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Abstract

Given a set of n colored balls, a majority, non-minority or plurality ball is one whose
color class has size more than n/2, at least n/2 or larger than any other color class, re-
spectively. We describe linear time algorithms for finding non-minority balls using query
sets of size q of the following form: the answer to a majority/plurality query Q is a major-
ity/plurality ball in Q or the statement that there is no such ball in Q.

1 Introduction

The basic instance of the Majority Problem is the following. We are given n balls with an
unknown 2-coloring. We can pick two balls and ask if they have the same color or not as a query.
Our goal is to find a so-called majority ball, which is a ball of a color class of size greater than
n/2 (i.e. the larger color class), or show that the color classes have the same size, using as few
queries as possible. Saks and Werman [11] showed that the minimum number of queries needed
is n− b(n), where b(n) is the number of 1s in the binary form of n. Earlier Fisher and Salzberg
[6] showed that if the number of colors is also unknown, then ⌈3n/2⌉ − 2 queries are needed and
enough. In case of more colors, a natural question is to look for a ball of the largest color class
instead of a majority ball (if exists). Such a ball is called a plurality ball. See [1, 2, 7] for results
on the plurality problem.
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Another natural generalization is to consider larger queries. In this case there are several
different ways how a query can be answered. They each define different variants of the majority
problem. See [3, 4, 5, 8, 9, 10] for results in case of large queries.

In this paper we are going to study and generalize a variant introduced by Gerbner, Keszegh,
Pálvölgyi, Patkós, Vizer and Wiener [8]. Before describing it in details, we introduce the following
basic notions.

Definition 1.1. In a set X of balls, a ball x ∈ X is a majority ball if there are more than |X|/2
balls of the color of x in X ; x is a non-minority ball if there are at least |X|/2 balls of the color
of x in X . A ball x is a plurality ball if there are more balls of the color of x in X , than of any
other color. A ball x is an almost plurality ball if it is either a plurality ball, or a non-minority
ball.

Note that a ball is almost plurality but not plurality only if there are only two colors, |X| is
even and both color classes have size |X|/2. Note furthermore that if there are only two colors
in X , the majority and the plurality balls are the same.

Gerbner, Keszegh, Pálvölgyi, Patkós, Vizer and Wiener [8] considered the following variant.
The answer to a query Q is YES and a majority ball inside Q if such a ball exists, and NO if
there is no majority color inside Q. They observed that in the case of two colors, using these
type of queries of odd size, one can never claim there is no majority ball, as the answers are
always YES, thus we can never rule out the possibility that there is only one color. This means
we cannot solve the majority problem in the original sense. However, they proved that one can
always show a non-minority ball after O(n) queries of size 3.

Definition 1.2. For a majority query Q the answer is NO if there is no majority ball in Q,
otherwise the answer is YES and a majority ball x is also presented.

For a plurality query Q the answer is NO if there is no plurality ball in Q, otherwise the
answer is YES and a plurality ball x is also presented.

Sometimes we will call an answer consisting of YES and a ball simply YES answer, when we
do not care which ball was shown.

We will consider the following functions. The first letter M or P denotes that we use majority
or plurality queries. The second letter is B if we want to find a non-minority ball in X , and C if
we try to find an almost-plurality ball. Then in brackets we write the size |X| of the underlying
set, the size of the queries and the number of colors.

Using the above notation the results of [8] can be summarized as MB(n, 3, 2) = O(n),
MB(n, 2k, 2) = O(n) and MB(n, 2k + 1, 2) = O(n2). Note that in case of two colors, M
and P are the same, while B and C are the same as well. It was conjectured in [8] that
MB(n, 2k+1, 2) = O(n). Here we will prove this. Moreover, we extend all these results to more
colors.
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Theorem 1.3. For any fixed q and c, there exist an integer n0 = n0(q, c) and a constant K =
K(q, c) such that if n ≥ n0 holds, then we have

MB(n, q, c),MC(n, q, c), PB(n, q, c), PC(n, q, c) ≤ Kn.

Note that for n ≤ n0 there may not be a solution at all. For example if the answer is
NO to every majority query, it only means every color class has size at most q/2, but does
not help find an almost plurality ball. We prove parts of this theorem separately. In Section
2 we prove MB(n, 2k + 1, 2) = O(n), in Section 3 we prove MB(n, 2k + 1, c) = O(n) and
MB(n, 2k, c) = O(n), while in Section 4 we prove PB(n, q, c) = O(n). In all cases the proof
implies the same bound for finding an almost plurality ball. We finish the paper with some
remarks in Section 5.

2 Large odd queries and two colors

First we list the results of Gerbner, Keszegh, Pálvölgyi, Patkós, Vizer and Wiener [8] that we
use. They introduced the following reformulation. The two colors are denoted by 0 and 1. In
this case a median is always a non-minority ball.

Theorem 2.1 ([8]). (i) By asking all the queries of size 2k+1, we can find a non-minority ball.
(ii) By asking all the queries of size 3, we can find a monotone ordering of the balls (note

that there is no way to decide if the ordering is monotone increasing or decreasing).
(iii) If the answer to a query {x, y} can be any of the two valid statements out of x ≤ y,

y ≤ x or x 6= y, then by asking linearly many queries, we can find a median element.

We will also use the following simple algorithm from [8]. We call it Algorithm WINNER-
OUT. We start with a query of size q, set aside the answer ball and replace it by a new ball.
Then repeat this procedure till all the balls are used (or we get a NO answer, if it is possible).
After that, there is a set S of q − 1 balls never appearing as an answer ball. Observe that every
ball not in S belongs to one of the largest color classes in S. In particular, in case q = 2k + 1
and c = 2, the set S has the following property: either there are k balls in S of both colors, or
every ball outside S has the same color, and it is the majority color in S.

Theorem 2.2. MB(n, 2k + 1, 2) = Ok(n).

Proof. Observe that we can assume n is large enough, as we are interested only in the order of
magnitude.

First we apply Algorithm WINNER-OUT to obtain a set S1. Then we apply the same to
X \ S1 to obtain S2, and so on till we obtain Sm with m = 8k4. This is the first phase of the
algorithm. Let S =

⋃m
i=1 Si, then we have that a non-minority ball in X \ S is a non-minority

ball in X . Indeed, either every Si is balanced, or all the other balls are of the same color, and
that is a non-minority color as n is large enough.
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From now on we will assume that every Si is balanced, then by the above it is enough to
show a non-minority ball in X \ S under this assumption. In the second phase of the algorithm
we will find k balls of one color and k balls of the other color. We will only use queries that are
completely inside S, thus constant many queries.

Let us first take an arbitrary x ∈ S, and remove it from S. Then we can find a non-minority
ball y in S \ {x} using (i) of Theorem 2.1. Then y and x have different colors, as S is balanced.
We apply this for every vertex, this way each ball has a pair of the other color. Let G be the
graph with edges corresponding to these pairs.

Case 1. There is a ball x with degree more than 2k2 in G.

Without loss of generality x ∈ S1. Then we delete S1. There is a neighbor y1 of x in S \ S1.
Similarly to the above process, we can find a pair x1 for y1 in S \ S1 by finding a non-minority
ball in (S \ S1) \ {y1} (we can do this, as S \ S1 is balanced). Note that this pair may or may
not be in G as an edge.

Without loss of generality, x1 is in S2. Then we also delete S2, x has a neighbor y2 among
the remaining balls, and we can find a pair x2 ∈ (S \ S1) \ S2 for y2. We repeat this procedure
multiple times. After deleting Sk−1, there is still at least one neighbor yk−1 of x remaining, and
it has a pair xk−1 among the remaining vertices. This way we found k distinct balls of the color
of x, and we have already found more than 2k2 balls of the other color, thus we are done with
the second phase.

Case 2. Every ball has degree at most 2k2 in G.

Observe that every component of G is bipartite. If any component has at least k vertices on
both sides, we are done with the second phase again. Thus every component has at most 2k3

vertices, hence there are at least k − 1 components. We take k − 1 edges from k − 1 different
components. Let A be the set of the 2k − 2 balls that are endpoints of these edges, and let S ′

be the set we obtain by deleting from S every Si that contains any ball from A. From the sets
Sj not deleted, we form (8k4 − 2k+2)/2 disjoint pairs. For every such pair Sj1 and Sj2, and ask
every query that contains A and three balls from Sj1 ∪ Sj2 .

Case 2.1. For some pair Sj1 and Sj2, the answer is always one of the three balls from Si∪Sj .
Then we found a majority ball among those three, thus we can find a monotone ordering of

the balls in Si ∪ Sj by (ii) of Theorem 2.1. The first k balls of this ordering are of the same
color, and the next k balls are of the other color, finishing the second phase.

Case 2.2. For every pair Sj1 and Sj2 , at least one of the answer balls is an element of A.
Then there is a ball x in A that occurs as an answer to at least (8k4− 2k+2)/(4k− 4) ≥ 2k3

queries that all contain A but are disjoint otherwise. Let B be the set of 6k3 balls avoiding A
from 2k3 such queries, then there are at least 4k3 balls in B of the color of x. In particular a non-
minority ball y1 of B is of the color of x. Similarly, a non-minority ball y2 in B \ {y1} also shares
a color with x, and so on. This way we can find 2k3 balls of the color of x. Their neighborhood
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in G has size at least k, otherwise a vertex in their neighborhood would have degree more than
2k2. This way we found k balls of the other color, finishing the second phase.

In the third phase, we denote the colors by 0 and 1, following [8]. We are already given k
balls of color 0 and k balls of color 1, from S. Let us consider two balls x, y ∈ X \ S. We ask
two queries: x and y together with k balls of color 0 and k − 1 balls of color 1, and after that x
and y together with k − 1 balls of color 0 and k balls of color 1.

• Answer x to the first query means x ≤ y, answer y means y ≤ x, answer 0 means at least
one of x and y has color 0, while answer 1 means they both have color 1, which implies x ≤ y.

• Similarly, for the second query the answer tells either x ≤ y, or y ≤ x, or that at least one
of x and y has color 1. Combining the two answers, we obtain either x ≤ y, y ≤ x or x 6= y.

Thus (iii) of Theorem 2.1 finishes the proof.

3 Majority queries with more colors

Theorem 3.1. For any fixed k and c, there exist an integer n0 = n0(k, c) and a constant
K = K(k, c) such that if n ≥ n0 holds, then we have

MB(n, 2k + 1, c),MC(n, 2k + 1, c) ≤ Kn.

Proof. Our algorithm consists of three phases. In the first phase we use Algorithm WINNER-
OUT until we find a NO answer and then the first phase is over. If during Algorithm WINNER-
OUT we get only YES answers, let S be the set of balls never appearing as answer. Then either
there are k balls of one color and k balls of another color in S, and all the other balls are of
these two colors, or all the other balls have the same color. In both cases we can delete S, and
find a non-minority ball among the other balls using O(n) queries by Theorem 2.2. That ball is
a non-minority and thus an almost-plurality ball in X as well.

Hence we can assume we found a NO answer to a query Q. In the second phase our goal is
to find k balls of one color, k balls of another color and a ball of a third color. Let q = 2k + 1.
We partition the set X \Q into subsets A1, . . . , A⌊(n−q+1)/cq⌋ of size cq or cq + 1. Then for every
i we ask all the q-subsets of Ai ∪ Q. Observe that for a set B ⊂ Ai ∪ Q of size k + 1, there is
a majority ball in every query that contains B if and only if B is monochromatic. Indeed, for
every color there are at least k+ 1 balls avoiding that color in Q, thus we can extend B to a set
of size q without majority. Thus we can identify all the color classes of size at least k + 1 inside
Ai ∪Q.

If there are two color classes of size at least k + 1 in Ai ∪ Q for some i, we can take k balls
from each and a ball from another color to obtain the desired configuration. Assume that for
every i there is only one such color class Bi in Ai ∪Q. We are going to compare the color of Bi

and Bj. In order to do that, we take k balls for Bi and k balls from Bj and ask every query that
consists of these 2k balls and one ball from Q. The answer is always YES if and only if Bi and
Bj are of the same color.

5



If we find Bi and Bj are of different colors, the query that was answered NO contains the
desired configuration. Otherwise with linearly many queries we obtain that all the Bi’s are of
the same color, and that is a non-minority, thus almost plurality color.

In the third phase we are given, say, k blue balls, k red balls and a green ball. Then asking
1 green, k blue and k − 1 red balls together with another ball x, the answer shows if x is blue
or not. Thus with O(n) queries we find all the blue balls and similarly all the red balls. Among
the remaining balls, we take a set R of size (c− 2)k + 1, and ask all the queries consisting of k
blue balls and k + 1 balls from R. As R contains k + 1 balls of the same color, we get a YES
answer, finding a monochromatic set of a third color. Taking k of those balls, k − 1 blue balls
and one red ball together with a ball that is neither blue, nor red, we can completely identify
this third color class. Then similarly we can identify all the color classes, as long as there are at
least (c− 2)k + 1 balls. If there are less than that many balls altogether in the remaining color
classes, those cannot be non-minority/almost plurality if n is sufficiently large, thus it is enough
to check those classes we have already completely identified. This finishes the proof.

Theorem 3.2. For any fixed k and c, there exist an integer n0 = n0(k, c) and a constant
K = K(k, c) such that if n ≥ n0 holds, then we have

MB(n, 2k, c),MC(n, 2k, c) ≤ Kn.

Proof. First we obtain a YES answer to a query Q0, by asking all the (2k)-subsets of a set of
size ck + 1. Then we run Algorithm WINNER-OUT starting with Q0; assume that the queries
following Q0 are Q1, Q2, . . . and so on.

Let us consider first the case that Algorithm WINNER-OUT terminates after only YES
answers. We claim that in this case all the answer balls are majority balls. Indeed, the answer
balls to Qi and Qi+1 have to be of the same color, as Qi contains at least k + 1 balls of a color,
then Qi+1 contains at least k balls of that color, thus it cannot be a minority color. Thus the
n− q + 1 answer balls are of the same color and they form majority.

Assume now that during Algorithm WINNER-OUT we obtain a NO answer, first to a query
Qj . Let the color of the answer ball x to the previous query Qj−1 be blue. Then Qj−1 contains
exactly k + 1 blue balls. Let us ask all the queries of the form Qj−1 \ {x} ∪ {y} for y 6∈ Qj−1.
The answer is NO if and only if y is not blue. This way we can identify all the blue balls not in
Qj−1. Let z be the ball in Qj \Qj−1. Then we know z is not blue. Let us ask the queries of the
form Qj−1 \ {x} ∪ {z} for every x ∈ Qj−1. The answer is YES if and only if x is not blue. This
way we can completely identify the blue color class.

If there are more than n/2 blue balls, we are done. Otherwise there is a (ck + 1)-set S of
non-blue balls as n is large enough. We ask all the (k + 1)-subsets of S together with k − 1 blue
balls. The answer is YES if and only if the k+1 balls have the same color. This way we identify
one color class of size at least k+1, say red, in S. Then we ask all the queries consisting of k−1
blue balls, k red balls and a ball of unknown color, to find all the red balls. Then repeat it with a
third color, and so on. We can do that as long as there are more than ck balls. Hence the number

6



of unidentified balls is at most ck. Therefore, if n is at least c2k, we completely identified the
two largest color classes, and that is enough to decide if there is a non-minority/almost plurality
ball and show one such ball.

4 Plurality queries

Theorem 4.1. For any fixed q and c, there exist an integer n0 = n0(q, c) and a constant K =
K(q, c) such that if n ≥ n0 holds, then we have

PB(n, q, c), PC(n, q, c) ≤ Kn.

Proof. We proceed by induction on c. Observe that if c = 2, then majority and plurality queries
are the same. Also, a ball is non-minority if and only if it is almost plurality. Therefore Theorem
2.2 yields the base case of the Theorem 4.1.

The algorithm consists of multiple phases. In the first phase our goal is to find a query Q
that is answered NO and a ball x 6∈ Q that belongs to one of the largest classes in Q. In order to
do that, first we find a YES answer to a query Q0. It is doable by asking all the q-subsets of a
set of size qc. Then we run algorithm WINNER-OUT starting with Q0. If we get a NO answer
to a query Q at any point, the previously removed ball belongs to one of the largest color classes
in Q.

Assume all the answers are YES. Let Q1 be the last query of algorithm WINNER-OUT, and
let y be the answer ball to Q1 and S = Q1 \ {y}. Let us call the color of y blue. Observe that
every ball not in S belongs to one of the largest color classes in S.

Then we ask all the queries of the form Q1 ∪ {u} \ {v}, where v ∈ Q1, u 6∈ Q1. If u is blue,
then the answer is YES for every v. If u belongs to another of the largest color classes in S, and
there are at least three colors altogether, then the answer is not always YES. Hence if the answer
is always YES, there are two possibilities. In both cases there are at most two colors outside S,
and those colors have the same number of balls inside S, thus we can use Theorem 2.2 to find a
non-minority, thus almost plurality ball in the entire set X of balls.

Thus we can assume we obtain a NO answer to Q = Q1∪{u}\{v}. Moreover, we can identify
every blue ball outside Q1 as a ball x ∈ X \Q1 is blue if and only if the answer to Q1 ∪{x} \ {v}
is yes for every v ∈ Q1. If there is no such ball, we can delete Q1. As all the colors appearing
in balls outside Q1 belong to the largest color classes in S, they have the same number of balls
inside Q1. As there is no blue ball in X \Q1, the number of colors used on balls in X \Q1 is at
most c− 1. So, by the induction hypothesis, we can find a non-minority and an almost plurality
ball in X \ Q1 with O(n) queries. It is a non-minority/almost plurality ball in X , because blue
cannot be a non-minority color, nor an almost plurality color since n is large enough. Thus we
can assume there is a blue ball x outside Q1.

In the second phase of the algorithm, our goal is to completely identify the color class of the
ball x that we found in the first phase. Let us call it blue. First we ask all the queries of the
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form Q ∪ {x} \ {z} with z ∈ Q. If z is blue, the answer is obviously NO, while otherwise YES,
thus we find all the blue balls inside Q. Now we ask the queries of the form Q∪{y} \ {z}, where
y 6∈ Q and z ∈ Q. If y is blue, the answer is NO if and only if z is blue. If y is not blue, then
the answer may still be NO in the case z is blue (if there are at least 3 largest color classes in
Q), but it is also NO in case z is from another one of the largest color classes in Q. Thus we can
find all the blue balls.

In case if there are less than ⌈q/2⌉ blue balls altogether, we delete all the blue balls and repeat
this argument to identify another color class. We can do this if we have qc other balls. We repeat
this until we identify a color with at least ⌈q/2⌉ balls (it is doable if n > qc + (c − 1)⌈q/2⌉).
Without loss of generality we can assume that there are at least ⌈q/2⌉ blue balls.

We continue with the third phase, where our goal is to find ⌈q/2⌉ balls of another color class.
We take a set Z of cq non-blue balls and we ask all of its subsets T of size ⌈q/2⌉ together with a
set B of ⌊q/2⌋ blue balls. If q is even, then the answer tells us if the q/2 balls are monochromatic
or not. This way we can completely identify the color classes of size at least q/2 inside Z. If
q = 2l + 1 is odd, then the answer to T ∪ B is NO if and only if T contains exactly l balls
of the same (non-blue) color. So if the answers are YES to all the queries T ∪ B, then Z is
monochromatic, so again we are able to identify all large color classes of Z.

Suppose that the answer to T ∪B is NO and T contains l green balls. Then if a ball z ∈ Z \T
is green, then for t ∈ T , t is non-green if and only if the query {z} ∪ (T \ {t}) ∪B answers YES
(the answer ball must be in {z} ∪ (T \ {t})); if z is non-green, then for t ∈ T , t is green if and
only if the query {z} ∪ (T \ {t})∪B answers YES (the answer ball must be in B). Then we can
identify all green balls in Z. Considering all queries T ∪ B that answer NO, we can identify a
color class of Z that has size at least ⌊q/2⌋ (in fact, we can identify all such color classes in Z).

In the fourth phase our goal is to identify all the balls of the color class, say red, that we
found in the third phase. We ask ⌈q/2⌉ − 1 red balls together with ⌊q/2⌋ blue balls and a ball
of unknown color. This tells if the unknown ball is red or not, completely identifying all the red
balls.

After that we can similarly identify all the color classes, as long as there are at least cq
balls. If there are less than cq balls altogether in the remaining color classes, those cannot be
non-minority/almost plurality as n is large enough, thus it is enough to check those classes we
have already completely identified. This finishes the proof.

5 Concluding remarks

Note that we did not try to optimize the constant factor in the algorithms presented in this
paper. However, it is unlikely that our methods could lead to strong bounds.

There are results for majority and plurality problems where the algorithm has to be non-
adaptive, i.e. all the queries have to be asked at the same time, before learning any answers. In
case of two colors, a quadratic upper bound for queries of even size and a cubic lower bound for
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queries of odd size was given in [8].
Another variant studied in [8] is the following. A ball is an α-ball in X if there are at least

α(|X| − 1) other balls of the same color in X . Thus a 1/2-ball is a majority ball. This shows
that if the answer to a query Q is an α-ball in Q (or No if it does not exist), then we may not be
able to find an α-ball in the set of all balls. A natural question, studied in [8], is the following.
For what β can we find a β-ball using only α-queries? It would be also interesting to extend
these investigations to more colors.
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