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Abstract. We performed the dynamic mechanical investigation of cross-linked polyethylene 

(XL-PE) foams, which are the most commonly used polymer foams for damping purposes. Our 

experiments were primarily focused on analyzing the energy-absorbing capability of foams 

with different densities and studying the relationship between cell structure and shock 

absorption. The cell structure and energy absorption properties of the foams were determined 

by mechanical tests and microscopic examination. The samples were subjected to falling dart 

and falling weight impact tests using different weight geometries and impact energy. Our 

experiments showed that the impact damping properties of foams are significantly influenced 

by the deformation mechanisms in the cellular structure during dynamic loading since 

excessive deformation of the cell walls leads to the compaction of the foam, and therefore a 

significant reduction in impact damping capability. 

1.  Introduction 

Today, the industrial use of polymeric foams is expanding due to their low density and weight, as well 

as their outstanding thermal and acoustic insulation, impact damping and energy absorption 

properties [1-4]. The leading industries are increasingly using foams, and the global polymer foam 

market is continuously growing. The most significant segments are the construction industry, where 

outstanding heat insulation is required, the car industry, which specially focuses on weight reduction, 

the packaging industry with high shock-absorption requirements, and the sports industry [5, 6]. 

Processing technologies are rapidly improving, and now foaming can be used even for upcycling to 

reduce the load on the environment [7]. 

The most important feature of polymer foam products used in sports is their outstanding impact 

damping and energy absorption capability. In many sports, several different mats are used for safety 

purposes or for providing an appropriate surface for sports activities. In these cases, the primary task is 

to protect the health of the athlete and prevent sports injuries [8]. Foams are suitable for this function 

because of their unique cellular structure. Under load, the cells undergo different types of deformation 

(bending of cell edges, cell wall buckling), so these materials can absorb a huge amount of energy 

while keeping the maximum stress below a certain value [9]. 

Current sports mats are produced from cross-linked polyethylene foams, rebonded polyurethane 

foams, ethylene-vinyl-acetate foams, and elastomeric foams, of which XL-PE foams are the most 
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commonly used [6]. Compared to conventional foams, they have better thermal stability and greater 

form stability due to the cross-links between the molecular chains. From the point of view of 

manufacturing technology, there are physical cross-linking by radiation or chemical cross-linking. In 

this case, peroxide compounds are used most commonly, which remove hydrogen atoms from the 

polymer chain and form free radicals. These radicals start combining, resulting in cross-linked bonds 

[10-12]. 

In recent years, increasing attention has been paid to the study of the energy-absorbing properties 

of polymer foams. In the case of sports mats, dynamic mechanical tests are the most popular, but the 

difference of falling weight geometries and impact energy in sports-specific standards make 

comparison with previous experimental results difficult [13, 14]. Dynamic mechanical tests can be low 

impact velocity tests, such as the falling dart [15, 16] and falling weight impact tests [17], while for 

high impact velocities the Hopkinson bar can be used [18]. However, the relationship between cellular 

structure, foam density, and energy absorption is not fully understood, and the previously mentioned 

testing methods are not compared, so the aim of our research is to investigate cross-linked 

polyethylene foams dynamically, analyze the effect of density on energy absorption properties and 

compare the two most commonly used testing methods for low-velocity impacts.  

2.  Materials and methods 

This chapter presents the investigated materials, the investigating methods, and measuring devices 

used.  

2.1.  Materials 

We performed the tests on two physically cross-linked polyethylene foams with different densities, 

supplied by UFM Bt. (Hungary, Mosonmagyaróvár). The main properties of these commercially 

available foams are summarized in Table 1 [19].  

Table 1 Main properties of the cross-linked polyethylene foams used [19] 

Property Unit Measurement standard XL-PE 45 XL-PE 60 

Density (kg/m
3
) ISO 845 45 ± 6 60 ± 8 

Tensile strength (kPa) ISO 1798 > 215 > 380 

Elongation at break (%) ISO 1798  > 210 > 300 

Compressive strength (kPa) ISO 3386/1 (at 10 (%) comp.) > 17 > 40 

Compression set (%) ISO 1856 (22 (h), 23 (°C), 25 (%)) ≤ 6 ≤ 4 

Thermal conductivity (W/mK) DIN 52612 (at 10 (°C)) 0.039 0.051 

Shore hardness (-) ISO 868 > 30 > 35 

2.2.  Methods 

2.2.1.  Density measurement. The densities given in the manufacturer's datasheet were verified by 

hydrostatic density tests with a Radwag analytical balance according to formula (1):  

               (1) 

where ρf (kg/m
3
) is the calculated density of the foam, ma (kg) is the specimen’s weight in air, ml (kg) 

is the specimen’s weight in liquid, and ρl (kg/m
3
) is the density of the measuring liquid at room 

temperature. We used distilled water as measuring liquid for the calculations. Prior to the mechanical 

tests, the thickness of the samples was also determined with a Mitutoyo digital micrometer. 

2.2.2.  Scanning electron microscopy. The microscopic images were taken with a JEOL JSM 6380LA 

scanning electron microscope. The samples were coated with a gold-palladium alloy for appropriate 

conductivity. 
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2.2.3.  Falling dart impact tests. The falling dart impact tests were performed with a Ceast 9350 

impact tester machine. The parameters for the tests are summarized in Table 2, while the layout of the 

test is shown in Figure 1. For the tests, samples with the size of 100 (mm) x 100 (mm) x 18 (mm) were 

cut out from the extruded foam sheets.   

Table 2 Main parameters of the falling dart impact tests 

Property Unit Value 

Impactor geometry (-) cylinder, hemispherical end 
Impactor diameter (mm) 20 

Applied mass (kg) 5.41 

Falling height (mm) 942 

Impact energy (J) 50 

Temperature (°C) 23 

Support type (-) hollow 
 

 
Figure 1 The layout of falling dart impact tests 

The force-time diagrams were recorded during the tests, from which perforation energy (2) and 

ductility index (3) were calculated according to the following: 

               (2) 

where Eperf (J/mm) is the perforation energy, Etotal (J) is the total absorbed energy during penetration, 

while v (mm) is the thickness of the sample. 

                       (3) 

where DI (-) is the ductility index, Etotal (J) is the total absorbed energy during penetration, while EFmax 

(J) is the energy absorbed until maximum load. 

2.2.4.  Falling weight impact tests. The falling weight impact tests were performed on a custom-

designed falling weight impact tester, which was built according to the wrestling mat regulation set up 

by United World Wrestling [20]. The applied parameters for the tests are summarized in Table 3, 

while the layout of the test is shown in Figure 2. For these tests, samples with the size of 200 x 200 x 

18 (mm) were cut from the extruded foam sheets.  
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Table 3 Main parameters of the falling weight impact tests 

Property Unit Value 

Impactor geometry (-) cylinder, flat end 
Impactor diameter (mm) 100 

Applied mass (kg) 10.025 

Falling height (mm) 414 ± 0.4 

Impact energy (J) 40.7 

Temperature (°C) 23 

Support type (-) solid 
 

 
Figure 2 The layout of falling weight impact tests 

The falling weight impact tests consisted of eight drops on each sample to show the effect of 

repetitive impacts on damping properties. The time between impacts was one minute. In the evaluation 

of the results, we focused on four different parameters: 

 The maximum deceleration during the impact: a (g=9,81 m/s
2
) – which refers to the 

gravitational acceleration. 

 The amount of absorbed energy during the impact: E (%) 

 The maximum deformation of the samples: p (mm) 

 The duration of the collision: t (ms) 

3.  Results 

This chapter contains the evaluation of the results of density, scanning electron microscope, falling 

dart and falling weight tests.  

3.1.  Density results  

The results of the hydrostatic density tests and the measured thickness of the samples are shown in 

Table 4. The densities of the tested foams are almost the same as the density specified by the 

manufacturer. The XL-PE 45 and XL-PE 60 foams have the same thickness, so the different densities 

can be compared.  

Table 4 Measured density and thickness  

Property Unit XL-PE 45 XL-PE 60 

Measured density (kg/m
3
) 43.82 ± 0.68 58.30 ± 0.27 

Measured thickness (mm) 17.87 ± 0.22 17.86 ± 0.27 
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3.2.  Results of scanning electron microscopy 

The scanning electron microscopic images (Figure 3) show that the tested foams have a closed-cell 

structure, that is, the foam cells are isolated from each other. The XL-PE 45 sample has an average 

cell diameter of 108 ± 42 (µm), whereas the XL-PE 60 foam has an average cell size of 87 ± 30 (µm), 

so the higher density foam has smaller cells. Another important difference is that the higher density 

foam has thicker cell walls, which effects a more rigid structure. It is likely that this type of difference 

has a significant effect on the shock absorption properties since the cells are more resistant to 

deformation. 

  
(a) (b) 

Figure 3 SEM images of XL-PE 45 (a) and XL-PE-60 (b) samples 

3.3.  Falling dart impact tests 

During the falling dart impact tests, the samples were completely punctured, hence we compared the 

dynamic mechanical properties of the two foams by calculating perforation energy and the ductility 

index. The recorded force-time diagrams (Figure 4) show that during the penetration of the dart, small 

vibrations and harmonics appeared, but they did not significantly influence the test, so the results are 

valid. The noise during the test was caused by the measurement layout, which did not consist of any 

clamping; if a clamping ring had been used, the cellular structure of the foams would have been 

deformed, and it would have affected the results. 

  
(a) (b) 

Figure 4 Force-time curves of the falling dart tests in case of XL-PE 45 (a) and XL-PE 60 (b) 

In the case of XL-PE 60 samples, total rupture time exceeded 10 (ms), while in the case of XL-PE 

45 type foam it was 9 (ms). The reason for this difference is that the foam with thicker cell walls was 

more resistant, therefore the maximum force during the test was also higher. These properties also 
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influenced the ductility of the fractured material and the amount of energy absorbed. The stiffer cell 

structure resulted in higher perforation energy and a higher ductility index (Table 5). 

Table 5 Results of the falling dart impact tests 

Property Unit XL-PE 45 XL-PE 60 

Eperf (J/mm) 0.09 ± 0.01 0.12 ± 0.01 
DI (-) 0.13 ± 0.08 0.22 ± 0.09 

The fact that the specimens were fully ruptured suggests that the impact damping properties of 

foams cannot be tested with this method. Using solid support can resolve this issue.   

3.4.  Falling weight impact tests 

The results of the falling weight impact tests show that the higher density foam effected a lower 

maximum deceleration on the falling weight and was also able to absorb more energy (Table 6). This 

can be explained by the stiffer cell structure. 

The XL-PE 45 sample showed approximately 1 (mm) larger deformation, which explains the 

higher maximum deceleration, since due to the higher compression, the cells became more compact 

and were likely to approach the behavior of the solid material. 

Table 6 Results of the falling weight impact tests 

Property Unit XL-PE 45 XL-PE 60 

p (mm) 15.88 ± 0.16 14.81 ± 0.47 
a (g) 130.03 ± 12.96 113.24 ± 26.87 

E (%) 45.09 ± 3.50 55.76 ± 7.41 

t (ms) 16.85 ± 0.72 16.76 ± 1.23 

We also examined the effect of repetitive impacts. As the tests progressed, the maximum 

deceleration in both samples during impact increased continuously while the absorbed energy 

decreased continuously (Figure 5). This indicates that the impact damping property of the foams 

decreases in the case of repetitive impacts, as the material gradually hardens. 

  
(a) (b) 

Figure 5 The effect of repetitive impacts on maximum deceleration (a) and energy absorption (b) 

The reason for this phenomenon is that during the collision, the cells were deformed and 

compressed, as a result of which opposite cell walls probably met, and the one minute between the 

impacts is probably not enough for the cells to return to their original condition. This results in a 

reduction of the impact damping and energy-absorbing properties of the foams during repetitive 

impacts. 

This method was more suitable for investigating the impact damping properties of foams. The solid 

support represents a model closer to the real-life use of sports mats, where they are laid down on the 

floor to reduce the force on the athletes.   
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4.  Conclusions 

We performed the dynamic mechanical investigation of two cross-linked closed-cell polyethylene 

foams with different densities, by falling dart and falling weight impact tests. Based on the results, the 

following conclusions can be drawn: 

 The cross-linked polyethylene foam with a density of 60 (kg/m
3
) has higher perforation 

energy, ductility index, and better impact damping and energy-absorbing properties 

compared to the foam with the lower, 45 (kg/m
3
) density. 

 The impact damping properties of polymer foams are significantly influenced by the 

deformation mechanisms in the cellular structure during dynamic loads, since excessive 

deformation of the cell walls leads to the compaction of the foam structure. This 

significantly reduces impact damping capability. 

 In falling dart impact tests with a hollow support, the foams are fully ruptured, therefore 

this method is inappropriate for investigating the impact damping properties of foams. The 

use of a solid support similar to the support in the falling weight impact tester can resolve 

this issue.  

As the use of cross-linked polyethylene foams in the sports industry is increasing and falling 

weight impact tests are also used in the packaging industry, our research results can be utilized in 

many industries to select the appropriate density and cell structure of the foam.  
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