400 samples, and applying a 1024-
point FFT on the frames.

2. Band formation: to acquire the input spectro-temporal fea-
tures for the band processing DNNs, we applied our set of 9
Gabor filters on the input spectrograms. We did so on ten po-
sitions of the frequency band, with an overlap of 55%. Then
we calculated the delta and acceleration coefficients for each
feature, and separated the resulting feature vectors into ten
equal partitions based on the origin of the features.

3. Bottleneck feature extraction: features for the merger net-
works are extracted created from the spectro-temporal fea-
tures using TDNs of a specific structure using a 17-frame
context with a sub-sampling of 3 frames. Here, the input
was first processed by a smaller (200 neurons) layer at 5 po-
sitions (using the same weights), which was followed by two
fully connected hidden layers applying the rectifier nonlin-
earity (each with a 1000 neurons), the second such layer was
connected to a linear bottleneck layer (20 neurons), which in
turn was connected to the softmax output layer (1997 neu-
rons).

2.2. Band combination

The merger network was a DRNN with four hidden layers (each
containing a 1000 neurons), and an output layer of 1997 soft-
max neurons. The first hidden layer was comprised of ten sub-
layers, each taking its input from one band. During the process
of training channel dropout was applied on the input of these
sub-layers. It should be noted that for the purposes of these
experiments, the merger network originally using our in-house
neural network implementation was reimplemented in Tensor-
flow [25]. In this implementation we also used L2 regulariza-
tion (with a scale of A = 0.01), and training was carried out
using the built-in gradient descent optimizer.

2.3. Band selection for dropout

Band dropout had two important parameters, namely the num-
ber of bands than can maximally be dropped out (B = 6), and
the probability of dropout activated (P = 0.6). In each batch,
we first generated a random probability between 0 and 1, and if
this probability was below the P threshold, we generated a sec-
ond random number between 1 and B, and selected the given
number of bands to be dropped based on the following policies:

1. Random: each band was chosen with the same probability

2. Weighted: we trained a merging network with an added layer
of 10 weights between the first and second hidden layer, and
multiplied the output of each sublayer with the correspond-
ing weight. We used the weights at the end of training as
probabilities for band selection

3. Leave-1-out: we calculated the probability of a band being
dropped based on its impact on the model to attain low error
rates. This impact was calculated differently in the three
different versions of the policy

(a) We calculated the average increase in error rate in the
validation set for each band left out on the models that
were trained with no dropout, then divided the results
by the sum of the average error increases, so as to get
numbers between zero and one that add up to one.

(b) We started to train a model with random dropout, and
after each epoch we calculated the probabilities as in
the previous version, on the validation set.

(c) We started to train a model with random dropout, and
after each epoch we calculated the probabilities as de-
scribed in the previous version. However, in this case
we did this based on the train set. The justification for
this approach was that dropout here was applied in or-
der to prevent the model from overfitting on the train
set. To achieve this, we were aiming to drop out those
bands with the highest probability that the model relied
on the most following the last epoch.

3. Experimental data

The proposed methods were evaluated on the Aurora-4 cor-
pus [26]. This read speech corpus has two sets for training (both
containing 7138 utterances), one consisting of clean speech
recorded with a Sennheiser close-talking microphone, and the
other consisting of both clean and noise contaminated speech,
recorded with the Sennheiser microphone as well as other, sec-
ondary microphones. In this study we use exclusively the clean
training set, as our initiative was test the noise robustness of our
models in the scenario where we do not have any knowledge
about the type of noise it would encounter.



Aurora-4 also contains a test-set of 330 utterances, designed
to evaluate The trained models. These utterances were recorded
in 14 different conditions. For one, they were recorded with the
use of the Sennheiser close-talking microphone (Set A) with no
additive noise. Six additional sets were created with the same
microphone, but in each case having a different real-life addi-
tive noise mixed with the speech signal (these, altogether 1980
utterances are referred to as Set B). The same process was re-
peated using a set of secondary microphones, resulting in 330
utterances of clean speech (Set C), and 1980 utterances of noise
contaminated speech (Set D).

To produce Word Error Rates (WERs) on the Aurora-4 cor-
pus, we first used the recipe provided by Kaldi [27] to train
a HMM/GMM model. This model was then applied to cre-
ate a forced alignment, resulting in 1997 frame-level context-
dependent state labels, that we used as targets for neural net-
work training. Each neural network was trained on a randomly
selected ninety percent of the clean training set, using the frame-
level cross-entropy error function. The remaining ten percent
of the training set (hereinafter referred to as validation set) was
held out for development purposes, and was used for early stop-
ping during training. Scoring and decoding was again done with
the Kaldi toolkit, the standard tri-gram language model, and the
5k word vocabulary provided with the corpus.

4. Experiments and results

Our experiments on Aurora-4 with the various policies for band
selection methods were carried out in two stages. In the first
stage we examined the frame-level error rates produced by each
model when all bands were available, and when one band was
corrupted or missing (e.g. its outputs were replaced by zeros, to
emulate the scenario where one band is critically corrupted by
noise, or where the bands are processed using different servers,
and on is severely delayed or was shut down). Then, in the
second stage we evaluated our models on the test set based on
the WER scores they produced. Lastly, we compared our results
to those reported in the literature.

4.1. Experiments on the validation set

The frame-level results on the validation set are listed in Ta-
ble 1. As can be seen in Table 1, there results are very similar.
In fact the only significant difference (at p < 0.05) is between
the error rates got with random dropout, and those got with con-
stant leave-1-out dropout (that is policy (a)). Furthermore, when
compared to the error rates got with no dropout, we find that
most dropout methods do not increase the error rates, while one
method even slightly decreases it. We can also see that the first
two leave-one-out policies slightly increased the error rate, but
the difference is too small for further deductions.

Table 1: Frame-level error rates on the validation set of Aurora-
4. Reported results are the average of five neural net training.

Dropout selection  Error rate

- 27.5%
Random 27.3%
Weighted 27.5%
Leave-1-out (a) 27.7%
Leave-1-out (b) 27.6%
Leave-1-out (c) 27.5%
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Figure 2: Comparison of the increase in error rates due to miss-
ing bands, in the case of random dropout (solid line) no dropout
(dashed line).

Here, we also compare the relative increase of error rates in
the case where a band is corrupted. We calculate this increase
by first taking the difference between the error rate we got when
using all bands, and between the error rate we got when elim-
inating one band. Then we divide this result by the error rate
got when using all bands. Figure 2 compares the change in er-
ror rates when the model is trained with no dropout, and when
model is trained with random dropout. As can be seen, our ini-
tial prediction — that the band dropout would largely decrease
the over-reliance of the model on certain bands — was justified.

Next, we compare the results we got with the random
dropout policy with those we got with the weighted policy
(where a probability vector for the dropout was created based
on the weights of a fully trained model, that had been trained
without dropout' - see Figure 3). As can be seen in Figure 3,
the difference between the two curves is minimal. In some cases
the performance of one model drops more, and in other cases
the opposite is true.

'Here, the (constant) probabilities rounded were as follows:
[0.14,0.13,0.08,0.08,0.12,0.11,0.09, 0.08,0.07,0.10]
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Figure 3: Comparison of the increase in error rates due to
missing bands, in the case of random dropout (solid line) and
weighted dropout (dashed line).
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Figure 4: Comparison of the increase in error rates due to miss-
ing bands, in the case of random dropout (solid line) and the
various leave-1-out strategies ((a) - dashed line, (b) - dotted
line, (c) - dotted and dashed line).

Lastly, we make the same comparison with random dropout
and leave-1-out dropout (see Figure 4). The results are again
mixed. What we can see, however is that policy (a) stands out
in the sense that the improvement on the first band is the most
pronounced here, but unfortunately it comes at a cost at almost
every other band. Policies (b) and (c) are on the other hand
very similar. To better interpret the data, we calculated the me-
dian and the mean band error rate increase for both. We found
that policy (c) performed slightly better both in terms of median
(2.01 < 2.1) and in terms of mean (2.45 < 2.51). But again
the difference was not significant. Because of this, we decided
to carry out the word recognition experiments using all three
variations of the leave-1-out policy.

4.2. Experiments on the test set

Lastly, we evaluated our select models on the test set of Aurora-
4. The results of these experiments are summarized in Table 2.
We can see in Table 2 a significant divide (accentuated by the
horizontal line) between those error scores we got without the
use of dropout, and those error scores we got with the use of
dropout. What is more is that the difference is significant in all
cases (p < 0.00007). However, between the results got with
models that had been trained using different dropout selection
methods, there is very little difference. Considering our initial
results (particularly the similar effect of missing bands on the
models trained using various dropout policies) this is not highly
unexpected.

Table 2: WERs on the test set of Aurora-4. Results reported are
the average of 5 independently trained neural networks.

Word Error Rates (WERs)
Set A Set B Set C Set D Total

- 31% 179% 26.6% 402% 27.1%

Dropout selection

Random 32% 16.0% 234% 362% 24.3%
Weighted 32% 159% 244% 36.4% 24.4%
Leave-1-out (a) 31% 16.0% 24.6% 36.4% 24.4%
Leave-1-out (b) 31% 159% 24.1% 362% 24.3%
Leave-1-out (c) 32% 16.0% 24.1% 363% 24.3%

Table 3: Comparison of our best result with some recent results
given in the literature for the Aurora-4 corpus, using the clean
training scenario.

Method WERs

DNN with
examples-based enhancement [28] 26.8%
CNN with channel dropout[20] 26.8%
CNN with data augmentation [29]  25.6%

GMM with
auditory spectral enhancement [30] 25.5%
TDNN with Gabor filters,
multi-band processing 25.0%
and channel dropout[19]
Current paper 24.3%

4.3. Comparison to relevant results in the literature

Finally, we created a table (see Table 3) that lists the results
we found in the recent literature for the same task (i.e. evalu-
ation of automatic speech recognition models on the Aurora-
4 test set that had been trained using the clean training sce-
nario of the same corpus). As we see in Table 3 while channel
dropout (and its data augmentation variant) are already competi-
tive, further improvement can be attained when channel dropout
is combined with multi-band processing. It should be noted here
that the Tensorflow implementation lead to an approximately
3% relative error rate reduction compared to the scores we got
earlier using our in-house neural network implementation [19].
This may seem surprising at first, but given that the two methods
used a different regularization scheme (as the one we had used
earlier was not available in Tensorflow), with different scaling
factors (we did not perform exhaustive experiments on the opti-
mization of meta-parameters, such as learn-rate, regularization
scale, and optimizer used) it is not so unexpected.

5. Conclusions and future work

Here, we investigated various policies to select bands to be
dropped out in the process of training in a multi-band speech
recognition framework. Our results confirmed that the deploy-
ment of earlier introduced channel dropout method [20] in a
multi-band environment renders the resulting model more ro-
bust against errors in individual frequency bands. The word
recognition results then confirmed that this robustness leads to
an improved noise robustness on the Aurora-4 corpus. Further-
more, we have found that the random selection of bands is al-
ready quite competitive.

However, there are still space for improvement in the multi-
band framework discussed here. For one, the parameters ap-
plied during dropout were also not optimized, but were used on
an as-is basis from an earlier study [19]. We also believe that it
would be beneficial to investigate whether it is possible to train
adversarial networks in a way that for a given speech input its
output would be the band numbers that are the most important
for recognition given a merger network.
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