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The modified XY model is a variation of the XY model extended by a half periodic term, ex-
hibiting a rich phase structure. As the Goldstone model, also known as the linear O(2) model, can
be obtained as a continuum and regular model for the XY model, we define the modified Goldstone
model as that of the modified XY model. We construct a vortex, a soliton (domain wall), and a
molecule of two half-quantized vortices connected by a soliton as regular solutions of this model.
Then we investigate its phase structure in two Euclidean dimensions via the functional renormaliza-
tion group formalism and full numerical simulations. We argue that the field dependence of the wave
function renormalization factor plays a crucial role in the existence of the line of fixed points describ-
ing the Berezinskii-Kosterlitz-Thouless (BKT) transition, which can ultimately terminate not only
at one but at two end points in the modified model. This structure confirms that a two-step phase
transition of the BKT and Ising types can occur in the system. We compare our renormalization
group results with full numerical simulations, which also reveal that the phase transitions show a
richer scenario than expected.

I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless (BKT) transition
[1–4] is a topological phase transition of two-dimensional
systems, which divides a low-temperature phase with
bound vortex-antivortex pairs from a high temperature
phase with free vortices. The phenomenon was first an-
alyzed in terms of the XY model, and one of its most
important impacts was that it showed that superfluidity
and superconductivity can be realized even in two di-
mensions. Even though in two dimensions long-range
order with continuous symmetry is forbidden by the
Coleman-Mermin-Wagner (CMW) theorem [5–7], there
is a possibility of quasi-long-range order, which shows al-
gebraically decaying correlations. The BKT transition
realizes this scenario, and it also has the unique feature
of being a continuous phase transition without break-
ing any symmetry. It has been experimentally confirmed
in various condensed matter systems such as 4He films
[8], thin superconductors [9–13], Josephson-junction ar-
rays [14, 15], colloidal crystals [16–19], and ultracold
atomic Bose gases [20]. The XY model shares common
properties including the BKT transition with the two-
dimensional linear O(2), or Goldstone model at large dis-
tances or low energies, which is a regular version of the
XY model described by one complex scalar field, in which
the U(1) Goldstone mode for the XY model is comple-
mented by a massive amplitude (Higgs) mode. One of

∗ michikaz@scphys.kyoto-u.ac.jp
† fejos@keio.jp
‡ chandra.chttrj@gmail.com
§ nitta@phys-h.keio.ac.jp

the merits of the latter is to allow vortices as regular so-
lutions in contrast to the XY model in which vortices
are singular configurations.

XY -like models do not necessarily show the BKT tran-
sition. For example, for sharply increasing spin-spin po-
tential, the phase transition between the paramagnetic
and ferromagnetic phases can be of first order [21]. It
is not surprising that the so-called modified XY model,
where on a square lattice the Hamiltonian of the rotor is
extended with a π periodic term

HmXY = −J
∑
〈i,j〉

cos(ϑi − ϑj)− J ′
∑
〈i,j〉

cos[2(ϑi − ϑj)],

(1)

also shows a different scenario. It was predicted long ago
that for large enough J ′ coupling, there exists a nematic
phase separated from the ferromagnet and the transition
between them is of Ising type [22, 23]. This was also
confirmed by numerical calculations [24]. The Ising-type
transition is related to the presence of domain walls in
this model. Moreover, it was conjectured that molecules
and anti molecules of half-quantized vortices play a cru-
cial role for phase transitions, in contrast to a pair of
vortices and anti vortices in the XY model. As of today,
the model (1) and its various modifications [25–33] are
of great importance and interest, especially due to their
relevance in condensed matter physics applications, e.g.,
superfluidity in atomic Bose gases [34], arrays of uncon-
ventional Josephson junctions [35], or high-temperature
superconductivity [36].

The BKT transition of the XY model was originally
analyzed via a real-space renormalization group (RG) ap-
proach [4], which is rather unconventional and not easily
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linkable to the Wilsonian picture of the RG [37]. In the
past, the functional RG (FRG) approach, which adopts
the Wilsonian idea of mode elimination and averaging
to the level of the effective action [38], was also applied
and developed in regard to the BKT transition in both
continuum [39–43] and lattice formulations [44, 45]. It
turned out that the conventional, Wetterich formulation
of the method was capable of showing signs in the two-
dimensional linear O(2) or Goldstone model of the line
of fixed points that is responsible for the topological na-
ture of the phase transition. This is remarkable in the
sense that no vortices need to be introduced explicitly, as
opposed to the older real-space RG description [4]. One
of the shortcomings of the treatment, however, is that
because one is typically solving the RG flow equation of
the scale-dependent effective average action via a deriva-
tive expansion, as an artifact, only a line of quasi-fixed
points is found. That is, the RG flow does not stop along
this line, but only slows down significantly compared to
other regions of the parameter space. It is worth point-
ing out that recently in a dual lattice formulation of the
FRG, Krieg and Kopietz [45] exactly reproduced the RG
flow equations derived by Kosterlitz and Thouless [4] and
therefore the existence of a true line of fixed points was
established in terms of a momentum space RG. It would
be interesting, however, to develop a scheme in the ordi-
nary Wetterich formulation of the FRG, which could also
lead to a similar result.

The goal of this study is twofold. On the one hand, we
aim to show a rather simple approximation scheme of the
FRG flow equations that can show significant improve-
ment on the possibility of reaching a true line of fixed
points in the continuum version of the XY model, and
more importantly argue that it can also be applied natu-
rally to the modified XY model, i.e., the continuum ver-
sion of (1). In the framework of a momentum space RG,
we describe the two-step transition in the latter model
and we will also predict that fluctuations may completely
make the topological transition disappear. On the other
hand, we also aim to provide full numerical simulation
of the system and show that depending on the value of
the self-coupling of the scalar field, the structure of the
transitions is even richer than it is predicted by the RG.

The paper is organized as follows. In Sec. II we intro-
duce the modified Goldstone model and construct clas-
sical solutions, an integer vortex, a soliton, and a vortex
molecule of two half-integer vortices connected by a soli-
ton in that model. In Sec. III, after giving a brief review
of the FRG, we reproduce some earlier results of the BKT
transition via the FRG and also show the improvement
announced above. Then this scheme is applied to the
modified XY model and we show how a two-step tran-
sition can emerge in the system. In Sec. IV we confirm
this scenario via full numerical simulations and reveal the
nature of the corresponding transitions. Section V is de-
voted to a summary. In Appendix A we show how to
derive the Hamiltonian of the modified Goldstone model
from the microscopic lattice model of the modified XY

model, while in Appendix B we derive some of the cor-
responding flow equations of the FRG.

II. MODEL AND SOLUTIONS

A. Modified Goldstone model

In this study we are interested in the continuum ver-
sion of the XY model, i.e., the Goldstone model and
its modification [for its derivation from the microscopic
Hamiltonian (1) see Appendix A]

H =

∫
x

[
a|∇ψ|2 + b|∇ψ2|2 +

λ

2

(
|ψ|2/2− ρ0

)2]
, (2)

where ψ is a complex scalar field, and λ, a, and b are
positive coupling constants. The continuum version of
the standard XY model refers to b = 0 and in the modi-
fied XY model we have b > 0. The field equation can be
obtained from the Hamiltonian (2) as

0 =
δH
δψ∗

= −a∆ψ − 2b ψ∗∆ψ2 +
λ

2

( |ψ|2
2
− ρ0

)
ψ,(3)

which we call the modified Gross-Pitaevskii equation.

B. Classical solutions

Field equations (3) of the modified Goldstone model
admit superfluid (or global) vortex solutions. Here we
show how such a vortex solution transforms into a half-
quantized vortex molecule, when the second term of
Eq. (2) becomes large enough. As we wish to compare
our results with earlier works [24], in what follows we
work in a simplified parameter space, where a2 + b2 = 1,
and thus the a = cos θ and b = sin θ parametrization can
be used. As it turns out, this choice also helps perform
the full numerical simulations of the thermodynamics of
the system more easily. The transformation of the vor-
tex solution can be seen in Fig. 1. One observes that
around θ ≈ 78◦, a clear picture of a vortex molecule
emerges, where two half-quantized vortices are connected
by a one-dimensional soliton. One expects that at finite
temperature, as a function of θ, somewhere close to the
aforementioned value, the emergence of the molecules will
have an effect on the phase structure of the system.

In a vortex molecule shown in Fig. 1, each of the two

vortices has a half-quantized circulation
∫
d~l(~∇arg[ψ]) =

π and the soliton connecting them has a π-phase jump.
To analyze the stability of the soliton, we determine the
following one-dimensional stable solution of the modi-
fied Gross-Pitaevskii equation (3) in one dimension with
the boundary condition ψ(y → −∞) =

√
2ρ0, and

ψ(y → ∞) =
√

2ρ0e
iϕ. Fig. 2 (a) shows the profiles

of the soliton solutions, while Fig. 2 (b) shows the to-
tal energy H1D as a function of ϕ and θ. It is clear
that if H1D takes the maximum value at some ϕ < π,
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FIG. 1. Vortex solution of the field equations transforms into
a half-quantized vortex molecule around θ ≈ 78◦ with the
choice ρ0 = 1/2.
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FIG. 2. (a) Profiles of the amplitude |ψ|2 of the soliton so-
lutions for the modified Gross-Pitaevskii equation [Eq. (3)]
with θ = 10◦ (black), θ = 45◦ (red), θ = 80◦ (blue), and
θ = 90◦ (green). (b) Dependence of the energy, H1D, on θ
and ϕ. (c) Dependence of the maximal angle ϕmax and the
energy barrier ∆H1D on θ. In the both panels, we set λ = 8
and ρ0 = 1/2.

then the soliton solution with ϕ = π becomes locally
stable (metastable) by having a positive energy barrier
∆H1D ≡ H1D(ϕ = ϕmax)−H1D(ϕ = π), where the max-
imal angle ϕmax is the value of ϕ at which H1D takes
the maximum. Fig. 2 (c) shows the maximal angle ϕmax

and the energy barrier ∆H1D. The former starts to take
a nonzero value, ∆H1D > 0, with ϕmax < π at around
θ ≈ 15◦, above which the soliton is, therefore, energet-
ically stable. That is to say, the appearance of vortex
molecules and the stability of the soliton are not related,
and thus it is not the (de)stabilization of the domain wall
that lets molecules emerge.

It is worth noting that these configurations become sin-
gular in the limit of λ→∞, in which the model reduces
to the modified XY model. Therefore, the modified XY
model does not allow these configurations as solutions to
the field equations, while the modified Goldstone model
does.

C. Type of symmetry and (quasi) breaking of
symmetry

Here, we discuss the symmetry properties of the Hamil-
tonian [Eq. (2)] and show the possible (quasi-)breaking
patterns of symmetries. The symmetry of the Hamilto-
nian with generic parameters is of U(1) as a phase shift
of the field, ψ → ψeiα for the arbitrary α ∈ [0, 2π). In
the case of a = 0 and b > 0, the two fields ψ and ψ eiπ
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are identifiable, because the Hamiltonian [Eq. (2)] is the
functional of ψ2 rather than ψ. Therefore, the symmetry
of the Hamiltonian is only U(1)/Z2, where the Z2 sym-
metry comes from the identification of ψ ∼ ψ eiπ. This
Z2 factor is essential for the presence of (deconfined) half-
quantized vortices.

Depending on the parameter regions, the U(1) or
U(1)/Z2 symmetry is spontaneously broken in the ground
state in different patterns summarized as follows:

U(1)
U(1)
99K 1 for a > 0 and b = 0, (4a)

U(1)/Z2

U(1)/Z2

99K 1 for a = 0 and b > 0, (4b)

U(1)
U(1)/Z2

99K Z2
Z2−→ 1 for b� a > 0, (4c)

U(1)
U(1)
=⇒ 1 for a ≈ b. (4d)

Here the arrows 99K, −→, and =⇒ denote quasi-breaking
of symmetry via a BKT transition, ordinary symmetry
breaking with a thermodynamic phase transition, and
simultaneous (quasi)breaking of symmetry, respectively.
Here, quasibreaking means that the symmetry is not ex-
actly broken due to the CMW theorem in the thermo-
dynamic limit but is locally broken at semi macroscopic
scales with an algebraically decaying correlation function.

Now let us explain each breaking pattern. In the sim-
plest case, i.e., for a > 0 and b = 0 [Eq. (4a)], the
standard BKT transition occurs with the quasibreaking
of the U(1) symmetry. In the opposite case, i.e., for a = 0
and b > 0 [Eq. (4b)], the BKT transition occurs with the
quasi breaking of the U(1)/Z2 symmetry, for which half-
quantized and anti-half-quantized vortices start to form
in pairs. In the case of b � a > 0 [Eq. (4c)], two suc-
cessive spontaneous (quasi)breaking processes occur. At
the first stage (at higher temperature) the U(1) symme-
try is quasi broken to a Z2 subgroup accompanied by the
BKT transition. At the second stage, at a temperature
lower than the BKT transition temperature, the remain-
ing Z2 symmetry is further spontaneously broken due to
a thermodynamic transition. In this case, half-quantized
and anti-half-quantized vortices start to form pairs at the
BKT transition and domain walls appear at the thermo-
dynamic transition. Some domain walls have no end-
point forming loops as well as those in the Ising model,
but some others appear between two half-quantized or
two anti-half-quantized vortices forming vortex or anti-
vortex molecules as shown in Fig. 1. In the remain-
ing case of a ≈ b [Eq. (4d)], rather than a conventional
BKT transition, the BKT transition occurs with the qua-
sibreaking of U(1)/Z2 symmetry and the thermodynamic
transition with breaking of Z2 symmetry simultaneously.
All vortices are integers and domain walls do not have
endpoints.

In the following sections, we study the modified Gold-
stone model by the FRG and Monte Carlo simulation.

III. FUNCTIONAL RENORMALIZATION
GROUP CALCULATIONS

In this section, after giving a brief review of FRG, we
apply it to the modified Goldstone model approximately,
at the leading order of the derivative expansion, and ob-
tain the phase structure.

A. Flow equation: a review

Here we review the basics of the FRG. At the core
of the formalism lies the Γk average effective action, in
which fluctuations of the dynamical fields are incorpo-
rated up to a momentum scale k. The Γk function obeys
the flow equation:

∂kΓk =
1

2

∫
Tr [(Γ

(2)
k +Rk)−1∂kRk], (5)

where Γ
(2)
k is the second derivative matrix of Γk with

respect to the dynamical variables and Rk is a regulator
function, which is defined (in Fourier space) through a
momentum-dependent mass term

1

2

∫
p,q

ψi(q)Rijk (q, p)ψj(p), (6)

added to the classical Hamiltonian (or Euclidean action).
We denoted the set of fluctuating field variables by ψ.
Here Rk is supposed to give a large mass to modes that
have momenta q . k and leave the ones with q & k un-
touched. The classical Hamiltonian by definition does
not contain any fluctuations; therefore, it serves as an
initial condition for the RG flow of Γk=Λ at some mi-
croscopic scale Λ. The flow equation (5) then needs to
be integrated down to k = 0, where one obtains the full
free energy (or quantum effective action). One is free to
choose the Rk function such that it fulfills the require-
ment of suppressing low-momentum modes, and in this
paper we employ the so-called optimal version:

Rk(q, p) = Zk(2π)2(k2 − q2)Θ(k2 − q2)δ(q + p), (7)

where Θ(x) is the Heaviside step function, and Zk is the
wave function renormalization factor.

B. Local potential approximation’

Here we solve flow equation (5) for the modified Gold-
stone model approximately, using the ansatz for Γk,

Γk =

∫
d2x

[
Zk(ρ)

2
(∇ψi)2 +

λk
2

(ρ− ρ0,k)2

]
, (8)

where instead of a complex variable, the ψi field is con-
sidered as a two-component real vector: ψi = (ψ1, ψ2),
while ρ = ψiψi/2, and we have only kept the original
couplings in the effective potential. Namely, Eq. (8)
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is compatible with the form of Eq. (2), but it comes
with k-dependent couplings and a field-dependent wave
function renormalization factor [Zk(ρ)]. In what fol-
lows we will consider the Zk(ρ) function in two sepa-
rate approximations: i) Zk(ρ) ≈ Zk(ρ0), and ii) Zk(ρ) ≈
Zk(ρ0) +Z ′k(ρ0)(ρ− ρ0). Approximation i) is sometimes
called the local potential approximation’ (LPA’), with
the prime referring to nontrivial wave function renormal-
ization. First we work with the LPA’ and the next section
is devoted to approximation ii).

Projecting the flow equation (5) onto a subspace
spanned by homogeneous field configurations, we get (see
also Appendix B)

k∂kλ̄k = −2λ̄k[1− η(0)
k ] +

λ̄2
k

2π

(
1− η

(0)
k

4

)

×
[
1 +

9

(1 + 2ρ̄0,kλ̄k)3

]
,(9a)

k∂kρ̄0,k = −η(0)
k ρ̄0,k +

1

4π

(
1− η

(0)
k

4

)

×
[
1 +

3

(1 + 2ρ̄0,kλ̄k)2

]
,(9b)

where we have introduced dimensionless rescaled vari-
ables λ̄k = λkk

−2Z−2
k and ρ̄0,k = ρ0,kZk. Here, η

(0)
k =

−k∂kZk/Zk is the anomalous dimension at this order of
the approximation, where the wave function renormal-
ization is evaluated at the minimum point of the effec-
tive potential, Zk ≡ Zk(ρ̄0,k) (from now on we think of
the wave function renormalization as a function of the
rescaled field). If we project Eq. (5) onto ∼ (∇ψt)2,
where the index refers to the transverse direction, we ar-
rive at the flow equation for Zk (see, again, Appendix B
for details),

k∂kZk(ρ̄) = −Zk(ρ̄)
ρ̄λ̄2

k/π

(1 + M̄2
l,k)2(1 + M̄2

t,k)2
, (10)

where M̄2
l,k = M2

l,k/Zkk
2 and M̄2

t,k = M2
t,k/Zkk

2, while

M2
l,k and M2

t,k are the longitudinal and transverse com-

ponents of the momentum independent part of the Γ
(2)
k

matrix, respectively,

M2
l,k = λk(3ρ− ρ0,k), M2

t,k = λk(ρ− ρ0,k), (11)

and thus

M̄2
l,k = λ̄k(3ρ̄− ρ̄0,k), M̄2

t,k = λ̄k(ρ̄− ρ̄0,k). (12)

Since in Eqs. (9) it is Zk = Zk(ρ̄0,k) that appears through

η
(0)
k , we evaluate Eq. (10) at ρ̄ = ρ̄0,k and get

η
(0)
k =

ρ̄0,kλ̄
2
k

π(1 + 2ρ̄0,kλ̄k)2
. (13)

Now we can search for fixed points of Eqs. (9) and (13).

The flow diagram in terms of λ̄k and ρ̄0,k can be seen on
the left side of Fig. 3. We observe the line of quasifixed
points and notes that the flow, even though significantly
slowed down, is clearly nonzero in the aforementioned
region.

C. Wave function renormalization improvement

The key to the improvement to be described here is to
realize how crucial the role of the wave function renor-
malization factor Zk is in the previous description. In
order to escape from the CMW theorem, in the low-
temperature phase Zk has to diverge so that the renor-
malized field can condense (the expectation value of the
bare field is always zero). Since any rescaling of the field
should lead to the same description of the system, one ex-
pects that any field derivative of the wave function renor-

malization factor is proportional to Zk itself, Z
(n)
k ∼ Zk,

which means that they also diverge, and in principle none
of them should be neglected, as also pointed out, e.g., in
[41]. As announced in the preceding section, here we
take into account the first derivative of Zk, which will in-
deed lead to a significant improvement in stabilizing the
flow along the (quasi)line of fixed points, but more im-
portantly, it also makes it possible to treat the modified
Goldstone model in the FRG.

If we keep track of the field derivative of Zk, then it
is possible to take into account in ηk the implicit k de-
pendence coming from the change of the minimum of the
effective potential when the RG scale is varied, similarly
to what was done in earlier works, e.g., [46, 47]. In prin-
ciple, we should have

ηk = −kdkZk
Zk

= −k∂kZk + Z ′kk∂kρ̄0,k

Zk

= η
(0)
k − wkk∂kρ̄0,k ≡ η(0)

k + ∆ηk, (14)

where dk refers to total differentiation and on the right-
hand side both Zk and Z ′k are evaluated at ρ̄ = ρ̄0,k. We
have also introduced the notation ∆ηk = −wkk∂kρ̄0,k

with wk = Z ′k/Zk. Since Z ′k has appeared in our formula,
we also need to derive a flow equation for it. This can be
obtained from Eq. (10) after applying d/dρ̄ to the both
sides (note that ∂k does not commute with d/dρ̄). Using
that dM̄2

l,k/dρ̄ = 3λ̄k and dM̄2
t,k/dρ̄ = λ̄k, we get

k∂kZ
′
k(ρ̄0,k)/Zk(ρ̄0,k) = (15)

4ρ̄2
0,kλ̄

2
k + 6ρ̄0,kλ̄k + 2ρ̄0,kwk − 1

π(1 + 2λ̄kρ̄0,k)3
+ wkη

(0)
k ,

which leads to

k∂kwk =
4ρ̄2

0,kλ̄
2
k + 6ρ̄0,kλ̄k + 2ρ̄0,kwk − 1

π(1 + 2λ̄kρ̄0,k)3

+ 2wkη
(0)
k − w2

kk∂kρ̄0,k. (16)

At this point, it is important to mention that Eq. (15)
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FIG. 3. Comparison of (a) the leading order flow diagram with (b) the wave function renormalization improved one. The red
flows are stopped at (a) t = − log(k/Λ) = 10 and (b) t = 200 (b), which shows that a significant stabilization of the line of
fixed points is achieved with the improved approximation. For completeness, the blue flows are stopped at (a) t = 1, 5, 5, 8 and
(b) t = 2, 8.5, 20, 40 (b), respectively.

is not exact, as deriving Eq. (10) we let the field op-
erators act only on the potential part of the two-point
correlation function and not on Zk(ρ). This would have
introduced a further Z ′k(ρ) dependence on the right-hand
side of Eq. (10), which is neglected here. The reason be-
hind this is that we think of the scheme in question as a
first correction to the LPA’ in the sense that we are mo-
tivated to derive the flow of wk in the background flows
of Zk, λ̄k, and ρ̄0,k of the LPA’, which by definition are
not affected explicitly by wk itself.

Now, once we return to the aforementioned flows, i.e.,
Eqs. (9), we notice that they do depend implicitly on wk,
but only because of the new expression of the anomalous

dimension η
(0)
k → ηk = η

(0)
k + ∆ηk. This does not make

much of a difference in the flow of λ̄k, but changes that
of ρ̄0,k. The reason is that Eq. (9b) becomes an implicit
equation, since k∂kρ̄0,k also appears on the right-hand
side through ∆ηk ≡ −wkk∂kρ̄0,k. After some algebra we
arrive at

k∂kρ̄0,k =

−η(0)
k ρ̄0,k + 1

4π

(
1− η

(0)
k

4

)[
1 + 3

(1+2ρ̄0,kλ̄k)2

]
1− wk

[
ρ̄0,k + 1

16π

(
1 + 3

(1+2ρ̄0,kλ̄k)2

)] .

(17)

The flow of λ̄k is analogous to Eq. (9a), but η
(0)
k is re-

placed by ηk:

k∂kλ̄k = −2λ̄k[1− ηk] +
λ̄2
k

2π

(
1− ηk

4

)
×
[
1 +

9

(1 + 2ρ̄0,kλ̄k)3

]
. (18)

Now we solve the coupled equations (13), (16), (17) and
(18). The corresponding flow diagram can be seen on
the right-hand side of Fig. 3. The comparison shows that
taking into account the derivative of the wave function
renormalization factor in the anomalous dimension sig-
nificantly stabilizes the flow along the line of (quasi-)fixed

points, as in the improved case the freezing of the flow
holds on ∼ 20 times longer in RG time t = − log(k/Λ).

D. Phase structure

Now we are in a position to show that in the modi-
fied XY model fluctuations can dramatically change the
structure of the line of fixed points, as seen in Fig. 3.
First, note that, the ansatz of Eq. (8) and the approxima-
tion Zk(ρ̄) ≈ Zk(ρ̄0,k) + Z ′k(ρ̄0,k)(ρ̄− ρ̄0,k) is compatible
with the microscopic Hamiltonian of the modified XY
model, since from Eq. (8) we have

Γk =

∫
d2x

[Zk + Z2
kwk(ρ− ρ0,k)

2
(∇ψi)2

+
λk
2

(ρ− ρ0,k)2
]
, (19)

which is equivalent to

Γk =

∫
d2x

[
ak(∇ψi)2 + 4bk(ψj)2(∇ψi)2

+
λk
2

(ρ− ρ0,k)
2

]
, (20)

where ak = (Zk − Z2
kwkρ0,k)/2 and bk = Z2

kwk/16. Eq.
(20) is now of the form of the original Hamiltonian in
Eq. (2) using the ψi vector notation.

The reason why the RG flows of the ordinary XY
model can change dramatically is that depending on the
initial value wΛ (or bΛ, equivalently) at the UV scale, ρ̄0,k

can approach a singularity, which sends the flows in the
λ̄k-ρ̄k plane away from the line of fixed points. What es-
sentially happens is that the line of quasifixed points ter-
minates also at another end point (Fig. 4). The end point
on the left corresponds to a BKT transition at higher
temperature and the new one on the right signals an-
other transition at lower temperature. Even though the
method does not make a definite prediction, this should
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FIG. 4. Flow diagram for the modified XY model with the initial condition wΛ = 0.4. The red curves end on the line of fixed
points, while the blue ones deviate from it. The fixed line is terminating at two endpoints, the left one corresponding to the
high-temperature transition (BKT) and the right one controlling the low-temperature transition. The position of the latter
depends on the initial value wΛ (note that the position of the former is not sensitive to wΛ, if it exists). The flows become
divergent in the shaded region of the parameter space in accordance with (21).

correspond to the Ising transition already reported in ear-
lier papers [22–24].

Analyzing the flow of ρ̄k, we note that already in the
ordinary XY model, i.e., for wΛ = 0, at first sight it
might seem possible that the denominator on the right-
hand side of Eq. (17) becomes zero, but it turns out that
this never happens. The flow equation always makes wk
decrease as fluctuations are integrated out, and therefore
the flows are regular. Note, however, if at the microscopic
scale, wΛ > 0, then k∂kρ̄0,k can indeed blow up.

The condition that needs to be met for a diverging flow
is

w−1
Λ < ρ̄0,Λ +

1

16π

(
1 +

3

(1 + 2ρ̄0,Λλ̄Λ)2

)
, (21)

which shows that for positive wΛ values the line of fixed
points can also terminate on the right (see Fig. 4), leading
to a two-step transition. For later reference, just as in
Sec. II, we restrict ourselves to the case

a2
Λ + b2Λ = 1, (22)

i.e., we may use the parametrization aΛ = cos θ and
bΛ = sin θ (θ ∈ [0, π/2]), which leads to the following
constraints:

cos θ = ZΛ(1− ZΛwΛρ0,Λ)/2, (23)

sin θ = Z2
ΛwΛ/16. (24)

Solving them for wΛ and ZΛ, we get

ZΛ = 2(cos θ + 8ρ0,Λ sin θ), (25)

wΛ =
4 sin θ

(cos θ + 8ρ0,Λ sin θ)2
. (26)

Dropping the last term in the large parantheses of the
right-hand side of Eq. (21) (we are interested in a rough

estimate), we can get the following condition for the crit-
ical value of ρ0,Λ belonging to the second endpoint of the
line of (quasi)fixed points:

0 = − (cos θ + 8ρ0,Λ sin θ)2

4 sin θ

+ 2(cos θ + 8ρ0,Λ sin θ)ρ0,Λ +
1

16π
. (27)

For a given θ, we solve this equation for ρ0,Λ (see the
endpoint on the right-side of Fig. 4). Surprisingly, if θ 6=
0 is small, i.e. we are close to the XY model, the solution
ρ0,Λ| sol is always negative. This means that since the
flows blow up for initial values ρ0,Λ > ρ0,Λ| sol , unless
ρ̄0,Λ| sol ≡ ZΛρ0,Λ| sol ≈ 0.5 (which is the location of the
original endpoint of the BKT transition), the line of fixed
points completely disappears. The critical angle at which
this happens is

θc ≈ 86.8◦. (28)

That is to say, for 0 6= θ < θc, if there is a transition in the
system, it cannot be of topological type, no matter how
close we are to the XY model (still, at θ = 0 we have one,
and only one BKT transition). However, once θ > θc, the
line of fixed points starts to return to the picture, now
equipped with another end point, which indicates that
there exist two transitions. A higher-temperature transi-
tion has to be of BKT type and a lower-temperature tran-
sition, presumably an Ising transition [24], is expected to
be of second order. Note that the aforementioned struc-
ture heavily relies on the assumption a2

Λ + b2Λ = 1. Had
we not had this constraint and just set, e.g., aΛ ≡ 1, we
would have found a two-step transition for 0 < b < bc
(the higher-temperature one being topological), and no
topological transition for b > bc (here bc > 0 is some
positive constant).
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IV. NUMERICAL SIMULATIONS

In this section we numerically investigate the equilib-
rium properties of the modified Goldstone model defined
in Eq. (2).

A. Preparation

The discretized Hamiltonian H∆x from Eq. (2) be-
comes

H∆x = H1 +H2,

H1 = a
∑
〈i,j〉

|ψi − ψj |2 + b
∑
〈i,j〉

|ψ2
i − ψ2

j |2,

H2 =
λ∆x2

2

∑
i

(|ψi|2/2− ρ0)2,

(29)

where ψi is the field ψ at the discretized point ~x = ~xi
and ∆x is the lattice spacing (which serves as an ultra-
violet cutoff scale). In the limit of λ→∞ and rewriting
ψ =

√
2ρ0e

iθi , the discretized Hamiltonian H∆x becomes
equivalent to the Hamiltonian HmXY in Eq. (1) for the
modified XY model with J = 4aρ0 and J ′ = 8bρ2

0.
Now we numerically calculate equilibrium ensemble av-

erages

〈f〉 =

∫ (∏
i

dψidψ
∗
i

)∑
i

fe−H∆x/T

∫ (∏
i

dψidψ
∗
i

)∑
i

e−H∆x/T

, (30)

by using the Monte Carlo technique. First, by fixing
the amplitude |ψi| of the field, we use the cluster Monte
Carlo technique with the Wolff algorithm [48]. Then, to
accelerate the equilibration process, we alternately apply
the Wolff algorithm to equilibrate the phase θi = arg[ψi]
and the standard Metropolis-Hastings algorithm to equi-
librate the amplitude |ψi|. For numerical parameters, we
have used ∆x = 1, ρ0 = 1/2. Similarly to the preceding
section, we parametrize a and b as in Eq. (22),

a = cos θ, b = sin θ, a2 + b2 = 1. (31)

B. Correlation function and transition temperature

We first show our results for the two correlation func-
tions

G1(r) =
∑
i

∑
r≤|xj |<r+∆x

∆x2〈ψ∗i+jψi〉
N(r)L2

,

G2(r) =
∑
i

∑
r≤|xj |<r+∆x

∆x2〈ψ∗ 2
i+jψ

2
i 〉

N(r)L2
,

(32)

where L is the system size and N(r) is the number of
points, xi, that satisfy r ≤ |xi| < r + ∆x. When
θ = 0 (θ = π/2), we expect the standard BKT tran-
sition triggered by integer vortices (half-quantized vor-
tices) for ψi (ψ2

i ) and the algebraic decay G1(r) ∝ r−η

[G2(r) ∝ r−η] below the BKT transition temperature.
At the BKT transition temperature, the critical expo-
nent satisfies η = 1/4 [3, 4]. To obtain the BKT tran-
sition temperature, therefore, we can use the finite-size
scaling of the correlation functions, in which G(1,2)/r−1/4

is expected to be a universal function of r/L. Figure 5

0.8

1.2

1.6

2

2.4

0 0.1 0.2 0.3 0.4 0.5

G
1
(r
)/
L
−
1
/
4

r/L

λ = 8

L = 32
64
128

FIG. 5. Finite-size scaling of G1(r) with θ = 0 and λ = 8
at the BKT transition temperature TBKT

1 = 0.60T ∗ with the
critical exponent η = 1/4. The system sizes are L = 32
(crosses), L = 64 (open squares), and L = 128 (open circles).
We use the same symbols for the system size L in all other
figures unless otherwise noted.

shows the dependence of G1(r)/L−1/4 with θ = 0 and
λ = 8 as a function of r/L at T = 0.6T ∗ where T ∗ is
the BKT transition temperature for the standard XY
model with θ = 0 and λ → ∞. The expected univer-
sality of G1(r) is sufficiently satisfied at large r, which,
therefore, predicts that the BKT transition temperature
is TBKT

1 ' 0.6T ∗. In the same way, we can estimate the
temperature TBKT

2 ' 0.21T ∗ with θ = π/2 and λ = 8
from the finite-size scaling of G2(r).

We further expect the appearance of a second-order,
Ising-type phase transition [24], where the domain of def-
inition for the phase of the ψ field is spontaneously bro-
ken from [0,2π] to [0,π], which can be thought of as a
spontaneous breaking of a discrete Z2 symmetry. At the
critical temperature for this phase transition, the cor-
relation function also shows algebraic decay. Since the
critical exponent η takes the same value as that of the
BKT transition temperature, i.e., η = 1/4 for the two-
dimensional Ising-type transition, we can use the same
finite-size scaling analysis as shown in Fig. 5. We here
define the temperature T1 (T2) at which G1(r) [G2(r)]
shows the algebraic decay G1 ∝ r−1/4 [G2(r) ∝ r−1/4].
Then, by definition, T1 = TBKT

1 at θ = 0 and T2 = TBKT
2

at θ = π/2. Denoting by θ1 and θ2 critical angles, we
have found the following results for T1 and T2.

1. When θ is small, i.e., θ ≤ θ1, then T1 > T2.
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2. When θ is large, i.e., θ2 < θ < π/2, then T1 < T2.

3. When λ is finite, then θ1 < θ2. For θ1 < θ ≤ θ2,
neither G1(r) nor G2(r) satisfies G1,2(r) ∝ r−1/4 at
any temperatures and both T1 and T2 are absent.

4. When λ → ∞ for the modified XY model, then
θ1 = θ2, i.e., both T1 and T2 always exist at any θ.

λ θ1 θ2

8 50.8◦ 84.5◦

16 66.0◦ 79.6◦

∞ 64.2◦

TABLE I. Specific values of θ1 and θ2 at λ = 8, 16, and ∞
(modified XY model).

The specific values of θ1 and θ2 are shown in Table I.

C. Superfluid density and specific heat

To determine the type of the transitions, we calculate
the superfluid density ρs defined as [49, 50]

ρs =
1

(a+ 4b)L2
lim
δ→0

F (δ)− F (0)

δ2
(33)

and the specific heat C = d〈H〉/dT , where F (δ) =
−T log〈e−H/T 〉 is the free energy under the argument-
twisted boundary condition ψ(x+L) = eiδ·Lψ(x). When
a BKT transition occurs at the transition temperature
TBKT, the universal jump ∆ρs of the superfluid density
is

∆ρs =
TBKT

π
. (34)

On the other hand, for second-order transitions we expect
close to the corresponding critical temperature (T 2nd)
that the superfluid density obeys ρs ∝ (T 2nd − T )ζ . The
critical exponent ζ is obtained by the Josephson relation
ζ = 2β−νη, where β, ν, and η are the critical exponents
of the order parameter, the correlation length, and the
correlation function, respectively. By inserting β = 1/8,
ν = 1, and η = 1/4 for the Ising-type transition, we
obtain ζ = 0, i.e., the superfluid density also jumps at the
transition temperature, similarly to the BKT transition.
However, no universal relation holds, which allows for a
distinction between the two.

Figure 6 shows the dependence of the superfluid den-
sity with respect to the temperature for θ = 0◦ [Fig. 6(a)]
and θ = 10◦ [Fig. 6(b)]. The solid line shows the rela-
tion ρs = T/π. In Fig. 6(a) this line intersects ρs with
a good accuracy at T1, suggesting the standard univer-
sal relation related to the BKT transition temperature,
i.e., we indeed observe a topological transition. In Fig.
6(b), however, ρs deviates from the aforementioned line
at T1 and therefore we expect that the transition is of

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

ρ
s
/ρ

T/T ∗

λ = 8, θ = 0◦
(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6

ρ
s
/ρ

T/T ∗

λ = 8, θ = 10◦

FIG. 6. Temperature dependence of the superfluid density
ρs for λ = 8 at (a) θ = 0◦ and (b) θ = 10◦ [the panel (b)].
The solid, dashed, and dash-dotted lines show the relation
ρs = T/π, where T = T1, and T = T2, respectively.

second order, with a nonuniversal jump at the transition
temperature. Here we relabel T1 ≡ T 2nd

1 . In neither of
the panels do we find any characteristic structure in ρs at
T = T2. We therefore conclude that the property of the
correlation function G2 ∝ r−1/4 is just the crossover and
we relabel T2 as the crossover temperature T2 ≡ TCO

2 .

(a)
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λ = 8, θ = 60◦
(b)
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FIG. 7. Temperature dependence of the superfluid density ρs

for λ = 8 and (a) θ = 60◦ and (b) θ = 87◦. The solid line
shows the relation ρs = T/π. The dash-double-dotted line
in (a) shows the estimated first-order transition temperature
T 1st
∗ . The dashed and the dash-dotted lines (b) show T = T1

and T = T2, respectively.

Figure 7 shows the dependence of the superfluid den-
sity on the temperature for θ = 60◦ [Fig. 7(a)] and
θ = 85◦ [Fig. 7(b)]. As shown in Table I, the value
θ = 60◦ is between θ1 and θ2 for λ = 8, and we find nei-
ther a BKT nor a second-order phase transition. Instead,
what we see is a first order phase transition due to the
sharp jump of the superfluid density ρs [see Fig. 7 (a)].
Because the temperature at which the superfluid density
ρs jumps does not really depend on the system size L,
its estimation is fairly simple. We denote this transition
temperature by T 1st

∗ . In Fig. 7 (b), i.e., for θ = 87◦, θ is
larger than θ2 and the superfluid density ρs does show the
universal relation (34) at the corresponding temperature,
T = T2. Therefore, we find again a BKT transition with
the aforementioned transition temperature, relabeling it
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as T2 ≡ TBKT
2 .

(a)

0

1

2
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4

5

0◦ 30◦ 60◦ 90◦

∆
ρ
s
/∆

ρ
s
0
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λ = 8

(b)
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1
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∆
ρ
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ρ
s
0
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λ = 16

FIG. 8. Jump of the superfluid density ∆ρs normalized by
∆ρs0 for (a) λ = 8 and (b) λ = 16. The dashed and dash-
doted lines show θ1 and θ2, respectively.

Figure 8 shows the jump of the superfluid density ∆ρs

at the phase transition as a function of θ, normalized by
∆ρs0, which is the value for the universal jump (34) for
the BKT transition. It is specifically defined as (note
that T1, T 1st

∗ , and T2 depend on θ)

∆ρs0 =



T1

π
, 0 ≤ θ < θ1

T 1st
∗
π

, θ1 ≤ θ < θ2

T2

π
, θ2 ≤ θ ≤

π

2
.

(35)

We estimate the value of the jump ∆ρs by fitting the
superfluid density ρs at the transition temperature, i.e.
T1 for 0 ≤ θ < θ1, T 1st

∗ for θ1 ≤ θ < θ2, and T2 for
θ2 ≤ θ ≤ π/2, via the function

ρs(θ, L) = ∆ρs(θ) +
a(θ)

L
, (36)

where a is a θ-dependent constant. For θ = 0 and θ > θ2,
the relation ∆ρs ' ∆ρs0 is satisfied; therefore, we find
BKT transitions with the transition temperature TBKT

1

for θ = 0 and TBKT
2 for θ1 ≤ θ ≤ π/2. For other values,

the universal relation does not hold and the transition
becomes of second order for 0 < θ < θ1, and of first
order for θ1 < θ ≤ θ2.

Figure 9 shows the specific heat C. Whereas the spe-
cific heat has a single peak near the transition tempera-
ture for θ < θ2, i.e., in Figs. 9(a)-(c), it has double peaks
for θ ≥ θ2, suggesting two-step transitions. In the latter
case, the first and second peaks of the specific heat cor-
respond to the temperatures T1 and T2, respectively. Be-
cause the correlation function G1 becomes G1 ∝ r−1/4 at
T = T1 and the phase at T < T1 should be continuously
connected from the phase with θ < θ2 (see Fig. 10), the
transition at T1 should indeed be of second order. The
absence of the peak at T = T2 for θ < θ1 consolidates
our conclusion that here T2 gives not the transition, but
only a crossover as TCO

2 .
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FIG. 9. Temperature dependence of the specific heat C for
λ = 8 and (a) θ = 0◦, (b) θ = 10◦, (c) θ = 60◦, and (d) θ =
87◦. The dash-double-dotted line in (c) shows the estimated
first-order transition temperature T 1st

∗ . The dashed and dash-
dotted lines in (a), (b), and (d) show T = T1 and T = T2,
respectively.

D. Phase diagram

Figure 10 shows the phase diagram of the modified
Goldstone model in Eq. (29). For θ = 0, there is the
standard BKT transition with the transition tempera-
ture T1 ≡ TBKT

1 . At T < TBKT
1 , integer vortex pairs are

bounded to show a quasi-long-range ordered phase. For
0 < θ < θ1, this BKT transition changes to a second-
order phase transition with the transition temperature
T1 ≡ T 2nd

1 , implying a true long-range-order phase for
T < T 2nd

1 with the breaking of the Z2 symmetry. For
θ1 ≤ θ < θ2, the two temperatures T 2nd

1 and TCO
2 de-

fined for 0 < θ < θ1 merge to one first-order transition
temperature, T 1st

∗ . For θ2 ≤ θ ≤ π/2, this transition tem-
perature, T 1st

∗ , splits again into two transition tempera-
tures T 2nd

1 and TBKT
2 . The second-order phase transi-

tion ultimately disappears, as while θ → π/2, T 2nd
1 → 0.

Unlike the BKT transition for θ = 0, the BKT transi-
tion for θ2 ≤ θ ≤ π/2 is triggered by the correlation
function G2 (not G1), and therefore we expect the quasi-
long-range order phase by the bounding of half-quantized
vortex pairs at T 2nd

1 < T < TBKT
2 . Because the low-

temperature phases, i.e., T < T 1st
∗ for θ1 ≤ θ < θ2 and

T < T 2nd
1 for θ2 ≤ θ ≤ π/2, should be continuously con-

nected to the long-range-order phase at 0 < θ < θ1, these
phases should also be of true long-range order.
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FIG. 10. Phase diagram in the θ-T plane for (a) λ = 8 and
(b) λ = 16. The thick line at θ = 0 is the quasi-long-range
order phase with bounded integer vortex pairs. The violet
and pink regions indicate the true long-range-order phase and
the quasi-long-range order phase with bounded half-quantized
vortex pairs, respectively. The solid, dashed, and dash-dotted
lines correspond to the phase boundaries for the BKT, second-
order, and first-order transition temperatures TBKT

2 , T 2nd
1 ,

and T 1st
∗ , respectively. The dotted line indicates the crossover

temperature TCO
2 .

Here we wish to establish the relationship between the
phase diagram and the (quasi-)breaking patterns of sym-
metry summarized in Eqs. (4a)-(4d). The BKT tran-
sition at the temperature TBKT

1 with θ = 0◦ gives the
quasibreaking U(1) 99K 1 in Eq. (4a). The second and
first-order phase transitions at the temperatures T 2nd

1

and T 1st
∗ with 0◦ < θ ≤ θ2, respectively, give the simulta-

neous (quasi)breaking U(1) =⇒ 1 in Eq. (4d). The two-
step transition at the temperatures TBKT

2 and T 2nd
1 with

θ2 < θ < 90◦ gives the two successive (quasi)breaking
of symmetries U(1) 99K Z2 −→ 1 in Eq. (4c). As for
θ = 90◦, the BKT transition at the temperature TBKT

2

gives the quasi-breaking U(1)/Z2 99K 1. Here the second-
order phase transition does not occur because of T 2nd

1 = 0
for θ = 90◦.
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FIG. 11. (a) Jump of the superfluid density ∆ρs and (b) phase
diagram in the θ-T plane for λ = ∞. The dashed line in (a)
and those in the colored regions in (b) are the same as those
in Figs. 8 and 10, respectively.

Finally, in Fig. 11 we show the jump of the superfluid
density ∆ρs and the phase diagram in the λ = ∞ limit,

in which the modified Goldstone model reduces to the
modified XY model. As the coupling λ increases, the
region of the first-order phase transition for θ1 < θ ≤ θ2

shrinks and ultimately disappears.

E. Vortex configurations

Here we discuss the relationship between topological
defects (such as integer and half-integer vortices and one-
dimensional solitons considered in Sec. II) and the cor-
responding phase transitions. At the BKT transition
temperature TBKT

1 with θ = 0◦, the number of inte-
ger vortex-antivortex pairs is changing rapidly due to
their bounding. At the second and first-order transition
temperatures T 2nd

2 and T 1st
1 , the Z2 symmetry breaking

causes the rapid decrease of one-dimensional solitons. At
the BKT transition temperature TBKT

2 with θ > θ2, the
number of half-integer vortex-antivortex pairs changes
rapidly. The vortexmolecules, which contain two half-
quantized vortices should be stable in order for the BKT
transition to exist at the temperature TBKT

2 . On the
other hand, the stability of one-dimensional solitons is
enough for the existence of the Z2 symmetry breaking.
The stability of vortex molecules for θ & 78◦ and of one-
dimensional solitons for θ & 15◦ in the case of λ = 8 is
consistent with the existence of TBKT

2 for θ > θ2 ≈ 84.5◦,
and the Z2 symmetry breaking at T 2nd

1 or T 1st
∗ for θ > 0.

We next show snapshots of vortex configurations and
the phase profile at the transition temperatures in
Fig. 12. In all the panels, most vortices and antivortices
form paired states with short distances. Furthermore,
most of them lie on the solitons that appear as bound-
aries between the two phases arg[ψ] ∼ 0 and arg[ψ] ∼ π.

Figure 13 shows the distribution function P (arg[ψ])
corresponding to the snapshot of the phase profile. In
Fig. 13 (b) for θ = 87◦, the stability of one-dimensional
solitons can be clearly seen from the double-peaked struc-
ture of P (arg[ψ]) at Arg[ψ] = 0 and arg[ψ] = π. At T =
TBKT

2 , the Z2 symmetry is not broken and the heights
of two peaks are the same. On the other hand, breaking
of the Z2 symmetry at T = T 2nd

1 can be confirmed via
the existence of imbalanced peaks P (0) > P (π). This
imbalanced distribution can also be seen in Fig. 12 (d),
where the region with arg[ψ] ∼ 0 is apparently larger
than that with arg[ψ] = π and Arg[ψ] = −π. Note that,
in Fig. 13 (a) for θ = 10◦ and θ = 60◦, however, the
double peaked structure is absent and there is only one
single peak at arg[ψ] = 0. We believe that this absence
comes from finite-size effects and it is expected that the
double-peaked structure is restored with larger system
size. We note that all the peaked structures shown in
Figs. 13(a) and 13(b) come from finite-size effects and
they become completely flat in the thermodynamic limit
due to the CMW theorem.
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(a) (b)

(c) (d)

FIG. 12. Snapshots of the vortex configurations and the phase
profiles for L = 64, λ = 8 and (a) θ = 10◦ and T = T 2nd

1 ,
(b) θ = 60◦ and T = T 1st

∗ , (c) θ = 87◦ and T = TBKT
2 , and

(d) θ = 87◦ and T = T 2nd
1 . The blue and red closed (open)

circles denote the positions of integer (half-integer) vortices
and antivortices, respectively.
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FIG. 13. Distribution functions P (arg[ψ]) corresponding to
the snapshots of the phase profile with L = 128, λ = 8 and
(a) θ = 10◦ and T = T 2nd

1 (black) and θ = 60◦ and T = T 1st
∗

(green), and (b) θ = 87◦ and T = TBKT
2 (red) and (d) θ = 87◦

and T = T 2nd
1 (black).

V. SUMMARY

In this paper, we first defined the modified Goldstone
model in Eq. (2) as a regular and continuum version of
the modified XY model and constructed a soliton, an in-
teger vortex and a molecule of half-quantized vortices
connected by a soliton. Then we analyzed the phase
structure of the modified Goldstone model in two dimen-
sions via two different approaches. First, by using the

functional renormalization group technique, we showed
how to describe BKT transitions by calculating the scale
evolution of the effective Hamiltonian. Based on earlier
works, we constructed an approximation scheme of the
RG flow equations, where the field dependence of the
wave function renormalization is taken into account at
the lowest order. In the standard Goldstone model it
has led to a more accurate description of the underlying
structure of a line of fixed points, and it has also turned
out to be of particular importance when one is interested

in the role of the modified kinetic term ∼ |~∇ψ2|2, by re-
vealing a second endpoint of the line of fixed points. The
FRG method predicts that in the modified model there
can exist a two-step phase transition, depending on the
ratio between the coefficients of the standard and mod-
ified kinetic terms. It has also been shown that even if
the coefficient of the modified kinetic term is not large
enough to split the phase transition into two, it is capable
of completely destroying its topological nature.

In addition, this scenario has been verified to great ac-
curacy via full numerical simulation of the system by the
Monte Carlo method. Through predicting critical tem-
peratures and calculating the superfluid density with the
specific heat numerically, we have confirmed the following
properties of the phase structure. If only the standard
or modified kinetic terms are present, the system under-
goes one, and only one phase transition, which is of BKT
type, corresponding to vortex and half-vortex unbinding,
respectively. If both terms are present, depending on the
ratio between their coefficients, and by assuming that
their square sum equals unity (a2 + b2 = 1), there exist
either one or two transitions. If there is only one transi-
tion, it is never topological and can be of both first and
second order. If there are two transitions, then the one
corresponding to the higher temperature is of BKT type,
presumably related to half-vortex unbinding, while the
other transition is of Ising type.

It would be interesting to improve upon the present
renormalization group approximation scheme. Since
higher-field derivatives of the wave function renormaliza-
tion factor could also play an important role for BKT-like
transitions, it would be interesting to derive a tower of
equations for the aforementioned factors, and solve them
simultaneously [46, 47]. Furthermore, the present scheme
has only predicted the existence of a different end point
of the line of fixed points, which indicated a second tran-
sition, but due to the singular nature of the flows below
temperatures of the aforementioned transition, details of
the transition could not have been explored. It would be
particularly important to find a scheme which can over-
come this shortcoming.

The results of this paper can be contrasted to an-
other model admitting a vortex molecule solution of half-
quantized vortices connected by a soliton, that is, coher-
ently coupled Bose-Einstein condensates or two-gap su-
perconductors [51] and spin-1 spinor Bose-Einstein con-
densates under the quadratic Zeeman field [52]. In this
case, a two-step phase transition does not occur when two
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components are coupled by a Josephson interaction or a
quadratic Zeeman field, while it can occur when they are
decoupled. Essential differences between this case and
that of the modified Goldstone model discussed in this
paper are yet to be clarified.

As an important application of the modified Gold-
stone model, we suggest a two-dimensional crystal sys-
tem, where the perfect crystal is forbidden by the CMW
theorem. In this system, there are two different kinds
of topological excitations; a dislocation and a disclina-
tion corresponding to spontaneous breaking of the trans-
lational and rotational symmetries, respectively. The
dislocation can be topologically equivalent to a pair of
disclinations. The Kosterlitz-Thouless-Nelson-Halperin-
Young theory predicts a two-step transition [16, 17],
i.e., the BKT-like transition from the disordered phase
to the isotropic hexatic phase in which only the quasi-
long-range rotational order appears and disclinations are
not bounded into dislocations and the first-order transi-
tion from the hexatic phase to the crystal phase having
the quasi-long-range rotational order and the long-range
translational order. The mechanism for the two-step
transition in this system has almost the same scenario as
that for the modified Goldstone model, i.e., dislocations
and disclinations correspond to integer and half-integer
vortices, respectively. Whereas a two-step transition has
been observed in a two-dimensional colloidal crystal [18],
single first-order transitions have been observed in sev-
eral two-dimensional crystal systems [53], and both single
and two-step transitions have been reported in a helium
film at low temperatures [19], depending on the density
of helium atoms. Our modified Goldstone model (2) can
become a toy model for these systems, i.e., a/b and λ
correspond to the ratio between the energies of discli-
nations and dislocations, and the compressibility of the
system, respectively, and may give some intuitive guid-
ing principle about the type of phase transitions in this
system.

Our study of the modified Goldstone model in two
Euclidean dimensions has revealed that there exist two-
step phase transitions related to half-quantized vortex
molecules connected by domain walls. It is an open ques-
tion whether there is any higher dimensional model al-
lowing a two-step phase transition. For instance, in three
dimensions, a pair of a monopole and an anti-monopole
connected by a string may play a crucial role.
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Appendix A. CONTINUUM VERSION OF THE
MODIFIED XY MODEL

In this appendix we show how to derive the Hamil-
tonian (2) from the microscopic lattice model (1). The
reformulation in terms of a continuum theory is based on
the equivalence of the partition function. By definition
we have

Z =

∫
Dϑ exp

{∑
x,i

[J
2

cos(∇iϑx) +
J ′

2
cos(2∇iϑx)

]}
,

(A1)

where ∇iϑx = ϑx − ϑx+i, the sum over x goes through
the whole lattice, the sum over i refers to the neighbors
(i = 1, ..., 4), and we absorbed the inverse temperature
β into the couplings J and J ′. Introducing the notation
Ψx = exp iϑx, we have

Z =

∫
Dϑ exp

{1

4

∑
x,i

(JΨxΨ∗x+i + J ′Ψ2
xΨ∗2x+i + c.c. )

}
.

(A2)

Now we introduce a complex field ψx via delta functions

Z =

∫
DϑDψDψ∗

∏
x

δ(ψx −Ψx)δ(ψ∗x −Ψ∗x)

× exp
{1

4

∑
x,i

(Jψxψ
∗
x+i + J ′ψ2

xψ
∗2
x+i + c.c. )

}
.(A3)

The δ functions can be represented using a complex aux-
iliary field αx:

Z =

∫
DϑDψDψ∗DαDα∗ exp

{
− 1

2

∑
x

[
i(ψx −Ψx)αx

+ c.c.
]

+
1

4

∑
x,i

(Jψxψ
∗
x+i + J ′ψ2

xψ
∗2
x+i + c.c. )

}
. (A4)

Using that ∫ 2π

0

dϑ

2π
exp(|α| cosϑ) = I0(|α|), (A5)
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where I0 is the Bessel function, we get

Z =

∫
DψDψ∗ exp

{1

4

∑
x,i

(Jψxψ
∗
x+i + J ′ψ2

xψ
∗2
x+i + c.c. )

}
∫
DαDα∗ exp

{
− 1

2

∑
x

[
iψxαx + c.c. − 2 log I0(|αx|)

]}
.

(A6)

Using the notation ρx = |ψx|2/2, we define a potential
term U(ρx) through the equation

exp
{
−
∑
x

[
U(ρx) + 2J |ψx|2 + 2J ′|ψ2

x|2
]}

=∫
DαDα∗ exp

{
− 1

2

∑
x

[
iψxαx + c.c. − 2 log I0(|αx|)

]}
,

(A7)

and as a final step we take the continuum limit. Then∑
x,i

ψxψ
∗
x+i ≈ 4

∑
x

|ψx|2 +

∫
d2xψ(x)∆ψ∗(x), (A8a)

∑
x,i

ψ2
xψ
∗2
x+i ≈ 4

∑
x

|ψ2
x|2 +

∫
d2xψ2(x)∆ψ∗2(x),(A8b)

and the partition function takes the (continuum) form

Z =

∫
DψDψ∗ exp

{
−
∫
d2x
[J

2
|∇ψ(x)|2 +

J ′

2
|∇ψ2(x)|2

+U(ρ(x))
]}
. (A9)

Note that we have rescaled the effective potential with
the square of the lattice spacing. Using the notation a =
J/2 and b = J ′/2, and expanding the potential around
its minimum

U(ρ) ≈ λ

2
(ρ− ρ0)2, (A10)

we find that Eq. (A9) is the partition function of a system
with the Hamiltonian

H =

∫
x

[
a|∇ψ|2 + b|∇ψ2|2 +

λ

2

(
|ψ|2/2− ρ0

)2]
,(A11)

which completes the derivation.

Appendix B. FLOW EQUATIONS

In this appendix, we show how to derive the flow equa-
tions (9) and (10) of the LPA’. Using the notation

Uk(ρ) =
λk
2

(ρ− ρ0,k)2, (B1)

with the help of Eq. (7), we derive from Eq. (5) that

k∂kUk =
k4

4π

[
1− ηk

4

]( 1

k2 +M2
t /Z

2
k

+
1

k2 +M2
l /Z

2
k

)
,

(B2)

where M2
k,t and M2

k,l are the transversal and longitudinal

components of the mass matrix M2
k , respectively,

M2
k,ab = M2

k,tδatδbt +M2
k,lδalδbl,

M2
k,t = U ′k(ρ), M2

k,l = U ′k(ρ) + 2ρU ′′k (ρ), (B3)

and ηk = − 1
Zk

dZk

dk is the anomalous dimension. Expand-
ing the right-hand side with respect to ρ, we compare it
with the left-hand side and identify the flows k∂kλk and
k∂kρ0,k leading to Eqs. (9a) and (9b), respectively.

For the flow of Zk and thus the expression
of the anomalous dimension, we let the operator
δ2/δψj(−p)δψi(p) act on both sides of Eq. (5). Then
we arrive at

k∂kΓ
(2)
k,ij(p,−p) =

∫
q

k∂kRk(q)[Γ
(2)
k +Rk]−1

ab (q)

× [Γ
(2)
k +Rk]−1

cd (q − p)[Γ(2)
k +Rk]−1

ea (q)

× Γ
(3)
k,bcjΓ

(3)
k,dei, (B4)

where Γ
(2)
k and Γ

(3)
k are the second and third functional

derivatives of Γk, respectively,

Γ
(2)
k,ab(q) = (Zkq

2δab +M2
ab)
−1, (B5)

Γ
(3)
k,abc = λk(δabψc + δbcψa + δcaψb), (B6)

where we see that the Γ
(3)
k vertex is momentum inde-

pendent in the LPA’ approximation (8). Note that, in
principle, the wave function renormalization factors in
the broken phase are different for the longitudinal and
transverse components. When deriving the flow of Zk,
we take into account only the transverse component. As-
suming that ψi = δilψ is a homogeneous background, the
tt component of Eq. (B4) reads

k∂kΓ
(2)
tt (p,−p) = 2ρλ2

k

∫
q

k∂kRk(q)

×
[
(Γ

(2)
k +Rk)−2

ll (q)(Γ
(2)
k +Rk)−1

tt (q + p)

+ (Γ
(2)
k +Rk)−2

tt (q)(Γ
(2)
k +Rk)−1

ll (q + p)
]
.

(B7)

Since ∂kRk(q) ∼ Θ(k2 − q2), the integral is restricted to
0 < |q| < k, and we can substitute Zkq

2 +Rk(q)→ Zkk
2

in the two-point functions. Then we get

k∂kΓ
(2)
k,tt(p,−p) = 2ρλ2

k

∫
|q|<k

fk(q)(Zkk
2 +M2

k,l)
−2

× [Zk(q + p)2 +M2
k,t +Rk(p+ q)]−1 + {t↔ l},

(B8)
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where fk(q) = k[2kZk + (k2 − q2)∂kZk]. Now we project
both sides of Eq. (B8) onto the O(p2) piece. The left-
hand side is simply

lhs = k∂kZk(ρ)p2, (B9)

while for the right-hand side we have

rhs =
2ρλ2

k

(Zkk2 +M2
k,l)

[∫
q+<|q|<k

Θ(x > 0)

×
(

fk(q)

Zk(p2 + 2pqx+ q2) +M2
k,t

− fk(q)

Zkk2 +M2
k,t

)]
+ {t↔ l}+O(p3), (B10)

where x = p̂q̂, and q+ = k−px+O(p2). After performing
the integral, we compare Eqs. (B10) with (B9) and arrive
at

k∂kZk(ρ)p2 = − ρλ2
kk

4Z2
k

π(Zkk2 +M2
k,l)

2(Zkk2 +M2
k,t)

2
p2,

(B11)

which leads to Eq. (10).
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