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Abstract
In this note we introduce the problem of illumination of convex bodies in spherical
spaces and solve it for a large subfamily of convex bodies. We derive from it a combi-
natorial version of the classical illumination problem for convex bodies in Euclidean
spaces as well as a solution to that for a large subfamily of convex bodies, which in
dimension three leads to special Koebe polyhedra.
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Mathematics Subject Classification 52A20 · 52A55

1 Introduction

Let Ed denote the d-dimensional Euclidean space with the unit sphere Sd−1 = {x ∈
E
d | 〈x, x〉 = 1} centered at the origin o, where 〈·〉 stands for the standard inner product

of Ed . We identify S
d−1 with the (d − 1)-dimensional spherical space. A compact
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484 K. Bezdek, Z. Lángi

convex set (resp., a compact spherically convex set) with nonempty interior is called
a convex body in Ed (resp., Sd−1). (Here, we call a subset of Sd−1 spherically convex
if it is contained in an open hemisphere of Sd−1 moreover, for any two points of the
set the spherical segment, i.e., the shorter unit circle arc connecting them belongs
to the set.) Now, recall the following concept of illumination due to Boltyanski [4].
(For an equivalent notion of illumination using point sources instead of directions see
Hadwiger [8].) Let K be a convex body in E

d , let p ∈ bdK, i.e., let p be a boundary
point of K, and let v ∈ S

d−1 be a direction. We say that p is illuminated from the
direction v, if the half-line with endpoint p and direction v intersects the interior of
the convex body K. We say that the directions v1, v2, . . . , vm ∈ S

d−1 illuminate K,
if every boundary point is illuminated from some vi for 1 ≤ i ≤ m. The smallest
number of directions that illuminate K is called the illumination number of K, and
is denoted by I (K). It is easy to see that I (K) ≥ d + 1 for any convex body K
in E

d . On the other hand, since no two distinct vertices of an affine d-cube can be
illuminated from the same direction, it follows that I (K) = 2d holds for any affine
d-cube K. The following Illumination Conjecture [4,8] of Hadwiger and Boltyanski
is a longstanding open problem in discrete geometry solved only in the plane. For a
recent comprehensive survey on the numerous partial results on this conjecture see
[3] (which surveys also the relevant results on the equivalent Covering Conjecture
[6,7,10] as well as Separation Conjecture [1,2,12]).

Conjecture 1 (Illumination Conjecture) The illumination number I (K) of any d-
dimensional convex body K, d ≥ 3, is at most 2d and I (K) = 2d only if K is an
affine d-cube.

In this paper, we introduce the following notion of illumination (resp., illumination
number) for convex bodies in spherical space.

Definition 1 LetK ⊂ S
d be a convex body, and let p ∈ S

d\K. We say that a boundary
point q ∈ bdK is illuminated from p if it is not antipodal to p, the spherical segment
with endpoints p and q does not intersect the interior intK of K, and the greatcircle
through p and q does. We say that K is illuminated from a set S ⊂ S

d\K, if every
boundary point ofK is illuminated from at least one point of S. The smallest cardinality
of a set S that illuminatesK and lies on a (d−1)-dimensional greatsphere of Sd which
is disjoint from K, is called the illumination number of K in S

d , and is denoted by
ISd (K).

We observe that dropping the seemingly artificial restriction that all light sources
are contained in a (d − 1)-dimensional greatsphere of Sd , disjoint from the convex
bodyK, makes the problem of determining ISd (K) trivial. Indeed, choosing any point
of Sd , antipodal to an arbitrary interior point of K, illuminates every boundary point
of K.

We leave the easy proofs of the following three remarks to the reader.

Remark 1 If a set A ⊂ S
d\K illuminates the convex bodyK in Sd and A is contained

in a closed hemisphere H ⊂ S
d such that K ⊂ intH, then ISd (K) ≤ card(A). (Here

card(·) refers to the cardinality of the corresponding set.)
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From spherical to Euclidean illumination 485

Remark 2 Let K∗ be the polar body assigned to the convex body K ⊂ S
d ⊂ E

d+1,
i.e., letK∗ := {x ∈ S

d : 〈x, y〉 ≤ 0 for all y ∈ K}. It is easy to see thatK∗ is a convex
body in S

d moreover, (K∗)∗ = K. Clearly, an open hemisphere contains K if and
only if its center is in − intK∗. Note that if some set S of k points in the boundary of
such an open hemisphere illuminatesK, and fx is the central projection to the tangent
hyperplane of Sd at the center x of this hemisphere, then fx(S) corresponds to a set
of k directions which illuminate fx(K). In other words,

ISd (K) = min{I ( fx(K)) : x ∈ − intK∗}.

Remark 3 Levi [10] proved that I (K) = 3 holds for any convex body K in E
2 which

is not a parallelogram. Thus, Remark 2 implies that IS2(K) = 3 holds for any convex
body K in S2.

In order to state the main illumination results of this paper we need

Definition 2 Let K be a convex body in E
d (resp., Sd ). Recall that a face F of K is a

convex (resp., spherically convex) subset ofK such that for any segment (resp., spher-
ical segment) of K whose relative interior intersects F , the segment (resp., spherical
segment) in question is contained in F . Then a sequence of faces Fs ⊂ · · · ⊂ Fd−1 of
K with dim Fi = i for i = s, . . . , d − 1 is called a partial flag of K of length d − s.

Theorem 1 Let K be a convex body in Sd , d > 2, whose boundary contains a partial
flag of length d − 2. Then ISd (K) = d + 1. In particular, for any convex polytope P
in Sd , d > 2, we have ISd (P) = d + 1.

Corollary 1 For any convex body K in S
d , d > 2 and for any ε > 0, there is a

convex body K′ ⊂ K such that K\K′ is contained in a spherical cap of radius ε, and
ISd (K

′) = d + 1.

Although it is easy to see that for any smooth convex bodyK in Sd , d > 2 we have
ISd (K) = d+1, the question of finding a proper extension of Theorem 1 to all convex
bodies seems to raise an open problem.

Problem 1 Prove or disprove that ISd (K) = d + 1 holds for any convex body K in
S
d , d > 2.

Next, we apply Theorem 1 to illumination numbers of convex bodies in Ed . Moti-
vated by the notion of combinatorial equivalence for convex polytopes, we introduce
the following notion. Note that, restricted to convex polytopes, this notion is equivalent
to the usual concept of combinatorial equivalence.

Definition 3 Let K,K′ ⊂ E
d be convex bodies. If there is a homeomorphism h :

bdK → bdK′ such that for any X ⊂ bdK, X is a face of K if and only if h(X) is a
face of K′, then we say that K and K′ are combinatorially equivalent.

Note that any two strictly convex bodies of Ed are combinatorially equivalent.
Furthermore, combinatorial equivalence is an equivalence relation on the family of
convex bodies, the equivalences classes of which we call combinatorial classes.
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486 K. Bezdek, Z. Lángi

Example 1 Let 0 < α < π , and for any positive integer k, let pk =
(
cos 2α

3k
, sin 2α

3k

)
∈

E
2, and qk =

(
cos α

3k
, sin α

3k

)
∈ E

2. Furthermore, for any value of k, defineHk as the

closed half plane in E2 containing o in its interior and pk and qk on its boundary, and
let H−k be the reflected copy of Hk about o. Finally, set

K = B2 ∩
∞⋂
k=1

Hk

and

K′ = B2 ∩
⋂

k∈Z\{0}
Hk,

where B2 is the closed Euclidean unit disk centered at o. Then, clearly, there is a
bijection h : bdK → bdK′ such that X ⊂ bdK is a face of K if and only if h(X) is
a face of K′, but there is no homeomorphism with the same property.

Definition 4 For any convex body K in E
d , the smallest number k such that some

element of the combinatorial class ofK can be illuminated from k directions is called
the combinatorial illumination number of K, and is denoted by Ic(K).

Theorem 2 For any convex body K in Ed , d > 2, whose boundary contains a partial
flag of length d − 2, we have Ic(K) = d + 1. In particular, for any convex polytope P
in Ed , d > 2, we have Ic(P) = d + 1.

In E3, we can prove more. In order to state our result, recall that the combinatorial
class of every convex polyhedron P ⊂ E

3 contains special convex polyhedra, called
Koebe polyhedra, which are combinatorially equivalent to P and are midscribed to
S
2, i.e., their edges are tangent to S2.

Theorem 3 If P is a convex polyhedron in E
3, then the combinatorial class of P

contains a Koebe polyhedron P′ with I (P′) = 4.

We close this section with the following polar description of ISd (K), which is the
spherical analogue of the Separation Lemma in [1]. For the sake of completeness
the Appendix of this paper contains a proof of Theorem 4. Here we recall that an
exposed face of the convex bodyK in Sd (resp., Ed ) is the intersection of a supporting
(d − 1)-dimensional greatsphere (resp., supporting hyperplane) of K with K.

Theorem 4 ISd (K) is equal to the minimum number of open hemispheres of Sd whose
boundaries all pass through a common point in the interior of the polar convex body
K∗ and have the property that every exposed face of K∗ is contained in at least one
of the open hemispheres.

Thus, Theorem 4 implies in a straightforward way that Problem 1 is equivalent to
the following spherical question (resp., Euclidean question obtained from it via central
projection), both of which one can regard as a natural counterpart of the Separation
Conjecture [1,2,12].
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From spherical to Euclidean illumination 487

Problem 2 Prove or disprove that if K′ is an arbitrary convex body in Sd (resp., Ed),
d > 2, then there exist x ∈ intK′ and d+1 open hemispheres (resp., open halfspaces)
of Sd (resp., Ed) whose boundaries contain x such that every exposed face of K′ is
contained in at least one of the open hemispheres (resp., open halfspaces).

On the one hand, ifK′ is a strictly convex body in Sd (resp., Ed ), d > 2, then there
is an easy positive answer to Problem 2. On the other hand, using Theorem 4 one can
derive from Theorem 1

Corollary 2 If P is an arbitrary convex polytope in S
d (resp., Ed), d > 2, then there

exist x ∈ int P and d + 1 open hemispheres (resp., open halfspaces) of Sd (resp., Ed)
whose boundaries contain x such that every (exposed) face of P is contained in at
least one of the open hemispheres (resp., open halfspaces).

In the rest of the paper we prove the theorems stated.

2 Proofs of Theorem 1 and Corollary 1

First, observe that no convex body inSd can be illuminated from fewer than d+1 points
(lying on a (d − 1)-dimensional greatsphere, which is disjoint from the convex body).
(This statement follows from the analogue Euclidean result via central projection
between Sd and its corresponding tangent hyperplane in Ed+1.) Thus, we need to find
a (d +1)-element set, contained in a (d −1)-dimensional greatsphere not intersecting
K, that illuminates K in Sd .

We prove Theorem 1 by induction on d for all d > 2. So, let us start by assuming
that Theorem 1 holds for convex bodies with partial flags of length d − 3 in S

d−1,
and let K be a convex body in S

d with a partial flag F2 ⊂ · · · ⊂ Fd−1 = F on its
boundary. (If d = 3, i.e., if K is a convex body with partial flag F2 in S3, then F2 is a
convex body in S2 and therefore Remark 3 implies IS2(F2) = 3, i.e., it guarantees the
inductive assumption for this case.) For simplicity, we refer to the (d−1)-dimensional
greatsphere H of Sd containing F as the equator, and the open hemisphereH bounded
by H and containing intK as the northern hemisphere. Furthermore, for any open
neighborhood U of a point x ∈ H , we call U ∩ H and U ∩ (−H) the northern and
southern halves of U.

Let p be a relative interior point of F . Note that since p ∈ relint F , and dim F =
d − 1, the northern half of a sufficently small neighborhood of p is contained in
intK. We show that the point −p, antipodal to p, illuminates every point of bdK\F .
Indeed,H can be decomposed into semicircles starting at−p and ending at p. As each
such semicircle intersects the northern half of every neighborhood of p, each of these
semicircles contains interior points of K. Thus, every point of bdK\H = bdK\F is
illuminated from −p.

Note that if some x ∈ bdK is illuminated from a point y, then y has a neighborhood
V such that x is illuminated from any point of V. Thus, if D is an arbitrary compact
subset of bdK\F , then −p has a neighborhood V such that every point of D is
illuminated from every point of V.

Since F is a convex bodywith a partial flag of length d−3 in the (d−1)-dimensional
spherical space H , there is a set S′ of d points, contained in a (d − 2)-dimensional
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488 K. Bezdek, Z. Lángi

greatsphere G of H , which illuminate F in H , i.e., for every relative boundary point
q ∈ relbd F there is a point x ∈ S′ such that the semicircle starting at x and passing
through q intersects relint F . Since K is spherically convex and dim F = d − 1, this
also implies that if x′ is in the southern half of a suitable neighborhood of x, then
x′ illuminates K at q in S

d , i.e., the semicircle starting at x′ and passing through q
intersects intK. Observe that (since dim F = d −1)K is illuminated at every relative
interior point of F from any point in the southern hemisphere −H. Thus, there is a
family of setsU1,U2, . . . ,Ud , each being the southern half of a suitable neighborhood
of a point of S′, such that any d-tuple xi ∈ Ui , i = 1, 2, . . . , d, illuminatesK at every
point of F in S

d . By compactness arguments, there is a set L ⊂ bdK containing F
and open in bdK that has the same property as F , i.e., there are some suitable setsU′

i ,
i = 1, 2, . . . , d, each being the southern half of a suitable neighborhood of a point of
S′ such that any d-tuple xi ∈ U′

i , i = 1, 2, . . . , d, illuminatesK at every point of L in
S
d .
Note that bdK\L is compact.Hence,wemay choose a point x0 ∈ H and sufficiently

close to−p such that x0 illuminatesK at every point of bdK\L . Let H ′ be the (d−1)-
dimensional greatsphere spanned by G and x0. Note that by our choice of G, chosen
as a (d − 2)-dimensional greatsphere G of H with S′ ⊂ G, G does not intersect F ,
which implies that G strictly separates F and −p in H . Since x0 is sufficiently close
to −p, from this it follows that H ′ does not intersect K. Since H ′ is a rotated copy
of H around G, it intersects the southern half of any neighborhood of any point of
G. Thus, H ′ intersects U′

i for all values of i . Pick some point xi from U′
i ∩ H ′ for

i = 1, 2, . . . , d, and set S = {x0, . . . , xd} ⊂ H ′. Since S\{x0} illuminates K at every
point of L by the choice of the U′

i s, we have constructed a set of (d + 1) points,
contained in the boundary of an open hemisphere containing K, that illuminates K.
Thus, ISd (K) = d + 1, finishing the proof of Theorem 1.

Now, we prove Corollary 1. Let p be an exposed point of bdK, i.e., a boundary
point of K that can be obtained as an intersection of K with a supporting (d − 1)-
dimensional greatsphere ofK in Sd . (The existence of an exposed point is well known
see for example, Theorem 1.4.7 in [11].) Then we can truncate K near p by a (d −
1)-dimensional greatshere such that the closure of the part removed is contained in
an open spherical cap of radius ε. Continuing the truncation process by subsequent
greatspheres, we can construct a truncated convex body K′ whose boundary contains
a partial flag of length d − 2, and has the property thatK\K′ is covered by a spherical
cap of radius ε. By Theorem 1, ISd (K

′) = d + 1.

3 Proof of Theorem 2

Since for any convex body K, we have I (K) ≥ d + 1, therefore Ic(K) ≥ d + 1. We
show that Ic(K) ≤ d + 1.

Imagine E
d as a tangent hyperplane of the sphere S

d , embedded in E
d+1 in the

usual way. Let h : Ed → S
d be the central projection of Ed to Sd . ThenK′ := h(K) is

a spherical convex body, having a partial flag of length d − 2. By Theorem 1, there is
a greatsphere H of Sd disjoint from K′, and a (d + 1)-element point set S′ ⊂ H such
that S′ illuminatesK′. LetH be the open hemisphere bounded by H that containsK′,
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From spherical to Euclidean illumination 489

and let c be the spherical center of H. Let hc : H → TcSd be the central projection
of H to the tangent hyperplane of Sd at c. Since TcSd is a d-dimensional Euclidean
space, K′′ := hc(K′) is a d-dimensional Euclidean convex body. hc ◦ h|bdK is a
homeomorphism, and hc ◦ h maps faces of K to faces of K′′. Thus, K and K′′ are
combinatorially equivalent. Furthermore, the images of the great circle arcs starting
at a point q of H are parallel lines in TcSd starting at the ‘ideal point’ hc(q) of TcSd .
Hence, the set of ideal points of TcSd corresponding to S′ is a set of d + 1 directions
that illuminates K′′.

4 Proof of Theorem 3

To prove the theorem, we adopt some ideas from the proof of Theorem 3 in [9]. Let
P be a Koebe polyhedron, i.e., a convex polyhedron in E3 whose edges are tangent to
S
2. Then there are two families of circles on S

2 associated to P [5,9]. The elements
of the first family, called face circles are the incircles of the faces of P; each such
circle touches the edges of a face of P at the points where the edges touch S

2. We
denote these circles by f j , j = 1, 2, . . . ,m, where m is the number of faces of P.
The elements of the second family are called vertex circles. These circles, denoted
by vi , i = 1, 2, . . . , n, where n is the number of vertices of P, are circles on S

2 that
contain the tangency points on all the edges of P starting at a given vertex of P. The
tangency graphs of these two families are dual graphs. If T : S2 → S

2 is a Möbius
transformation then T maps the two circle families of P into two circle families which
are associated to another Koebe polyhedron, which, with a little abuse of notation, we
denote by T (P). It is known [5] that if P and P′ are two combinatorially equivalent
Koebe polyhedra, then there is a Möbius transformation T : S

2 → S
2 satisfying

T (P) = P′.
In our proof, we regard S

2 as the set of the ‘points at infinity’ of the Poincaré ball
model of the hyperbolic spaceH3, which is identifiedwith the interior of the Euclidean
unit ball bounded by S

2. Then every face circle f j of P is the set of the ideal points
of a unique hyperbolic plane Fj , and the same holds for every vertex circle of P; we
denote the hyperbolic plane associated to the vertex circle vi by Vi . Furthermore, we
denote by F j the closed hyperbolic halfspace bounded by Fj which is disjoint from
any hyperbolic plane associated to any other face circle of P, and define Vi similarly
for any vertex circle vi of P. It is worth noting that every Möbius transformation of
S
2 corresponds to a hyperbolic isometry in the Poincaré ball model, and vice versa.

LetD := H
3\

(⋃n
i=1 Vi ∪ ⋃m

j=1 F j

)
, and note that for every value of j , Fj ∩bdD

is a closed hyperbolic polygon Pj with ideal vertices and nonempty relative interior in
H

3. Consider some point p in relint P1. Let hp : H3 → H
3 be a hyperbolic isometry

that maps p into o, and let Tp be the corresponding Möbius transformation. Then the
first face F of Tp(P) contains the origin o. Let m be the outer unit normal vector of
the Euclidean plane through F . Then the angle between m and the outer unit normal
vector of any other face of T (P) is obtuse, which implies that the projection of T (P)\F
onto the Euclidean plane through F (or in other words, the projection in the direction
ofm) is int F . In other words,m illuminates every point of bd(T (P))\F . Note that if
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490 K. Bezdek, Z. Lángi

there are three directions m1,m2,m3 which illuminate F in the plane containing it,
then the vectors mi − εm, where i = 1, 2, 3, illuminate every point of F in E

3. On
the other hand, by a result of Levi [10], apart from parallelograms, the illumination
number of every plane convex body is 3.

Thus, to prove the assertion we need to show that, using a suitable point p in F1, the
first face F of Tp(P) is not a parallelogram. Assume that F is a parallelogram. Then
clearly, the first face of P is a quadrangle, and thus, there are four tangency points on
the first face circle f1 of P. Let these points be q1,q2,q3,q4 in cyclic order. Let the
unique hyperbolic line with ideal points q1,q3 be denoted by L1, and the line with
ideal points q2,q4 be denoted by L2. These lines are contained in F1.

Since F is a parallelogram and is circumscribed about a circle, F is a rhombus, and
the tangent points T (q1), T (q2), T (q3) and T (q4) are the vertices of a rectangle. Thus,
the midpoint of both Euclidean open segments (T (q1), T (q3)) and (T (q2), T (q4))
is the origin o. Note that these segments represent the hyperbolic lines hp(L1) and
hp(L2). Thus, in this case o is the intersection point of hp(L1) and hp(L2). Since
hyperbolic isometries preserve incidences, it follows that p is the intersection point of
L1 and L2. On the other hand, as P1 contains infinitely many relative interior points,
we may choose some point in relint P1 different from this point, implying that in this
case the first face F of Tp(P) is not a parallelogram.

Acknowledgements We are indebted to the anonymous referee for careful reading and valuable comments.

5 Appendix: Proof of Theorem 4

The following proof is a spherical analogue of the proof of the Separation Lemma in
[1].

Definition 5 Let K ⊂ S
d ⊂ E

d+1 be a convex body and F be an exposed face of K.
We define the conjugate face of F as a subset of the polar convex body K∗ = {x ∈
S
d : 〈x, y〉 ≤ 0 for all y ∈ K} given by

F̂ := {x ∈ K∗ | 〈x, y〉 = 0 for all y ∈ F}. (1)

One should keep in mind that F̂ depends also onK and not only on F . So, if we write
ˆ̂F , then it means (F̂ )̂, where the right-hand circumflex refers to the spherical polar
body K∗. If x ∈ S

d , then let Hx denote the open hemisphere of Sd with center x.
The following statement (which one can regard as a natural spherical analogue

of Theorem 2.1.4 in [11]) shows that exposed faces behave well under polarity in
spherical spaces.

Proposition 1 Let K ⊂ S
d ⊂ E

d+1 be a convex body and F be an exposed face of
K. Then F̂ is an exposed face of K∗ with F̂ = ⋂

y∈F
(
bdHy ∩ K∗), where Sd\Hy is

a closed supporting hemisphere of K∗ for every y ∈ F. Moreover, ˆ̂F = F and so,
F �→ F̂ is a bijection between the exposed faces of K and K∗.
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From spherical to Euclidean illumination 491

Proof Without loss of generality we may assume that F is a proper exposed face of
K, i.e., there exists an open hemisphereHx0 of S

d such that ∅ �= F = K∩ bdHxo and
K∩Hx0 = ∅. It follows that x0 ∈ F̂ and so, F̂ �= ∅. Now, if y ∈ F , thenK∗ ∩Hy = ∅
and x ∈ bdHy holds for all x ∈ F̂ . Thus, F̂ ⊆ ⋂

y∈F (K∗∩bdHy), whereK∗∩Hy = ∅
holds for all y ∈ F . On the other hand, if z ∈ ⋂

y∈F (K∗∩bdHy)withK∗∩Hy = ∅ for

all y ∈ F , then z ∈ K∗ with 〈z, y〉 = 0 for all y ∈ F (and therefore z ∈ F̂) implying
that

⋂
y∈F (K∗ ∩ bdHy) ⊆ F̂ . Thus, F̂ = ⋂

y∈F (K∗ ∩ bdHy) with K∗ ∩Hy = ∅ for

all y ∈ F . As K∗ ∩ bdHy is a proper exposed face of K∗ for all y ∈ F therefore F̂
is a proper exposed face of K∗. Applying the above argument to the exposed face F̂

of K∗ one obtains in a straightforward way that ˆ̂F = F . This completes the proof of
Proposition 1.

Proposition 2 LetK ⊂ S
d ⊂ E

d+1 be a convex body and H be a (d−1)-dimensional
greatsphere of Sd with H ∩ K = ∅. Then q ∈ bdK is illuminated from p ∈ H with
p �= −q if and only if F̂ ⊂ Hp, where F denotes the exposed face ofK having smallest
dimension and containing q ∈ bdK.

Proof Let Hh be the open hemisphere with center h and boundary H in S
d such

that K ⊂ Hh. Clearly, −h ∈ bdHp ∩ intK∗. Proposition 1 implies that F =⋂
x∈F̂ (bdHx ∩ K∗), where Hx ∩ K = ∅ for all x ∈ F̂ . Let [p,q) denote the spher-

ical segment of Sd with endpoints p and q containing p and not containing q. Now,
q ∈ bdK is illuminated from p ∈ H if and only if [p,q) ⊂ ⋂

x∈F̂ Hx, which is
equivalent to p ∈ ⋂

x∈F̂ Hx (because ±q ∈ ⋂
x∈F̂ bdHx). Finally, p ∈ ⋂

x∈F̂ Hx

holds if and only if F̂ ⊂ Hp. This finishes the proof of Proposition 2.

Now, the following statement follows from Proposition 2 and its proof in a straight-
forward way.

Corollary 3 Let K ⊂ S
d ⊂ E

d+1 be a convex body and H be a (d − 1)-dimensional
greatsphere of Sd with H ∩K = ∅. LetHh be the open hemisphere with center h and
boundary H in Sd such thatK ⊂ Hh. Then the point set {p1, . . . ,pn} ⊂ H illuminates
K if and only if the open hemispheres Hp1 , . . . ,Hpn with −h ∈ bdHpi ∩ intK∗ for
1 ≤ i ≤ n have the property that every (proper) exposed face ofK∗ is contained in at
least one of the open hemispheres.

Finally, Corollary 3 yields Theorem 4.
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