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Abstract

In many proofs concerning extremal parameters of Berge hypergraphs one starts with

analyzing that part of that shadow graph which is contained in many hyperedges. Capturing

this phenomenon we introduce two new types of hypergraphs. A hypergraph H is a t-heavy

copy of a graph F if there is a copy of F on its vertex set such that each edge of F is

contained in at least t hyperedges of H. H is a t-wise Berge copy of F if additionally for

distinct edges of F those t hyperedges are distinct.

We extend known upper bounds on the Turán number of Berge hypergraphs to the

t-wise Berge hypergraphs case. We asymptotically determine the Turán number of t-heavy

and t-wise Berge copies of long paths and cycles and exactly determine the Turán number

of t-heavy and t-wise Berge copies of cliques.

In the case of 3-uniform hypergraphs, we consider the problem in more details and

obtain additional results.

1 Introduction

Problems in extremal (hyper)graph theory deal with determining those n-vertex (hyper)graphs
with a prescribed property that are optimal “in some sense”. Turán type problems ask for
the largest number of (hyper)edges that an n-vertex (hyper)graph H can contain if it does not
contain a forbidden sub(hyper)graph F . The asymptotics of the Turán number is determined by
the celebrated result of Erdős, Stone and Simonovits if F is a non-bipartite graph and there are
famous solved and open problems about the Turán number of bipartite graphs.

Much less is known in the hypergraph case. General surveys on the topic are that of Keevash
[17] and Chapter 5 of the book by Gerbner and Patkós [11]. Apart from sporadic results, re-
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searchers tried to define hypergraph classes the corresponding Turán type problems are approach-
able. Extending the way Berge defined hypergraph cycles, Gerbner and Palmer [9] introduced
the following.

Definition 1.1. We say that a hypergraph F is a Berge copy of a graph F , if there exists
an injection i : V (F ) → V (F) and a bijection b : E(F ) → E(F) such that for any edge
(xy) = e ∈ E(F ) we have {i(x), i(y)} ⊆ b(e).

In other words, we can obtain a Berge copy of a graph F by extending every edge e of F to a
larger hyperedge such that all the hyperedges obtained in this way are distinct. There are many
other ways how one can create hypergraphs from graphs using different sets of rules. Mubayi
and Verstraëte [19] survey expansions, a more general enumeration of extremal results concerning
so-called graph-based hypergraphs can be found in [11].

For Berge hypergraphs, extremal problems have been widely studied, see e.g. [7, 8, 9, 10, 14,
15, 16]. In this paper we introduce and study generalizations of the Berge hypergraph concept.

The motivation for introducing these notions is the following: in many proofs concerning
Berge hypergraphs one starts to analyze the part of that shadow graph which is contained in
many hyperedges. The shadow graph of a hypergraph H has the same vertex set as H and those
pairs of vertices form an edge in the shadow graph that are contained in at least one hyperedge
of H. In this paper we mainly focus on the edges of the shadow graph with ’large multiplicities’.
More precisely, we say that an edge of the shadow graph is t-heavy, if it is contained in at least
t hyperedges.

Definition 1.2. For an integer t ≥ 1 and a graph F we say that a hypergraph F is a t-heavy
copy of F if there exists an injection i : V (F ) → V (F) and a function h : E(F ) →

(

E(F)
t

)

such
that for any edge (xy) = e ∈ E(F ) we have {i(x), i(y)} ⊆ ∩A∈h(e)A. We denote the family of
t-heavy copies of F by HtF , and the family of r-uniform t-heavy copies of F by H

r
tF .

Equivalently, F is a t-heavy copy of F if the subgraph of the shadow graph consisting of
t-heavy edges contains a copy of F . With a little abuse of notation we will say that the essence
FF of a copy F of F is the graph isomorphic to F with vertex set {i(x) : x ∈ V (F )} and edge
set {((i(x), i(y)) : (xy) ∈ E(F )}. Note that FF might depend on the injection i as well.

We also introduce another notion that is a clear generalization of Berge hypergraphs.

Definition 1.3. We say that a hypergraph F is a t-wise Berge copy of a graph F if |E(F)| =
t|E(F )| and there exists an injection i : V (F ) → V (F) and function h : E(F ) →

(

E(F)
t

)

such
that

• for any pair e, e′ of different edges in F , we have h(e) ∩ h(e′) = ∅, and

• for any edge (xy) = e ∈ E(F ) we have {i(x), i(y)} ⊆ ∩A∈h(e)A.
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We denote the family of t-wise Berge copies of F by BtF , and the family of r-uniform t-wise
Berge copies of F by B

r
tF . Note that the case t = 1 recovers the original Berge copies of F .

If F is a t-wise Berge copy of F , then let the essence FF of F to be again the graph isomorphic
to F with vertex set {i(x) : x ∈ V (F )} and edge set {((i(x), i(y)) : (xy) ∈ E(F )}.

The easiest way to imagine a Berge copy F of F is to replace all edges e of the essence by t
hyperedges containing e such that all t|E(F )| newly introduced hyperedges are distinct.

Note that the difference between t-wise Berge and t-heavy copies F of F is that when obtaining
them from their essence by replacing edges by hyperedges, the newly introduced hyperedges must
be all distinct in case of t-wise Berge copies, while for t-heavy copies there might be overlaps
between the sets of t hyperedges containing distinct edges of F .

Obviously a t-wise Berge copy of F is also a t-heavy copy of F . Note that a hypergraph can
be a t-wise Berge copy or a t-heavy copy of many different graphs.

Definition 1.4. • For a family F of hypergraphs, let us define its Turán number ex(n,F) as the
largest number of edges in an F-free hypergraph on n vertices.

• For a family F of (r-uniform) hypergraphs, let us define its Turán number exr(n,F) as the
largest number of edges in an F-free r-uniform hypergraph on n vertices.

By definition, we have B
r
tF ⊆ H

r
tF , so

Proposition 1.5. For any integers r, t, n and graph F we have

exr(n,H
r
tF ) ≤ exr(n,B

r
tF ).

Hence we will often state upper bounds only for t-wise Berge copies and lower bounds for
t-heavy copies of graphs.

Before stating our results, we need to introduce a related area. Let F , G and H be graphs,
then N (H,G) denotes the number of copies of H in G, and ex(n,H, F ) := max{N (H,G) :
G is an F -free graph on n vertices}. These so-called generalized Turán problems were studied
for several pairs of graphs. Their systematic study was initiated by Alon and Shikhelman [1],
for further results see e.g. [6] and references therein. A connection between Berge hypergraphs
and generalized Turán problems was pointed out by Gerbner and Palmer [10]. A connection to a
colored version of generalized Turán problems was established by Gerbner, Methuku and Palmer
[7] and also by Füredi, Kostochka and Luo [4] in an equivalent form. We say that a graph is
blue-red if all of its edges are colored either blue or red. We denote the graph spanned by the
blue edges by Gblue and the graph spanned by the red edges by Gred.

Theorem 1.6. For any graph F there is an F -free blue-red graph G on n vertices such that

exr(n,B
r
tF ) ≤ N (Kr, Gblue) + t|E(Gred)|+ (t− 1)

((

n

2

)

− |E(G)|

)

.
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Using this theorem, we can prove the following.

Theorem 1.7. For any integers r ≥ 3, t ≥ 2 and k ≥ 2(t− 1)(r − 2) + 2 we have

exr(n,H
r
tPk), exr(n,B

r
tPk) = (t− 1− o(1))

(

n

2

)

and

exr(n,H
r
tCk−1), exr(n,B

r
tCk−1) = (t− 1− o(1))

(

n

2

)

.

Let us now consider cliques. First we construct H
r
tKk-free r-uniform hypergraphs if k > r.

Let T r(n, k−1) be the complete balanced (k−1)-partite r-uniform hypergraph on n vertices (here
balanced means that the cardinality of two parts differ by at most one). We take T r(n, k − 1)
and for every pair of vertices u and v from the same part, we take t−1 different (r−2)-sets that
intersect r− 2 other parts (this is doable only if t is small enough compared to r or n). We add
the union of these (r− 2)-sets and u and v as hyperedges to obtain the hypergraph Qr

t (n, k− 1).

Theorem 1.8. Let k > r > 2, t ≥ 1 and n be large enough. Then

exr(n,B
r
tKk) = exr(n,H

r
tKk) = |Qr

t (n, k − 1)|.

The structure of the paper is as follows. In Section 2, we prove some general results including
Theorem 1.6 and Theorem 1.7. Section 3 contains results concerning cliques including the proof
of Theorem 1.8. In Section 4, we gather several result for 3-uniform hypergraphs. In the case t
equals 2, we determine the asymptotics of ex3(n,B

3
2F ) for almost all graphs F .

Let us finish the introduction by adding some notation. Hyperedges and sets of size r will be
often referred to as r-hyperedges and r-sets. Our notation for order of magnitude and asymptotics
is standard. We will always think of the uniformity r and the multiplicity t as fixed and the
number n of vertices growing to infinity. Therefore when a result of the form f(n) = O(g(n))
is stated, it means that there exists a constant C such that f(n) ≤ Cg(n) holds, but C might
depend on other parameters like r, t or the forbidden graph F .

2 General results

We start with some simple observations that show how t-heavy and t-wise Berge hypergraphs are
connected to better understood graph-based hypergraphs and also give a quadratic lower bound
on ex(n,Hr

t (F )) for any graph F if t ≥ 2.
The r-uniform expansion F+r of a graph F is obtained by adding (r− 2)|E(F )| new vertices

to V (F ) to obtain V (F+r) and replacing each edge e ∈ E(F ) by an r-hyperedge Ee such that
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Ee ∩ V (F ) = e and (Ee ∩ Ee′) \ V (F ) = ∅ for any pair of different edges e, e′ ∈ E(F ). Turán
problems for expansions have also been widely investigated, see [19] for a survey. A hypergraph
H with the property that for any distinct pair H,H ′ ∈ E(H) of hyperedges we have |H ∩H ′| ≤
1 is called a linear hypergraph. Extremal problems have been investigated for this class of
hypergraphs, see example [5, 3, 22].

Proposition 2.1. Let F = (V (F ), E(F )) be an arbitrary graph.
(i) If t ≥ 2, and F has an edge, then a linear hypergraph does not contain any t-heavy copy

of F .
(ii) Let m := min{

(

r
2

)

, |E(F )|} and t′ := ⌊ t
m
⌋, then every r-uniform t-heavy copy of F contains

a B
r
t′F .
(iii) If t ≥ V (F ) + |E(F )| − 2, then every 3-uniform t-heavy copy of F contains F+3.

Proof. Observe first that (i) is trivial, as no edge is contained in two hyperedges.
To prove (ii), we build an auxiliary bipartite graph G. One of its parts A corresponds to

the hyperedges of H, the other part B corresponds to the edges of the essence FH, and a ∈ A
is connected to b ∈ B if the corresponding hyperedge contains the corresponding edge. Observe
that vertices of A have degree at most min{

(

r
2

)

, |E(F )|} and vertices of B have degree at least
t in G. Let us build another graph G′ with parts A and B′ by replacing each vertex in B by
t′ copies of it, connected to the same vertices of A. Then vertices of A have degree at most
min{

(

r
2

)

, |E(F )|}t′ ≤ t and vertices of B′ have degree at least t in G′. Hence there is a matching
covering B′ in G′ using Hall’s theorem. This matching gives a t′-wise Berge copy of F .

To prove (iii), consider a t-heavy copy H of F . We go through the edges of the essence
FH in an arbitrary order, and pick a hyperedge containing the edge in such a way that the
resulting hypergraph is F+3. For any edge {u, v}, we pick a hyperedge {u, v, x} such that x is
not contained in previously chosen hyperedges. Note that F+3 has |V (F )| + |E(F )| vertices.
Thus even at the last edge uv, we want to avoid only |V (F )| + |E(F )| − 1 vertices. Therefore
one of the t hyperedges containing uv has an unused vertex, and we are done.

Corollary 2.2. Let F be an arbitrary graph.
(i) For any graph F with at least one edge and any integer t ≥ 2 we have

exr(n,H
r
tF ) ≥ (t− 1− o(1))

(

n
2

)

(

r
2

) .

(ii) For any graph F and integer t ≥ min{
(

r
2

)

, |E(F )|}, we have

exr(n,H
r
tF ) ≥ exr(n,B

r
1F ).

Proof. To prove (i), we will consider an r-uniform hypergraph where every edge is contained in
at most t− 1 hyperedges (hence it is obviously H

r
tF -free). If n is divisible by t− 1, there exists
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a balanced incomplete block design (i.e. an r-uniform hypergraph where every edge is contained
in exactly t − 1 hyperedges) by the celebrated result of Wilson [23]. It is easy to see that such
a hypergraph has cardinality (t − 1)

(

n
2

)

/
(

r
2

)

. If n is not divisible by t − 1, we take the largest
n′ < n such that t− 1 divides n′, and a balanced incomplete block design on n′ vertices. It has
(t− 1− o(1))

(

n
2

)

/
(

r
2

)

hyperedges.
(ii) follows from (ii) of Proposition 2.1.

One of our main goal in this paper is to extend extremal results about Berge hypergraphs to
t-wise Berge and t-heavy hypergraphs.

Proposition 2.3. For r ≥ 3 and t ≥ 2 we have

(i) ex(n,BtF ) ≤ ex(n,Bt−1F ) +
(

n
2

)

, and

(ii) exr(n,B
r
tF ) ≤ exr(n,B

r
t−1F ) +

(

n
2

)

.

Proof. The proof of (i) and (ii) are similar, we only present the proof of (i).
Let H be a BtF -free hypergraph. Let S ⊆

(

V (H)
2

)

be a maximal set such that there exists a
bijection g : S → E(H) such that e ⊆ g(e) for all e ∈ S. Let H′ be the hypergraph obtained
from H by deleting the hyperedges in g(S). Then H′ is Bt−1F -free since otherwise, E(FH′) ⊆ S
by maximality of S, and thus this (t − 1)-wise Berge copy can be extended to a t-wise Berge
copy. Clearly, |H| = |H′|+ |S| ≤ |H′|+

(

n
2

)

.

The very first result about general Berge hypergraphs is a theorem of Gerbner and Palmer [9]
stating that for any graph F , if H is a B1F -free hypergraph and every hyperedge of H has size
at least |V (F )|, then

∑

H∈H |H| = O(n2). Here and in the rest of the paper we consider fixed
graphs F and fixed integers t, while n goes to infinity. It was extended by English, Gerbner,
Methuku and Palmer [2] showing under the same conditions that

∑

H∈H |H|2 = O(n2). Here we
extend it further, showing that the same holds for any t if H does not contain any B ∈ BtF .

Proposition 2.4. For any graph F , if H does not contain t-wise Berge copies of F and every
hyperedge of H has size at least |V (F )|, then

∑

H∈H |H|2 = O(n2).

Proof. Let G be the graph on V (H) that consists of the edges that are contained in at most
t|E(F )| − 1 hyperedges of H. Furthermore, let G′ be the complement graph. Then we claim G′

is F -free. Indeed, otherwise we could go through the edges of F and greedily choose t different,
previously unused hyperedges containing them.

Let us fix a real α such that 1 > α > 1
χ(F )−1

if χ(F ) ≥ 3 and 0 < α < 1 if χ(F ) = 2.

According to the Erdős-Stone-Simonovits theorem there exists an n0 ≥ |V (F )| such that any
F -free graph on n ≥ n0 vertices contains at most (1− α)

(

n
2

)

edges. Let β := min{α, 1

(n0
2
)
}.

Consider a hyperedge H . As G′ is F -free, so is G′[H ], and as |H| ≥ |V (F )|, there must be at
least one edge missing from G′[H ]. Hence there are at least β

(

|H|
2

)

edges in G[H ].
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Finally, let us consider the pairs (e,H) when e is an edge of G and H is a hyperedge of H
that contains e. On one hand, there are at most

(

n
2

)

edges in G, and for each such edge there
are at most t|E(F )| − 1 hyperedges in H containing it. On the other hand, the number of such
pairs is at least

∑

H∈H β
(

|H|
2

)

, hence
∑

H∈H β
(

|H|
2

)

≤ (t|E(F )| − 1)
(

n
2

)

, finishing the proof.

Gerbner and Palmer [10] proved the following very useful lemma for Berge hypergraphs.

Lemma 2.5 (Gerbner, Palmer, [10]). For any graph F we have

ex(n,Kr, F ) ≤ exr(n,B
r
1F ) ≤ ex(n,Kr, F ) + ex(n, F ).

The following strengthened version was obtained independently by Gerbner, Methuku and
Palmer [7] and by Füredi, Kostochka and Luo [4]. We state the result in the form used in [7].

Theorem 2.6 (Gerbner, Methuku, Palmer [7]). For any graph F there is an F -free blue-red
graph G on n vertices such that

exr(n,B
r
1F ) ≤ N (Kr, Gblue) + |E(Gred)|.

Here we extend both of the above statements for t-heavy and t-wise Berge hypergraphs. Both
proofs are based on the same basic ideas as the proofs for the Berge versions. Note that the
proposition below follows from Theorem 1.6 and also follows from combining Lemma 2.5 and
Proposition 2.3, but we add the proof for sake of completeness and as a warm-up for the next
proof.

Proposition 2.7. For any graph F and integer t, we have

ex(n,Kr, F ) ≤ exr(n,H
r
tF ) ≤ exr(n,B

r
tF ) ≤ ex(n,Kr, F ) + ex(n, F ) + (t− 1)

(

n

2

)

.

Proof. For the lower bound we take an F -free graph on n vertices and place a hyperedge on the
vertex set of every r-clique. The resulting hypergraph obviously does not contain any t-heavy
copies of F .

To prove the upper bound, let us consider an r-uniform hypergraph H without any t-wise
Berge copies of F and fix an arbitrary order H1, H2, . . . of the hyperedges of H. We go through
the hyperedges in that order, and for each Hi we try to pick a subedge of Hi. We always choose
a subedge that has been picked less than t times for hyperedges Hj with j < i. If it is impossible,
because all the subedges of Hi have been picked t times earlier, we mark the r-clique on the
vertices of the hyperedge. After this process ends, let Gi be the graph of the edges picked exactly
i times. Observe that Gt is F -free and every marked r-clique is in Gt. Let x be the number
of r-cliques marked, then we have x ≤ ex(n,Kr, F ). We claim that |H| = x +

∑t
i=0 i|E(Gi)|.

Indeed, for every hyperedge we either marked a clique or moved an edge from Gi to Gi+1 for
some i ≤ t− 1. As

∑t
i=0 i|E(Gi)| ≤ |E(Gt)|+ (t− 1)

(

n
2

)

, we are done.
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Recall that if t ≥ 2, we have a quadratic lower bound on exr(n,H
r
tF ) by (i) of Proposition

2.2. The difference between the upper and lower bound in Proposition 2.7 is at most quadratic,
thus we know the exact order of magnitude of exr(n,H

r
tF ) and exr(n,B

r
tF ) in case we know the

order of magnitude ex(n,Kr, F ). More precisely, we have the following.

Corollary 2.8. If t ≥ 2, then for any graph F the following four quantities have the same order
of magnitude

exr(n,H
r
tF ), exr(n,B

r
tF ), max{ex(n,Kr, F ), n2}, max{exr(n,B

r
1F ), n2}.

Moreover, in case ex(n,Kr, F ) (or equivalently exr(n,B
r
1F )) is super-quadratic and its asymp-

totics is known, then we also know the asymptotics of exr(n,H
r
tF ) and exr(n,B

r
tF ).

Theorem 1.6. For any graph F there is an F -free blue-red graph G on n vertices such that

exr(n,B
r
tF ) ≤ N (Kr, Gblue) + t|E(Gred)|+ (t− 1)

((

n

2

)

− |E(G)|

)

.

Proof. Let H be a B
r
tF -free r-uniform hypergraph on n vertices. We define an auxiliary bipartite

graph X . Part A of X consists of the hyperedges in H and part B of X consists of the edges of
the shadow graph of H. A vertex a ∈ A and a vertex b ∈ B are connected if a ⊃ b.

Let us take a subgraph X ′ of X that has the largest number of edges among subgraphs
of X satisfying the following properties: every vertex in A has degree at most 1 and every
vertex in B has degree at most t in X ′. We denote by d(v) the degree of a vertex in X ′. Let
A′ = {a ∈ A : d(a) = 1} and B′ = {b ∈ B : d(b) = t}. Observe that there is no edge between
A\A′ and B \B′, as that could be added to X ′. Also observe that the subgraph G of the shadow
graph consisting of the edges corresponding to vertices in B′ is F -free. Indeed, as shown by X ′,
those edges are each contained in at least t hyperedges of H, and as d(a) ≤ 1 for all a ∈ A, these
hyperedges are distinct for edges corresponding to distinct vertices in B′. Therefore our aim is
to red-blue color G, i.e. the vertices of B′. To this end we will partition A and B into several
parts, but first we introduce some terminology.

Pairs a,∈ A, b ∈ B will be called X-edge, X ′-edge, (X −X ′)-edge if they form an edge in X ,
X ′, in X but not in X ′, respectively. We call a path in X alternating if it alternates between
X ′-edges and (X−X ′)-edges. Observe that there is no alternating path P starting in A\A′ and
ending in B \B′, as then we could consider the subgraph X ′′ of X obtained from X ′ by removing
the X ′-edges of P and adding the (X −X ′)-edges of P . This way the degree of the first and last
vertex increases, and the degrees of the other vertices do not change, hence we obtained a larger
subgraph satisfying the degree conditions; a contradiction.

During the proof several times we will build an alternating path connecting two vertices a
and b by putting together multiple alternating paths: one from a to b′, another from b′ to a′

and a third from a′ to b. This builds an alternating walk instead of a path, as a vertex could

8



be used multiple times. However, one can easily see that such an alternating walk contains an
alternating path from a to b.

Let A1 denote the vertices in A′ that can be reached from B \ B′ with an alternating path
that starts and ends with an (X −X ′)-edge. Similarly let B1 denote the vertices in B′ that can
be reached from A\A′ with an alternating path. Note that here the starting edge is by definition
an (X −X ′)-edge, as there is no X ′-edge incident with a vertex of A \ A′.

Let A2 denote the vertices in A′ that are connected to B1 with an X ′-edge, and let B2 denote
the vertices in B′ that are connected to A1 with an alternating path starting (and ending) with
an X ′-edge. Observe that a vertex a ∈ A1 ∩A2 would be reached with an alternating path from
B \ B′ ending with an (X −X ′)-edge (as a ∈ A1), and for the X ′-edge ab, we have b ∈ B1 (as
a ∈ A2). Then we could continue the alternating path starting with the edge ab. The vertex b is
reached from A\A′ with an alternating path, and the last edge of that path is an (X−X ′)-edge.
Hence we can continue our alternating path from b to A \ A′. Thus we found an alternating
walk, hence an alternating path also from B \B′ to A \ A′, a contradiction. Therefore, we have
A1 ∩A2 = ∅.

Similarly B1 ∩ B2 = ∅. Indeed, assume b ∈ B1 ∩ B2. The alternating path from A \ A′ to b,
that exists as b ∈ B1, has to start with an (X−X ′)-edge, thus it also ends with an (X−X ′)-edge.
Then from b, as it belongs to B2, we could continue with an alternating path to a ∈ A1 starting
and ending with an X ′-edge. Then we can continue with an alternating path starting with an
(X−X ′)-edge to B \B′ from a. These three paths form an alternating walk from a\A′ to B \B′,
leading to a contradiction again.

Let A3 = A′ \ (A1 ∪ A2) and B3 = B′ \ (B1 ∪B2). By the above, A1, A2, A3 form a partition
of A′ and B1, B2, B3 form a partition of B′. Let us color the edges of G corresponding to vertices
in B1 ∪ B3 blue and let the edges corresponding to vertices in B2 be red. To get the desired
inequality for this red-blue coloring of G we need some further observations and refining the
partition of A′.

Let us further partition A3 into two parts. A4 ⊆ A3 is the set of vertices that are connected
by the X ′-edge to B2 or B \B′ and A5 = A3 \A4. This way there is no X-edge between A5 and
B2, as an X ′-edge is forbidden by definition, and an (X −X ′)-edge would extend an alternating
path from B \B′ to A1, then to B2, and then to a vertex a ∈ A5, but in this case a would be in
A1, a contradiction. Clearly, we have |H| = |A| = (|A\A′|+ |A2|+ |A5|)+(|A1|+ |A4|). Therefore
it is enough to prove |A\A′|+ |A2|+ |A5| ≤ N (Kr, Gblue) and |A1|+ |A4| ≤ t|B2|+(t−1)|B \B′|.

To see |A\A′|+ |A2|+ |A5| ≤ N (Kr, Gblue), we need to prove that all X-edges from A\A′, A2,
and A5 go to B1 or B3, as then for every hyperedge a ∈ (A \ A′) ∪ A2 ∪ A5, the edges in the
shadow of a form an r-clique in Gblue. From B2 ∪ (B \B′) every (X −X ′)-edge goes to A1, as it
extends an alternating path starting from B \ B′. On the other hand, by definition of A′, there
are no X ′-edges incident any a ∈ A \ A′. Also, by definition of A2, the only X ′-edge incident
to an a ∈ A2 goes to B1, and by definition of A4, the only X ′-edge adjacent to a ∈ A5 goes to
B \ (B2 ∪ (B \B′)) = B1 ∪B3.

To see |A1| + |A4| ≤ t|B2| + (t − 1)|B \ B′|, observe first that, by definition of B2, from A1
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every X ′-edge goes to B2. Also, by definition of A4, from A4 the X ′-edges go to B2 and B \B′.
Therefore the number of X ′-edges incident to A1 ∪ A4 is exactly |A1| + |A4| (every a ∈ A′ is
incident to exactly one X ′-edge), and their number is at most t|B2|+(t−1)|B \B′| (the number
of X ′-edges incident to b ∈ B′ is t and to b′ ∈ B \B′ is at most t− 1).

For t-heavy hypergraphs we can obtain a stronger statement with a simpler proof.

Proposition 2.9. For any graph F there is an F -free graph G such that

ex(n,Hr
tF ) ≤ N (Kr, G) + (t− 1)

((

n

2

)

− |E(G)|

)

.

Proof. Let us consider an H
r
tF -free hypergraph F , and let G be the graph consisting of the edges

in the shadow graph that are contained in at least t hyperedges. Then G is obviously F -free.
The number of hyperedges with their shadow in G is at most N (Kr, G). Every other hyperedge
contains an edge not in G, but such an edge is counted at most t−1 times, finishing the proof.

Let us turn our attention to constructions.

Construction 2.10. Let us assume there exists a (t − 1)-regular (r − 1)-uniform H
r−1
1 F -free

hypergraph F on k vertices. Then we take ⌊n/k⌋ disjoint k-sets A1, . . . , A⌊n/k⌋, and a copy of F ,
Fi on every Ai. Let H be the r-uniform hypergraph containing the following hyperedges. For
every i < j, we take every r-set that consists of an element of Ai and a hyperedge from Fj.

Let us consider u ∈ Ai and v ∈ Aj . They are contained in exactly t − 1 hyperedges of H.
This means that if H contains a t-heavy copy of any graph, the edges of the essence of this copy
are inside the Ai’s. Therefore, if F is connected, then H does not contain a t-heavy copy of F .
The number of hyperedges in H is (1− o(1))(t− 1)

(

n
2

)

/(r − 1), as there are (1− o(1))
(

n
2

)

edges
between Ai’s, each of them is contained in t−1 hyperedges, and every hyperedge is counted r−1
times this way. This implies the following.

Proposition 2.11. Let F be a connected graph with |V (F )| large enough compared to t and r.
Then

exr(n,H
r
tF ) ≥ (1− o(1))

t− 1

r − 1

(

n

2

)

.

Proof. Let F be a (t− 1)-regular (r− 1)-uniform hypergraph on the smallest number of vertices
possible and let us write |V (F)| = k. Then it is F -free for every F with more than k vertices.
So the r-uniform hypergraph H given by Construction 2.10 based on F and the calculation in
the paragraph after Construction 2.10 yields the statement.

In particular, if t = 2 and r ≤ |V (F )|, then k = r − 1. Note that for given t and r one can
often pick a smaller threshold on |V (F )| than the one given by the proof.
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Construction 2.12. Let A1, A2, . . . At−1 be pairwise disjoint sets of r− 2 vertices, and let A be
the set of n− (t − 1)(r − 2) vertices not contained in any Ai. Let H consist of all the r-sets of
the following form: Ai ∪ {x, y} where x, y ∈ A.

Clearly, for x, y ∈ A, there are exactly t−1 hyperedges containing both of them. This means
that all the t-heavy edges are incident to at least one vertex in an Ai. Thus if F does not have
a set of vertices of size at most (t − 1)(r − 2) covering all the edges, then H is H

r
tF -free. In

particular, if F contains P2(t−1)(r−2)+2 or C2(t−1)(r−2)+1, then this is the situation. On the other
hand, there are (1 − o(1))

(

n
2

)

pairs in A, there are t − 1 hyperedges containing each such pair,
and they are all distinct hyperedges. This shows |H| = (t− 1− o(1))

(

n
2

)

. Note that this is sharp
if F is a long cycle or path by Proposition 2.3 and the known results exr(n,B

r
1Pk) = O(n) [14]

and exr(n,B
r
1Ck) = O(n1+1/⌊k/2⌋) [15]. This gives the proof of Theorem 1.7.

Theorem 1.7. For any integers r ≥ 3, t ≥ 2 and k ≥ 2(t− 1)(r − 2) + 2 we have

exr(n,H
r
tPk), exr(n,B

r
tPk) = (t− 1− o(1))

(

n

2

)

and

exr(n,H
r
tCk−1), exr(n,B

r
tCk−1) = (t− 1− o(1))

(

n

2

)

.

3 Cliques

Mubayi [18] considered hypergraphs that are 1-heavy copies of Kk and in addition have at most
(

k
2

)

hyperedges. He proved that the largest number of hyperedges in an r-uniform hypergraph
avoiding each of those is given by the complete balanced (k − 1)-partite r-uniform hypergraph
T r(n, k − 1) (here balanced means the cardinality of two parts differ by at most one). Observe
that T r(n, k− 1) does not contain any H

r
1Kk, hence exr(n,H

r
1Kk) = |T r(n, k− 1)|. Mubayi also

proved that T r(n, k−1) asymptotically gives the maximum even if only the r-uniform expansion
of Kk is forbidden. This result was improved by Pikhurko [20], who proved that if n is large
enough, then exr(n,K

+r
k ) = |T r(n, k−1)| holds. This also implies exr(n,B

r
1Kk) = |T r(n, k−1)|.

Gerbner, Methuku and Palmer [7] moved the threshold down for Berge cliques, using Theorem
2.6. The proof relied on the statement that among Kk-free blue-red graphs G, N (Kr, Gblue) +
|E(Gred)| is always maximized by either a monoblue or a monored graph.

First we extend this theorem.

Theorem 3.1. If G is a Kk-free blue-red graph, then

N (Kr, Gblue) + t|E(Gred)|+ (t− 1)

((

n

2

)

− |E(G)|

)

=: gr,t(G) ≤

≤ (t− 1)

(

n

2

)

+max{ex(n,Kr, Kk)− (t− 1)ex(n,Kk), ex(n,Kk)}.
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Observe that, as Zykov proved [24] that ex(n,Kr, Kk) is attained by the Turán graph T 2(n, k−
1) for all 2 ≤ r ≤ k − 1, the two upper bounds given in Theorem 3.1 are sharp as shown by the
monocolored Turán-graphs. It is easy to see that if n is large enough, then the gr,t-value of the
monoblue Turán graph is larger than that of the monored Turán graph.

The proof of the above theorem is based on the same basic idea as the proof of the case t = 1
in [7] (Theorem 19). It is an adaptation of Zykov’s symmetrization process.

Proof. Let G be a Kk-free blue-red graph with the largest value of gr,t(G). Let the red degree of
v be the number of red edges incident to v and the blue r-clique degree of v be the number of
blue r cliques incident to v. Then let d∗(v) denote the blue r-clique degree plus t times the red
degree minus t − 1 times the degree of v (note that this is the only place where t plays a role).
We introduce out first operation on G. For two unconnected vertices u and v, we delete all the
edges incident to u and for every edge vw we add the edge uw of the same color. We call this the
symmetrization of u to v. It is easy to see that the resulting graph is Kk-free. If d

∗(u) ≤ d∗(v),
then gr,t(G) does not decrease, and if d∗(u) < d∗(v), then gr,t(G) increases.

We will apply several such symmetrization steps. In the first phase we choose a vertex v with
the largest d∗(v). Then we pick a vertex u not connected to v and symmetrize u to v. Then we
repeat this for every vertex not connected to v. Observe that d∗(w) may increase for a vertex w
during these symmetrization steps, but only if w is connected to v. Hence we can symmetrize to
v all the vertices not adjacent to v, one by one, without decreasing gr,t(G). After this is done, we
obtain an independent set A of vertices such that each vertex of A is connected to each vertex
w not in A. Moreover, the vertices in A are connected to w by edges of the same color. Observe
that this property does not change in further symmetrization steps.

In the second phase we pick a vertex not in A and do the same what we did in the first phase.
Then we obtain another independent set, and so on. After at most k − 1 phases we run out of
vertices. At that point we obtained a complete multipartite graph with at most k− 1 parts such
that for any two of its parts, all the edges between the parts are of the same color. Thus the
vertices inside a part have the same d∗-value. For a part A, let d∗(A) = |A|d∗(a) for an a ∈ A.
We apply another symmetrization process; for two parts A and B connected by red edges, in
one symmetrization step we delete all the edges incident to B, except those between A and B.
Then for each other part C, we add all the edges between B and C with the color of the edges
between A and C. In fact we just recolor some edges, hence the term (t− 1)(

(

n
2

)

− |E(G)|) does
not matter anymore. If d∗(B) ≤ d∗(A), then gr,t(G) does not decrease. Observe that d∗(A) does
not decrease, as no edge incident to a vertex in A was changed, and no blue clique incident to
a vertex in A was deleted, as every edge that we changed is incident to a vertex in B, which is
connected to vertices in A by red edges.

In the first phase of this second part of the proof, we choose part A with the largest d∗(A) and
call it the active part. Then we pick a part B connected to it by red edges and symmetrize B to
A. Then we repeat this for every other part C connected to A by red edges, unless d∗(C) > d∗(A)
(it is possible, as d∗(C) can increase while we symmetrize B to A). In that case we let C be
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the active part and symmetrize to C parts that are connected to it by red edges, one by one. It
can happen again that we find a part with an even larger d∗. However, this can happen finitely
many times. Indeed, the largest d∗-value is at most n(

(

n
r

)

+ t
(

n
2

)

), as there are at most
(

n
r

)

blue
r-cliques, at most

(

n
2

)

red edges and a part can have at most n vertices. If every other part that is
connected to the active part with red edges is symmetrized to it, then the first phase ends. Thus
the first phase ends after at most n(k − 2)(

(

n
r

)

+ t
(

n
2

)

) symmetrization steps, and we obtain a
family A of parts connected to each other by red edges and connected to the other parts by blue
edges. Then we pick a part not from A as the active part and repeat this procedure. Observe
that edges incident to parts in A do not change later. After at most k − 2 phases we run out of
parts.

At that point we obtain a complete multipartite graph G′ such that for any two of its parts,
all the edges between the parts are of the same color, and being connected by red edges is an
equivalence relation. That means that the G′

blue itself is a complete multipartite graph.
Recall that G′ has the largest gr,t value among blue-red Kk-free graphs (as gr,t(G

′) ≥ gr,t(G)).
If G′ is monochromatic, we are done, thus assume not, and there are red edges between part A
and B. If there are no blue edges incident to A, then all the edges have to be red and we are
done. If vertices of A are not in blue r-cliques, then we could recolor the incident blue edges to
red, increasing gr,t, a contradiction. Hence we obtained that A is connected to s ≥ r − 1 parts
A1, . . . , As in G′

blue. Let ai = |Ai| for i ≤ s.
We are going to show that either recoloring the edges between A and B to blue, or recoloring

the blue edges incident to A to red increases gr,t, leading to a contradiction. Indeed, let

x =
∑

1≤i1<···<ir−2≤s

ai1 · · · air−2
, y =

∑

1≤i1<···<ir−1≤s

ai1 · · · air−1
, z =

s
∑

i=1

ai.

Then the first operation adds |A||B|x new blue r-cliques while deletes |A||B| red edges. The
second operation adds |A|z new red edges while deletes |A|y blue r-cliques. If |A||B|x > t|A||B|
or t|A|z > |A|y, we are done. Otherwise x ≤ t, thus x|A|z ≤ t|A|z ≤ |A|y, i.e. xz ≤ y. It
is easy to see that every term of y appears in xz and there are additional terms, showing the
contradiction.

Hence we obtained that gr,t is maximized by either a monored (complete multipartite) graph,
or a monoblue complete multipartite graph, in which case x ≥ t. As in a monored graph gr,t is
the number of edges, clearly it is maximized by the Turán graph, using Turán’s theorem. Let
us assume now that gr,t is maximized by a monoblue complete multipartite graph on n vertices
which is not the Turán graph, i.e. there are parts A and B such that |A| ≥ |B| + 2. We define
the ai’s and x as above. Then we move a vertex from A to B. The resulting graph has more
edges by (|A| − 1)(|B|+1)− |A||B| > 0 and more copies of Kr by x(|A| − 1)(|B|+1)− |A||B| ≥
t(|A| − 1)(|B|+ 1)− |A||B|. This implies gr,t increases, a contradiction.

Together with Theorem 1.6 this implies the following.

13



Corollary 3.2. exr(n,B
r
tKk) ≤ (t− 1)

(

n
2

)

+max{ex(n,Kr, Kk)− (t− 1)ex(n,Kk), ex(n,Kk)}.

Let us recall that Qr
t (n, k−1) is obtained from T r(n, k−1) by adding for every pair of vertices

u and v from the same part, t − 1 distinct hyperedges that contains them and intersects r − 2
other parts. Observe that T r(n, k − 1) has ex(n,Kr, Kk) hyperedges by the theorem of Zykov
and we added (t− 1)(

(

n
2

)

− |E(T 2(n, k − 1))|) = (t− 1)(
(

n
2

)

− ex(n,Kk)) additional hyperedges.
On the other hand Qr

t (n, k − 1) is H
r
tKk-free, as the edges contained in at least t hyperedges

form a T 2(n, k − 1).

Theorem 1.8. Let k > r > 2, t ≥ 1 and n be large enough. Then

exr(n,B
r
tKk) = exr(n,H

r
tKk) = |Qr

t (n, k − 1)|.

Proof. As n is large enough, Qr
t (n, k− 1) is defined. On the other hand, having Corollary 3.2 in

hand, it is enough to show that ex(n,Kr, Kk) ≥ t · ex(n,Kk) if n is large enough. It is obvious
as the order of magnitude of ex(n,Kr, Kk) is n

r, while ex(n,Kk) is quadratic.

Note that using Corollary 3.2 one could also determine a reasonable threshold for n with
some computation.

4 The 3-uniform case

In this section, we consider results for the smallest uniformity, i.e. in the case r = 3.

4.1 t = 2

In this case, (i) of Corollary 2.2 gives the lower bound (1 − o(1))n2/6 ≤ ex3(n,H
3
2F ) for every

graph F .
Let F be a connected graph, which is not a single edge. Construction 2.10 gives the lower

bound (1−o(1))n2/4 ≤ ex3(n,H
3
2F ). Let us repeat the construction in this special case: we take

a matching e1, . . . , e⌊n/2⌋ and add every triple of the form {v} ∪ ei if v ∈ ej with j < i. This has
cardinality (1− o(1))n2/4.

Construction 2.12 gives the lower bound (1 − o(1))n2/2 ≤ ex3(n,H
3
2F ) for every connected

graph F that is not a star. The construction in this case consists of all triples that contain a
fixed vertex v.

Lemma 4.1. For any positive integer r ≥ 2 we have

ex3(n,B
3
2Sr) ≤ (1 + o(1))

n2

4
.

Proof. We start with the following observation.
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Proposition 4.2. If F ⊆
(

[n]
3

)

is B3
2Sr-free, then the graph of 2-heavy edges does not contain an

S3r.

Proof. Suppose to the contrary that the degree of x in the graph of 2-heavy edges is at least 3r
and let y1, y2, . . . , y3r be 3r of x’s neighbors. We now greedily define our copy of B3

2Sr. As xy1
is contained in at least 2 hyperedges H1

1 , H
1
2 , we take these two hyperedges and delete the third

vertices of H1
1 , H

1
2 from the list of yi’s. At every step, we add two hyperedges to our copy of B3

2Sr

and delete at most 3 vertices (including the current yi) from our list. Therefore, by our last step
we deleted at most 3(r− 1) yi’s, so we can still define Hr

1 , H
r
2 to complete the copy of B3

2Sr.

Proposition 4.2 implies that the number of 2-heavy edges is at most 3
2
rn. Let us call a

hyperedge H of a B
3
2Sr-free 3-graph F bad if it contains more than one 2-heavy edges. We claim

that every 2-heavy edge is contained in at most 6r bad hyperedges. Indeed, if H1, H2, . . . , H6r+1

are bad hyperedges containing uv and x1, x2, . . . , x6r+1 are their third vertices, then

max{|{j : xju is 2-heavy }|, |{j : xjv is 2-heavy }|} ≥ 3r,

so the graph of 2-heavy edges would contain S3r contradicting Proposition 4.2. We obtained that
the number of bad hyperedges is at most 9r2n. On the other hand every non-bad hyperedge
H contains at least two non-2-heavy edges, and these edges, by definition, are only contained
in one hyperedge of F , namely H . Therefore the number of non-bad hyperedges is at most
1
2

(

n
2

)

= (1 + o(1))n2/4.

In case F is not a star, we have an upper bound ex3(n,B
3
2F ) ≤ ex3(n,B

r
1F ) +

(

n
2

)

by Propo-
sition 2.3. In case ex3(n,B

3
1F ) is sub-quadratic, this matches asymptotically the lower bound

given by Construction 2.12.
This means that for any connected F , if we know ex3(n,B

3
1F ), and it is sub-quadratic or

super-quadratic, then we know the asymptotics of ex3(n,B
3
2F ). But if ex3(n,B

3
1F ) is quadratic,

we do not know the asymptotics of ex3(n,B
3
2F ). One such example is the triangle. Győri [13]

proved ex3(n,B
3
1K3) = (1 + o(1))n2/8 (note that he proved an exact bound for many n).

Construction 2.12 gives ex3(n,H
3
2K3) ≥ (1 + o(1))n2/2. It is easy to see that it is sharp: by

definition every hyperedge H in a H
3
2K3-free hypergraph contains an edge that is not 2-heavy,

i.e. that is contained only in H and no other hyperedges. As there are
(

n
2

)

edges that can play
that role, there are at most

(

n
2

)

hyperedges. We show that the same asymptotic result holds for
2-wise Berge triangles.

Proposition 4.3. ex3(n,B
3
2K3) = (1 + o(1))n2/2.

Proof. Let us consider a 3-uniform, B
3
2K3-free hypergraph H. If it contains edges that are

contained in exactly one hyperedge, let us delete a hyperedge containing such an edge. Then
we continue this as long as we can. Let H′ be the resulting hypergraph. Then every hyperedge
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of H′ contains three 2-heavy edges. Let us call an edge nice if it is contained in exactly two
hyperedges.

We claim that every hyperedge H of H′ contains at least two nice edges. Indeed, if one edge
e1 ⊂ H is also contained in H1 and the other two edges e2, e3 ⊂ Hare contained in at least three
hyperedges (so e2 ⊂ H,H2, H

′
2, e3 ⊂ H,H3, H

′
3), then these six hyperedges form a 2-wise Berge

triangle.
We claim that for some k we can find k hyperedges such that there are at least k edges

contained only in them. Indeed, let us start with an arbitrary hyperedge H , and put it in a
hypergraph G. It contains two nice edges e1 and e2. Put them in a graph G. Let e1 be contained
in H1 and e2 in H2 in addition to H , then both H1 and H2 contain another nice edge which are
contained in other hyperedges and so on. We always put the hyperedges we reach this way to G
and the nice edges to G. At some point, we have to stop, G and G does not increase further. At
this point the edges of G are contained only in hyperedges of G, and each are contained in two
hyperedges of G. On the other hand, each hyperedge of G contains at least two edges of G. This
means k := |G| ≤ |E(G)|.

Let us now delete G and find another set G ′ of hyperedges with more edges contained only
in them, delete G ′, and so on. This procedure stops only when all the hyperedges are deleted.
Observe that whenever we deleted some hyperedges, we deleted at least that many edges from the
shadow graph (the edges that were contained only in those hyperedges) Indeed, when obtaining
H′, we always delete a hyperedge and at least one edge of the shadow graph with it, and later we
always delete k hyperedges and at least k edges of the shadow graph. This implies that originally
the number of hyperedges was at most the number of edges in the shadow graph, which is at
most

(

n
2

)

, finishing the proof.

4.2 t > 2

Let us repeat first Construction 2.12 in this special case. We take t− 1 fixed vertices v1, . . . , vt−1

and every triple that contains exactly one of them. The resulting hypergraph is H3
tF -free if F is

not a subgraph of Kt−1,n−t+1. This gives the lower bound ex3(n,H
3
tF ) ≥ (1 + o(1))(t − 1)n2/2

hyperedges, and this bound is asymptotically sharp if additionally ex3(n,B
3
1F ) = o(n2).

Let us turn our attention to Construction 2.10. As we mentioned, it is not hard to improve
that construction for some specific t and r. Here by improvement we do not mean a larger
hypergraph, but a larger set of graphs F for which the hypergraph avoids t-heavy copies of F .

Our first goal is to find regular graphs not containing F , preferably ones which contain a
perfect matching (we will see later why). Let F be a connected graph that contains a cycle Cl.
It is well-known that there exist d-regular graphs with girth at least l + 1 for any d. Moreover,
a result of Sachs (Theorem 1 in [21]) states that there exist such graphs that contain a perfect
matching.

If F is a tree and has k vertices, then any d-regular graph with d ≥ k − 1 contains F . If
d ≤ k − 2 is odd, then Kd+1 is an F -free d-regular graph, that also has a perfect matching. If
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d ≤ k−3 is even, then Kd+2 minus a perfect matching is an F -free d-regular graph that also has a
perfect matching. Finally, if d = k−2 even, then for Sk−1 there exists a d-regular Sk−1-free graph
that has a perfect matching (actually, any d-regular graph with a perfect matching is Sk−1-free),
while for other trees, it is shown in [12] that the only d-regular Pk-free graphs are disjoint unions
of Kd+1’s and as d+ 1 is odd, they do not contain perfect matchings.

Construction 4.4. Let F be connected and t odd. Let m be a number such that there exists
a ((t− 1)/2)-regular F -free graph G on m vertices. Then we take ⌊n/m⌋ disjoint sets Ai of size
m. For every i, we take a copy of G on Ai. For every i < j, we take every triple that consists of
two vertices in Ai, connected by an edge in G, and one vertex from Aj, and we also take every
triple that consists of two vertices in Aj , connected by an edge in G, and one vertex from Ai.
Let H be the hypergraph obtained this way. Then for every u ∈ Ai and j ∈ Aj there are exactly
t−1 hyperedges containing both u and v. This means that the t-heavy edges form ⌊n/m⌋ vertex
disjoint copies of G, thus H is H3

tF -free.
Let us consider now the case t is even. Then let m be a number such that there exists a

t/2-regular F -free graph G on m vertices that has a matching M . Then we proceed similarly,
just we avoid the edges in M from Aj . More precisely, we take ⌊n/m⌋ disjoint sets Ai of size m.
For every i, we take a copy of G on Ai. For every i < j, we take every triple that consists of two
vertices in Ai, connected by an edge in G, and one vertex from Aj , and we also take every triple
that consists of two vertices in Aj, connected by an edge in G that is not in M , and one vertex
from Ai. Then, again, for every u ∈ Ai and j ∈ Aj there are exactly t− 1 hyperedges containing
both u and v. This means that the t-heavy edges form ⌊n/m⌋ vertex disjoint copies of G, thus
H is H3

tF -free.

In both these cases H has (1 + o(1))(t− 1)n2/4 hyperedges. Indeed, there are (1 + o(1))
(

n
2

)

edges uv with u ∈ Ai, v ∈ Aj , i 6= j, and they are contained in exactly t−1 hyperedges. However,
we count every hyperedge twice this way, as every hyperedge contains two vertices from the same
Ai.

Hence ex3(n,H
3
tF ) ≥ (1 + o(1))(t − 1)n2/4 if there exists a (t − 1)/2-regular F -free graph,

or a t/2-regular F -free graph that has a perfect matching. In particular, it holds if F contains a
cycle, or t is not divisible by 4 and ⌊t/2⌋ ≤ |V (F )|−2, or t is divisible by 4 and t/2 ≤ |V (F )|−3.

For many graphs F , ex3(n,H
3
tF ) has the lower bound (1 + o(1))(t− 1)n2/2 by Construction

2.12, and for almost all graphs we have the lower bound (1 + o(1))(t− 1)n2/4 by Construction
4.4. The missing graphs are trees on at most ⌈(t−1)/2⌉+2 vertices. For them we have the lower
bound (1 + o(1))(t − 1)n2/6 by Corollary 2.2. Observe that we can improve this by combining
the above constructions.

Construction 4.5. Let t0 ≤ n/2 be the largest integer such that F is not a subgraph of
Kt0−1,n−t0+1 and k be the number of vertices of F . Note that if n is large, we have t0 < k,
as Kk−1,n−k+1 contains every tree on k vertices. Let H1 be the H

3
tF -free hypergraph given by

Construction 2.12, i.e. we fix t0 vertices and take every hyperedge that contains exactly one of
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them. Let H2 be the H
3
2k−3F -free hypergraph given by Construction 4.4 with m = k − 1 and G

being Kk−1, i.e. we take ⌊n/(k−1)⌋ sets Ai and every hyperedge that contains two vertices from
an Ai and one vertex from another.

Let us assume t > t0 and t ≥ 2k − 3. Then we take a family F1 of cardinality (1 + o(1))(t−
t0)n

2/6 where every edge is contained in at most t− t0 hyperedges and a family F2 of cardinality
(1 + o(1))(t− 2k + 3)n2/6 where every edge is contained in at most t− 2k + 3 hyperedges. We
claim that Hi ∪Fi is H

3
tF -free for i = 1, 2. Indeed, Hi is H

3
tF -free by definition, and Fi does not

change which edges are t-heavy.

Let us examine the size of Hi ∪ Fi. We have |H1| = (1 + o(1))(t0 − 1)n2/2 and |H2| =
(1+ o(1))(2k− 4)n2/4. We claim that |H1 ∪F1| = (1+ o(1))(t0− 1)n2/2+ (1+ o(1))(t− t0)n

2/6
and |H2 ∪ F2| = (1 + o(1))(2k − 4)n2/4 + (1 + o(1))(t − 2k + 3)n2/6. To see this, we need to
show that the intersection of Hi and Fi is sub-quadratic for i = 1, 2. Observe that there is a set
Si of linearly many edges such that each hyperedge in Hi contains at least one member of Si for
i = 1, 2. On the other hand, F1 has at most (t− t0)|S1| hyperedges containing a member of S1

and F2 has at most (t− 2k + 3)|S2| hyperedges containing a member of S2.
Let us consider now the simplest graph where we do not have an asymptotic result, the cherry

S2. We have t0 = 1, thus H1 is empty. On the other hand k = 3, thus H2 is not empty, the Ai’s
can have two vertices.

Proposition 4.6. We have
(i) ex3(n,H

3
2S2) = (1 + o(1))n2/4, and

(ii) for t ≥ 3, ex3(n,H
3
tS2) ≥ (t+ o(1))n2/6.

Proof. The first statement is true by Construction 2.10 and Lemma 4.1. The second statement
is true by Construction 4.4 for t = 3 and by Construction 4.5 for larger t.

We can prove that the second bound is asymptotically sharp, but only for the t-heavy cherries
and not the t-wise Berge cherries.

Proposition 4.7. For t ≥ 3 we have ex3(n,H
3
tS2) = (t+ o(1))n2/6.

Proof. The lower bound is given by Proposition 4.6. For the upper bound let us consider a
H

3
tS2-free hypergraph H, and let S be the set of t-heavy edges. Then S must be a matching.

Observe that for every edge e not in S there are at most two hyperedges that contain e and
a member of S. Let m be the number of hyperedges that contain a member of S. They each
contain two edges not from S, and this way we count such edges at most twice, thus we have
m ≤

(

n
2

)

.
Let us add up the number of times the edges not in S are contained in hyperedges. On the

one hand it is at most (t − 1)
(

n
2

)

. On the other hand it is exactly 2m + 3(|H| −m). Thus we
have

3|H| −

(

n

2

)

≤ 3|H| −m ≤ (t− 1)

(

n

2

)

,
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and simple rearranging finishes the proof.
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