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ABSTRACT 

 

 An artificial intelligence-based approach of estimating remaining useful life for Li-ion batteries 

has been used in this work, where two different recursive neural networks were set up, trained and 

investigated for two different scenarios.  

The investigated battery type is the widely used 18650 battery class. The training and prediction 

of both networks are performed on a publicly available high-quality dataset that serves as a base 

for several related research works. The batteries are charged/discharged until they reach their 

end of life by means of capacity degradation. The charge and discharge were performed under 

different charging current/load profiles.  

Out of the available data-driven methods, LSTM (long-short term memory) and GRU (Gated 

Recurrent Unit) neural networks are the most promising candidate since they are capable of the 

handling of long-term processes, such as battery aging. 

The two networks are parameterized, trained and tested for two different scenarios.  
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INTRODUCTION 

Battery aging is associated with how long it has been used since the production. The aging is 

originated from two different types of usage: storage and dynamic usage. Calendar aging 

describes the aging process caused by the storage of the battery. Lithium ion batteries 

irreversibly lose their capacity over time because of the electrochemical reactions on the 

electrodes. Capacity fading and the increasing internal resistance are the most conspicuous 

signs of battery aging [1] [2]. The degradation of the battery caused by the charging and 

discharging is known as cycle aging. The cycle aging is related to the utilization of the battery. 

The utilization mode depends on the different application areas which have different 

charging/discharging profiles. 

 

 There are several factors which affects the battery aging. The most important ones are the depth 

of discharge, current rate, charging/discharging voltage, resting time between cycles and 

temperature [3] [4]. These properties all contribute to the aging of the battery. They are usually 

examined in pairs when someone wants to develop a cycle life model. 
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 Though the change of capacity and internal resistance are the two main symptoms of the battery 

aging, some papers concentrate only on the capacity fading when developing cycle life models. 

For example in [5]  a capacity model is created which can be used to estimate the cycle life of 

the battery, or in [6] a capacity degradation model of lithium ion batteries was developed to 

predict remaining useful life. The battery capacity was estimated by nonlinear least-squares 

regression. 

 

In [7] the aging of the battery is analysed under different conditions. During the experiments 

the dependence of the internal resistance and the capacity on the cycle number is examined. 

The capacity fading and the internal resistance are not independent of each other. In [8] the 

correlation between these two quantities was analysed during calendar and cycle life. For a 

more thorough literature review, see [9]. 

 

The aim of the present work is to develop an artificial intelligence-based method for the 

Remaining useful life estimation of Li-ion batteries. The structure of the paper is as follows. 

The necessary tools and information need for the understanding of the rest of the paper is 

summarized in Basic notions. Afterwards, the applied methodology is presented in detail. The 

list of abbreviations used in the paper is given in 3. Table. 

BASIC NOTIONS 

The most important notions used in the paper are introduced in this section. 

Lithium-ion batteries 

Lithium-ion batteries are used around the world and though over the last few years they have 

had some competitor, such as sodium and magnesium, the Li-ion batteries continue to be 

indispensable due to their high density and capacity. The main problem is that this metal lithium 

has major availability and concentration problems in the planet. Almost 85% of its reserves are 

in what is known as the Lithium Triangle, a geographical area in South of America found on 

the borders of Argentina, Bolivia and Chile. In addition, it seems that demand will rocket over 

the next few decades because of the implementation of electric vehicles. Each car contains 

about more than 7,000 cell phone batteries, so reusing their different components has become 

an issue of utmost importance. 

18650 lithium-ion batteries are charged up to 4.2V and down to between 2V and 3V depending 

on the cell's specification for cut-off voltage. Exceeded this limitation batteries can damage and 

become unusable, can be dumped. That’s why to be sure, never discharge lower than 3.0V 

unless you know your cell's specification. Discharging occurs anytime you use the battery for 

power. The electricity is drawn from your device, and the battery discharges current. It is 

important to use battery testing equipment to discharge a battery as well. To charge an 18650, 

should be used a special charger for lithium-ion cells. 

Cycle life is determined by the difference in capacity of your cell taken from its first-use rating 

to its present rating. For example, if your cell started at 3000mAh, but now only has 2700mAh. 

2700 mAh is 90% of the original capacity. 

When this percentage reaches 80%, we say the cycle lifetime of the battery has ended. Despite 

this we may use for a few thousand more cycles out this battery. 

Most modern 18650 batteries have a typical cycle life of 300 - 500 (charge, discharge cycles). 

When we use them in high-amp or high-drain situations, this can decrease substantially to 200 

cycles. If you go over the maximum discharge current limit (in A) you can decrease the cycle 
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life all the way down to 50 cycles. In optimal conditions, your cells may achieve more than 500 

cycles. 

The main advantage of Li-ion batteries that they are not sensitive to the charging-discharging 

procedure regarding to the cut off the process. Especially the Ni-Cd and Ni-Mh batteries can be 

damaged or its capacitance hard decreases when this process has been interrupted frequently. 

Recurrent Neural Networks 

 

Long Short Term Memory 

LSTM is a special kind of recurrent neural networks (RNN). The simple RNN suffers 

from a problem that is called short-term memory. It means, if a sequence is too long it is quite 

difficult carrying information from earlier cycles. During back-propagation, the RNN shows 

another problem called vanishing gradient, which means, the gradient decreases as it back 

propagates through the learning phase. If the mentioned gradient value gets exceedingly small, 

the actual layer stops learning. 

LSTM RNN was created to solve short-term memory problem; its network architecture 

can be observed in the 1. Figure. The differences between the LSTM RNN and the simple RNN 

are the operations inside the LSTM cells. Typical LSTM network is comprised of memory 

blocks also known as cells. It has internal mechanisms called gates that are able to regulate the 

information flow.  

  
1. Figure Network architecture of the LSTM RNN [10] 

 

The cell state transfers the useful and relevant information through the sequence chain, 

as it acts like the memory of the network.  During the operation the cell state and the hidden 

state are being transferred to the next cell. The main chain of data flow is the cell state [10]. As 

the cell state goes to the next step of the sequence, information is deleted or added via gates. 

Gates are independent neural networks and are able to learn what information is necessary to 

store or forget during the training [11]. These gates contain a sigmoid activation function that 

show return value in range 0 to 1. 

The first step in constructing the network is to identify what information is not required. 

A sigmoid layer called forget gate is responsible for that. It takes the current input xt, and the 

hidden layer at the previous moment ht-1. For each state value of the internal state, forget gate 

returns a number between 0 and 1. 0 represents discarding the value, 1 represents keeping the 

state value. 
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Input gate performs the next step that is choosing what new information is essential to 

store. The input gate consists of two part. A sigmoid, and a tanh layer. The previous hidden 

state and the current input are passed to the sigmoid function, that transforms them to be 

between 0 and 1, indicating the importance of the new information. The tanh function also gets 

the current state and the previous hidden state to help regulate the network. Finally, the sigmoid 

decides what information is important to keep from the output of tanh [11]. 

Now the LSTM have enough information to update the cell state. The cell state from t-

1 moment gets multiplied by the output of the forget gate. Some value of the cell state can be 

removed. Then the output of the input gate does a pointwise addition and so updates the cell 

state. Now the LSTM has a new, updated cell state. 

The last gate is the output gate. Its role is to determine the hidden state. Output gate has 

a sigmoid, and a tanh function similarly to the input gate. The previous hidden state and current 

input are passed to the sigmoid layer, and the new cell state to the tanh layer. Lastly, the outputs 

of the two activation functions are multiplied shaping the information of the new hidden state. 

Gated Recurrent Unit 

Gated Recurrent Unit (GRU) shares a several common attribute with the previously introduced 

Long Short-Term Memory. GRU is a newer generation of the recurrent neural networks. The 

main difference compared to the LSTM is GRU uses the hidden state for transferring the 

information through the sequence. It means, the hidden state stores all the required data to pass. 

 
2. Figure Architecture of the GRU RNN [11] 

 

 Another important difference is the Gate Recurrent Unit network has less, only two 

gates. The update gate is something like the forget and the input gate of the LSTM model. It is 

responsible deciding which information is important to keep for further training: what 

information to throw away and what new information to add [11]. The second one is the so-

called reset gate. Its task to determine how much of the past information to forget. The 

mechanism of the GRU has fewer tensor operation, thus it can be faster to train comparing to 

the LSTM. 
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METHODOLOGY 

Measurement 

The measurement data is originated from the freely available NASA dataset [10] where a set of 

four Li-ion batteries were run through three different operational profiles (charge, discharge 

and impedance) at room temperature. Charging was carried out in a constant current (CC) mode 

at 1.5A until the battery voltage reached 4.2V and then continued in a constant voltage (CV) 

mode until the charge current dropped to 20mA. Discharge was carried out at a constant current 

(CC) level of 2A until the battery voltage fell to 2.7V, 2.5V, 2.2V and 2.5V for batteries 5 6 7 

and 18 respectively. Impedance measurement was carried out through an electrochemical 

impedance spectroscopy (EIS) frequency sweep from 0.1Hz to 5kHz. Repeated charge and 

discharge cycles result in accelerated aging of the batteries while impedance measurements 

provide insight into the internal battery parameters that change as aging progresses. The 

experiments were stopped when the batteries reached end-of-life (EOL) criteria, which was a 

30 % fade in rated capacity (from 2Ahr to 1.4Ahr). This dataset can be used for the prediction 

of both remaining charge (for a given discharge cycle) and remaining useful life (RUL). 

Data pre-processing 

The measured data for several kind of Lithium-ion batteries are publicly available. They 

are stored in an array of structures in different MATLAB databases that are containing charge, 

discharge and impedance operations. In the aspect of this writing the most important data is the 

capacity which is stored in the discharge fields. Reaching the mention data set a MATLAB 

script was implemented to select the essential data to create a training set for teaching the neural 

network, then split them in to training and test sets. The training set is the 66,7 % of the whole 

sequence.  

The training set needs further modification for the better learning rate. The sequence of 

the capacity values should be separated into input and output values. The so called look back 

means the neural network looks at the previous n values to predict the next one in the time 

series. If the look back is set to 3, the program uses the first three elements of any subset of the 

whole training set to predict the fourth one. 

 

RNN setup and training 

Various optimizer methods were tried for training the neural networks. For this data 

sequence the RMSprop showed the most acceptable solution. To measure the deviation Root 

Mean Square Error (RMSE) was calculated. 

For accurate comparison both RNN had the same structure. It means they were 

examined in numerous variations and the two constructions shared the same parameters in each 

case. The neural networks had one LSTM or GRU layer, with the different number of neurons. 

 Two experiments have been performed with both LSTM and GRU networks in order to 

see the differences in the performance of the two different RNNs. One with a relatively low 

number of epochs and another with a higher number of epochs. 1. Table summarizes the 

experiment setup for the two different case. 

  



6 

 

 

1. Table Network parameters of the experimental comparison  

 Experiment 1 Experiment 2 

epoch 500 10 

number of neurons 10 3 

look back 3 1 

optimizer RMSprop adam 

 

 

DISCUSSION OF THE RESULTS 

The introduced tests would like to point on the advantages of both recurrent neural 

networks. As it can be seen on the pictures, the GRU can reach better accuracy but it needs 

more epoch to learn. Using higher number of neurons in the hidden layer can increase its 

efficiency as well. GRU networks requires more time to learn. The comparison of the two RNN 

based prediction for Experiment 1 (i.e. using higher number of epochs) is presented in 3. Figure. 

 

 
3. Figure Comparison of LSTM and GRU based prediction in higher number of epochs 

(Experiment 1) 

 
4. Figure Comparison of LSTM and GRU based prediction in lower number of epochs 

(Experiment 2) 
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2. Table Numerical comparison of the results for the two experiments by means of RMSE 

 Experiment 1  Experiment 2 

 Train Score Test Score  Train Score Test Score  

LSTM 0.03 0.02 0.09 0.17 

GRU 0.03 0.01 0.17 0.36 

 

LSTM is able to learn faster than the GRU. It is distinct in Experiment 2 (4. Figure) 

LSTM provides better results during the training, and in the test section. The Root mean square 

error of the LSTM are significantly less than that of GRU. 

 

CONCLUSION 

A data-driven approach of estimating remaining useful life for Li-ion batteries has been used in 

this work, where two different RNN solutions, LSTM and GRU were set up, trained and 

investigated for two different scenarios. The training and prediction of both networks are 

performed on a publicly available dataset that serves as a base for several related research works.  

The results clearly show that although LSTM learns faster, in case of a slower process (e.g. like 

battery charge-discharge) where a higher epoch number is acceptable, GRU outperforms LSTM 

in the prediction phase. In other words, it can be used as a basis of a reliable data-driven RUL 

predictor in any battery management system (BMS). 

 

Further research directions include the inclusion of battery temperature measurements in the 

method. The cause is twofold. On one hand, battery temperature has a high influence on the aging 

process, i.e. knowing the actual (and historical) thermal circumstances makes it possible to perform 

a more precise prediction. On the other hand, all BMS includes an online temperature monitoring 

so it is expectable to have such onboard measurement data in a real-life situation in an electric 

vehicle. 
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NOMENCLATURE 

3. Table: List of abbreviations used in the paper 

 

Abbreviation Meaning 

RUL Remaining Useful Life 

RNN Recursive Neural Network 

LSTM Long-Short Term Memory 

GRU Gated Recursive Unit 

BMS Battery Management System 
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