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1. Introduction

LetMn be either the Euclidean space Rn, hyperbolic space Hn or spherical space Sn for n ≥ 2.
We write VMn to denote the n-dimensional volume (Lebesgue measure) on Mn, and dMn(x, y) to
denote the geodesic distance between x, y ∈Mn.

For a bounded set X ⊂Mn, its diameter diamMnX is the supremum of the geodesic distances
dMn(x, y) for x, y ∈ X. For D > 0 and n ≥ 1, our goal is to determine the maximal volume of a
subset of Mn of diameter at most D. For any z ∈Mn and r > 0, let

BMn(z, r) = {x ∈Mn : d(x, z) ≤ r}
be the n-dimensional ball centered at z where it is natural to assume r < π ifMn = Sn. When it
is clear from the context what space we consider, we drop the subscript referring to the ambient
space. In order to speak about the volume of a ball of radius r, we fix a reference point z0 ∈ Mn

where z0 = o the origin if Mn = Rn.
It is well-known, due to Bieberbach [4] in R2 and P. Urysohn [8] in Rn, that if X ⊂ Rn is

measurable and bounded with diamX = D, then

(1) V (X) ≤ V (B(o,D/2)),

and equality holds if and only if the closure of X is a ball of radius D/2.
We prove the following hyperbolic- and spherical analogues of (1).

Theorem 1.1. If D > 0 and X ⊂ Hn is measurable and bounded with diamX ≤ D, then

V (X) ≤ V (B(z0, D/2)),

and equality holds if and only if the closure of X is a ball of radius D/2.

Theorem 1.2. If D ∈ (0, π) and X ⊂ Sn is measurable with diamX ≤ D, then

V (X) ≤ V (B(z0, D/2)),

and equality holds if and only if the closure of X is a ball of radius D/2.

On S2, Hernández Cifre, Mart́ınez Fernández [6] proved a stronger version of Theorem 1.2 for
centrally symmetric sets of diameter less than π/2.

The proofs of Theorem 1.1 and Theorem 1.2 build strongly on ideas related to two-point sym-
metrization in the paper Aubrun, Fradelizi [1]. After reviewing the basic properties of spaces of
constant curvature in Secion 2, we consider the extremal sets in Section 3 and convex sets in Sec-
tion 4 from our point of view. The main tool of this paper, two-point symmetrization, is introduced
in Section 5 where we actually prove Theorem 1.2 if D ≤ π

2
and Theorem 1.1. The reason why

the argument is reasonably simple (kind of a proof from Erdős’ Book) for Theorem 1.2 if D ≤ π
2

and for Theorem 1.1 is that it is easy to show that the extremal sets are convex in these cases.
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However, if D > π
2

in the spherical case, then a priori much less information is availabe on the
extremal sets, therefore a more technical argument is provided in Section 6.

2. Spaces of constant curvature

Let Mn be either Rn, Hn or Sn. Our focus is on the spherical- and hyperbolic space, and
we assume that Sn is embedded into Rn+1 the standard way, and Hn is embedded into Rn+1

using the hyperboloid model. We write 〈·, ·〉 to denote the standard scalar product in Rn+1, write
z⊥ = {x ∈ Rn+1 : 〈x, e〉 = 0} for z ∈ Rn+1\o and fix an e ∈ Rn+1. In particular, we have

Sn = {x ∈ Rn+1 : 〈x, x〉 = 1}
Hn = {x+ te : x ∈ e⊥ and t ≥ 1 and t2 − 〈x, x〉 = 1}.

For Hn, we also consider the following symmetric bilinear form B on Rn+1: If x = x0+ te ∈ Rn+1

and y = y0 + se ∈ Rn+1 for x0, y0 ∈ e⊥ and t, s ∈ R, then

B(x, y) = ts− 〈x0, y0〉.
In particular,

(2) B(x, x) = 1 for x ∈ Hn.

Again let Mn be either Rn, Hn or Sn using the models as above for Hn and Sn. For z ∈ Mn,
we define the tangent space Tz as

Tz = {x ∈ Rn+1 : B(x, z) = 0} if Mn = Hn

Tz = z⊥ if Mn = Sn

Tz = Rn if Mn = Rn.

We observe that Tz is an n-dimensional real vector space equipped with the scalar product −B(·, ·)
if Mn = Hn, and with the scalar product 〈·, ·〉 if Mn = Sn or Mn = Rn.

Let us consider lines and (n−1)-dimensional (totally geodesic) subspaces ofMn. A line ` ⊂Mn

passing through a z ∈ Mn is given by a unit vector u ∈ Tz; namely, −B(u, u) = 1 if Mn = Hn,
and 〈u, u〉 = 1 if Mn = Sn or Mn = Rn, and the line ` is parameterized by

x = (ch t)z + (sh t)u if Mn = Hn and t ∈ R
x = (cos t)z + (sin t)u if Mn = Sn and t ∈ [−π, π]

x = z + tu if Mn = Rn and t ∈ R
where dMn(x, z) = |t|. In addition, the (n − 1)-dimensional subspace of Mn passing through
z ∈Mn and having normal vector v ∈ Tz\{o} is

{x ∈ Hn : B(x, v) = 0} if Mn = Hn

{x ∈ Sn : 〈x, v〉 = 0} if Mn = Sn

{x ∈ Rn : 〈x, v〉 = 0} if Mn = Rn.

We say that a non-empty compact set C ⊂ Mn with C 6= Sn is solid, if C is the closure of
intMnC. For such a C, we say that x ∈ ∂MnC is strongly regular if there exists r > 0 and z ∈ C
such that BMn(z, r) ⊂ C and x ∈ ∂MnBMn(z, r). In this case, we set NC(x) ∈ Tx to be an exterior
unit vector at x; namely,

−B(NC(x), NC(x)) = 1 and z = (ch r)x− (sh r)NC(x) if Mn = Hn

〈NC(x), NC(x)〉 = 1 and z = (cos r)x− (sin r)NC(x) if Mn = Sn

〈NC(x), NC(x)〉 = 1 and z = x− rNC(x) if Mn = Rn.

Lemma 2.1. If C ⊂Mn is solid, then the strongly regular boundary points are dense in ∂MnC.
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Proof. Let z ∈ ∂MnC, and let ε > 0. As C is solid, we may choose an x ∈ intMnC such that
dMn(x, z) < ε/2. Let r > 0 be maximal with the property that BMn(x, r) ⊂ C, and hence
r ≤ dMn(x, z) and there exists

y ∈ ∂MnBMn(z, r) ∩ ∂MnC.

Therefore y is a strongly regular boundary point, and the triangle inequality yields that dMn(y, z) <
ε. �

According to Vinberg [9], the “Standard Hypersurfaces” in either Rn, Hn or Sn are as follows:

• Hyperplanes of the form {x ∈ Rn : 〈x, p〉 = t} in Rn for p ∈ Rn\o and t ∈ R;
• ∂RnB(z, r) = {x ∈ Rn : 〈x− z, x− z〉 = r2} in Rn for z ∈ Rn and r > 0;
• ∂SnB(z, r) = {x ∈ Sn : 〈x, z〉 = cos r} in Sn for z ∈ Sn and r ∈ (0, π), hence for any
p ∈ Rn+1\o and t ∈ R, the set {x ∈ Sn : 〈x, p〉 = t} is either empty, a point, or the
boundary of a spherical ball;
• ∂HnB(z, r) = {x ∈ Hn : 〈x, z〉 = ch r} in Hn for r > 0 and z ∈ Hn, hence for any t ∈ R

and p ∈ Rn+1\o with B(p, p) > 0, the set {x ∈ Hn : B(x, p) = t} is either empty, a point,
or the boundary of a hyperbolic ball;
• Hyperplanes of the form {x ∈ Hn : B(x, p) = 0} in Hn for p ∈ Rn\o with B(p, p) < 0;
• Hyperspheres of the form {x ∈ Hn : B(x, p) = t} in Hn for t ∈ R\0 and p ∈ Rn\o with
B(p, p) < 0;
• Horospheres of the form {x ∈ Hn : B(x, p) = t} in Hn for t ∈ R\0 and p ∈ Rn\o with
B(p, p) = 0.

We note the following properties.

Lemma 2.2. If Ξ is a standard hypersurface in Mn where Mn is either Rn, Hn or Sn, then
Mn\Ξ has two connected components, the boundary of both components is Ξ, and any of these
components is bounded if and only if the component is an open ball.

Corollary 2.3. If Mn is either Rn, Hn or Sn, and C ⊂ Mn, C 6= Mn is a solid set whose
strongly regular boundary points are contained in a fixed standard hypersurface, then C is a ball.

Proof. Let Ξ be standard hypersurface containing the strongly regular boundary points of C. Since
Ξ is closed and strongly regular boundary points are dense in ∂MnC according to Lemma 2.1, we
have

(3) ∂MnC ⊂ Ξ.

Next we prove

(4) ∂MnC = Ξ.

We suppose that there exists z ∈ Ξ\∂MnC, and seek a contradiction. We consider some y ∈
(intMnC)\Ξ, thus Lemma 2.2 yields that there exists a continuous curve γ : [0, 1]→Mn such that
γ(0) = y, γ(1) = z and γ(t) 6∈ Ξ for t < 1. As z 6∈ C, there exists s = max{t : γ(t) ∈ C} < 1. It
follows that γ(s) ∈ (∂MnC)\Ξ, contradicting (3), and proving (4).

We deduce from (4) that intMnC is the union of the components ofMn\Ξ, and since C 6=Mn,
intMnC is one of the components of Mn\Ξ by Lemma 2.2. As C is bounded, we conclude that C
is a ball again by Lemma 2.2. �

In the final part of this section, we assume that Mn is either Hn or Sn, and use the models in
Rn+1 above. For k = 1, . . . , n − 1, the k-dimensional totally geodesic subspaces are of the form
L ∩Mn where L is a linear (k + 1)-dimensional subspace of Rn+1 with L ∩Mn 6= ∅. Next, we
define π : Rn+1\e⊥ → e⊥ + e by

π(x) =
x

〈x, e〉
.
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It follows that the restriction of π to Hn is a diffeomorphism into the “open” n-ball {x ∈ e⊥ + e :
dRn+1(x, e) < 1}, and the restriction of π to intSnBSn(e, π

2
) is a diffeomorphism into the affine

n-plane e⊥+e of Rn+1. In addition, for any k = 1, . . . , n−1, π induces a natural bijection between
certain k-dimensional affine subspaces of e⊥+e and certain k-dimensional totally geodesic subspaces
of Mn not contained in e⊥. In particular, if L is a (k + 1)-dimensional linear subspace of Rn+1,
then

π(L ∩Hn) = L ∩ (e⊥ + e) provided L ∩Hn 6= ∅(5)

π
(
L ∩ intSnBSn

(
e,
π

2

))
= L ∩ (e⊥ + e) provided L 6⊂ e⊥.(6)

3. D-maximal sets

The main tool to obtain convex bodies with extremal properties is the Blaschke Selection The-
orem. First we impose a metric on non-empty compact subsets. Let Mn be either Rn, Hn or Sn.
For a non-empty compact set C ⊂ Mn and z ∈ Mn, we set dMn(z, C) = minx∈C dMn(z, x). For
any non-empty compact set C1, C2 ⊂Mn, we define their Hausdorff distance

δMn(C1, C2) = max

{
max
x∈C2

dMn(x,C1),max
y∈C1

dMn(y, C2)

}
.

The Hausdorff distance is a metric on the space of non-empty compact subsets in Mn. We say
that a sequence {Cm} of non-empty compact subsets ofMn is bounded if there is a ball containing
every Cm. For non-empty compact sets Cm, C ⊂Mn, we write Cm → C to denote if the sequence
{Cm} tends to C in terms of the Hausdorff distance.

The following is well-known and we present the easy argument for the sake of completeness (see
Theorem 1.8.8 in R. Schneider [7] for the case when each set is convex).

Lemma 3.1. For non-empty compact sets Cm, C ⊂ Mn where Mn is either Rn, Hn or Sn, we
have Cm → C if and only if

(i): assuming xm ∈ Cm, the sequence {xm} is bounded and any accumulation point of {xm}
lies in C;

(ii): for any y ∈ C, there exist xm ∈ Cm for each m such that limm→∞ xm = y.

Proof. First we assume that Cm → C. For (i), if xm ∈ Cm, then let ym ∈ C be a point closest
to xm. Now limm→∞ dMn(xm, Cm) = 0 yields that {xm} is bounded and the sequences {xm} and
{ym} have the same set of accumulation points, proving (i). For (ii), let y ∈ C, and let xm ∈ Cm
be a point closest to y. We have limm→∞ xm = y because limm→∞ dMn(y, Cm) = 0.

Next we assume that (i) and (ii) hold for {Cm} and C. Let xm ∈ Cm be a point farthest from
C and let ym ∈ C be a point farthest to Cm, and hence both {xm} and {ym} are bounded. We
choose subsequences {xm′} ⊂ {xm} and {ym”} ⊂ {ym} such that

lim
m′→∞

dMn(xm′ , C) = lim sup
m→∞

dMn(xm, C) and lim
m”→∞

dMn(ym”, Cm”) = lim sup
m→∞

dMn(ym, Cm).

We may also assume that limm′→∞ xm′ = x and limm”→∞ ym” = y where x ∈ C by (i) and y ∈ C
by the compactness of C. On the one hand, it follows that limm→∞ dMn(xm, C) = 0. On the other
hand, there exists zm ∈ Cm such that limm→∞ zm = y by (ii), therefore limm→∞ dMn(ym, Cm) = 0
as well. �

The space of non-empty compact subsets of Mn is locally compact according to the Blaschke
Selection Theorem (see R. Schneider [7]).

Theorem 3.2 (Blaschke). IfMn is either Rn, Hn or Sn, then any bounded sequence of non-empty
compact subsets of Mn has a convergent subsequence.
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Let us consider convergent sequences of compact subsets of Mn.

Lemma 3.3. Let Mn be either Rn, Hn or Sn, and let the sequence {Cm} of non-empty compact
subsets of Mn tend to C.

(i): diamMn C = limm→∞ diamMn Cm
(ii): VMn(C) ≥ lim supm→∞ VMn(Cm)

Proof. (i) follows from Lemma 3.1.
For (ii), it is sufficient to prove that for any ε > 0, there exists M such that VMn(Cm) ≤

VMn(C) + ε if m ≥M . Choose r > 0 such that the open set

Ur =
⋃
x∈C

intMnBMn(x, r)

satisfies VMn(Ur) ≤ VMn(C) + ε. Such an r exists as C is compact. We choose M such that
δMn(Cm, C) < r if m ≥M , and hence Cm ⊂ Ur if m ≥M . �

For D > 0 where D < π if Mn = Sn, we say that a compact set C ⊂ Mn is D-maximal if
diamMn C ≤ D and

VMn(C) = sup{VMn(X) : X ⊂Mn compact and diamMnX ≤ D}.
Theorem 3.4. Let Mn be either Rn, Hn or Sn, and let D > 0 where D < π if Mn = Sn.

(i): There exists a D-maximal set in Mn.
(ii): For any D-maximal set C in Mn and z ∈ ∂MnC, there exists y ∈ ∂MnC such that
dMn(z, y) = D.

Proof. Let {Cm} be a sequence of compact subsets of Mn with z0 ∈ Cm, diamMn Cm ≤ D and

lim
m→∞

VMn(Cm) = sup{VMn(X) : X ⊂Mn compact and diamMnX ≤ D}.

According to the Blaschke Selection Theorem Theorem 3.2, we may asume that the sequence {Cm}
tends to a compact subset X ⊂Mn. Here X is a D-maximal set by Lemma 3.3.

Next let C be any D-maximal set in Mn, and let z ∈ ∂MnC. We suppose that
∆ = maxx∈C dMn(z, x) < D, and seek a contradiction. As z ∈ ∂MnC, there exists some y ∈
BMn(z, 1

2
(D − ∆))\C, and hence BMn(y, r) ∩ C = ∅ for some r ∈ (0, 1

2
(D − ∆)). Therefore

X = C∪BMn(z, r) satisfies that VMn(X) > VMn(C) and diamMn X ≤ D, which is a contradiction
verifying (ii). �

4. Convex sets

Let Mn be either Rn, Hn or Sn. For x, y ∈ Mn where x 6= −y if Mn = Sn, we write [x, y]Mn

to denote the geodesic segment between x and y whose length is dMn(x, y). We call X ⊂ Mn

convex if [x, y]Mn ⊂ X for any x, y ∈ X, and in addition we assume that X is contained in an
open hemisphere if Mn = Sn. For Z ⊂ Mn where we assume that Z is contained in an open
hemisphere ifMn = Sn, the convex hull convMnZ is the intersection of all convex sets containing
Z.

We observe that for a non-empty compact convex Z ⊂ Mn, the conditions that VMn(Z) > 0,
intMnZ 6= ∅ and Z is solid are equivalent.

We deduce from (5) and (6) that if x, y ∈ Hn or x, y ∈ intSnBSn(e, π
2
), and Mn is either Hn

or Sn, respectively, then π([x, y]Mn) = [π(x), π(y)]Rn+1 ; namely, the Euclidean segment in e⊥ + e.
Thus for a subset Z of either Hn or intSnBSn(e, π

2
), Z is convex on Hn or Sn, respectively, if and

only if π(Z) ⊂ e⊥ + e is convex.
Since on the sphere, it is an important issue whether a set Z ⊂ Sn is contained in an open

hemisphere, we note the following condition:
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Lemma 4.1. If diamSnX < arccos −1
n+1

for X ⊂ Sn, then X is contained in an open hemisphere.

Proof. We may assume that X is compact. Let Z = convRn+1 X, and hence Z is compact as well.
Let z ∈ Z be the unique closest point of Z to o. It follows from the Charathéodory theorem applied
in Rn+1 that there exist x1, . . . , xn+2 ∈ X and α1, . . . , αn+2 ∈ [0, 1] satisfying α1 + . . . + αn+2 = 1
and

α1x1 + . . .+ αn+2xn+2 = z.

As diamSnX < arccos −1
n+1

, we have 〈xi, xj〉 > −1
n+1

for any i 6= j. We deduce from 2αiαj ≤ α2
i + α2

j

that

〈z, z〉 >

(
n+2∑
i=1

α2
i

)
−

(∑
i<j

2αiαj
n+ 1

)
≥

(
n+2∑
i=1

α2
i

)
−

(∑
i<j

α2
i + α2

j

n+ 1

)
= 0

therefore X ⊂ Z ⊂ {x ∈ Rn+1 : 〈x, z〉 > 0}. �

Lemma 4.2. If eitherMn = Hn and r > 0, orMn = Sn and r ∈ (0, π
2
), then BMn(z, r) is convex

for any z ∈Mn. In addition, if X ⊂ Sn convex, then X ∩BSn(z, π
2
) is convex.

Proof. For the case Mn = Hn and r > 0, or Mn = Sn and r ∈ (0, π
2
), we may assume that z = e.

Thus π(BMn(z, r)) is a Euclidean ball in e⊥ + e, which in turn yields that BMn(e, r) is convex.
If X ⊂ Sn is convex, then we may assume that X ⊂ intSnBSn(e, π

2
). For H+ = {x ∈ Rn+1 :

〈z, x〉 ≥ 0}, we have

π
(
X ∩BSn

(
z,
π

2

))
= π(X) ∩H+,

which is convex, and hence X ∩BSn(z, π
2
) is convex as well. �

We remark that BSn(z, r) is not convex if r ∈ [π
2
, π).

Lemma 4.3. LetMn be either Rn, Hn or Sn, and let X ⊂Mn be compact, non-empty and satisfy
diamX ≤ π

2
in the case of Mn = Sn. Then

(i): diamMnconvMn X = diamMn X;
(ii): VMn (convMn X) > VMn(X) if VMn (convMn X) > 0 and convMn X 6= X.

Proof. For (i), let diamX = D and let x1, x2 ∈ convMnX. First, we consider the case when Mn

is either Rn or Hn. Since X ⊂ BMn(x1, D) and BMn(x1, D) is convex by Lemma 4.2, we have
x2 ∈ BMn(x1, D). Therefore dMn(x1, x2) ≤ D.

IfMn = Sn, then Lemma 4.1 yields that X ⊂ BSn(z,R) for some z ∈ Sn and R ∈ (0, π
2
). Since

X ⊂ BSn(x1, D)∩BSn(z,R), which is convex by Lemma 4.2, we have x2 ∈ BSn(x1, D)∩BSn(z, R).
Therefore dSn(x1, x2) ≤ D, finally proving (i).

For (ii), we assume that V (Z) > 0 for Z = convMn X and Z 6= X. As Z is convex, it follows
that the closure of intZ is Z Since X is compact and X 6= Z, there exists some z ∈ (intZ)\X.
Therefore BMn(z, r) ⊂ (intZ)\X for some r > 0, proving that V (Z) > V (X). �

Theorem 3.4 guarantees the existence of D-maximal sets, and Lemma 4.3 yields

Corollary 4.4. If Mn is either Rn, Hn or Sn, and D > 0 where D ≤ π
2

if Mn = Sn, then any
D-maximal set in Mn is convex.

Using the map π, (5) and (6) in the spherical- and hyperbolic case, we deduce from Lemma 2.1

Lemma 4.5. IfMn is either Rn, Hn or Sn, K ⊂Mn is convex with intMnK 6= ∅ and z ∈ ∂MnK,
then there exists a supporting hyperplane of Mn containing z and not intersecting intMnK. In
addition, if z is a strongly regular boundary point, then there exists a unique supporting hyperplane,
and its unit exterior normal is NK(z).
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Figure 1.

In turn, we deduce the following statement, which will be important in identifying boundary
points of a two-point symmetrization.

Lemma 4.6. Let Mn be either Rn, Hn or Sn, let K ⊂ Mn be convex with intMnK 6= ∅, and let
x, y ∈ ∂MnK.

(i): If [x, y]Mn ∩ intMnK 6= ∅, then ` ∩K = [x, y]Mn for the line ` passing through x and y.
(ii): If [x, y]Mn ⊂ ∂MnK, then there exists a supporting hyperplane Π to K containing

[x, y]Mn.

5. Two-point symmetrization

LetMn be either Rn, Hn or Sn, let H+ be a closed half space bounded by the (n−1)-dimensional
subspace H in Mn, and let X ⊂ Mn be compact and non-empty. We write H− to denote the
other closed half space of Mn determined by H and σH(X) to denote the reflected image of X
through the (n− 1)-subspace H.

The two-point symmetrization τH+(X) of X with respect to H+ is a rearrangement of X by
replacing (H− ∩X)\σH(X) by its reflected image through H where readily this reflected image is
disjoint from X. Naturally, interchanging the role of H+ and H− results in taking the reflected
image of τH+(X) through H. Since this operation does not change any relevant property of the
new set, we simply use the notation τH(X) (see Figure 1).

Lemma 5.1. LetMn be either Rn, Hn or Sn, let H+ be a half space, and let X ⊂Mn be compact
and non-empty such that diamMn(X) < π if Mn = Sn. Then τH(X) = τH+(X) is compact and
satisfies

(i): τH(X) ∩H+ =
(
X ∪ σH(X)

)
∩H+;

(ii): τH(X) ∩H− =
(
X ∩ σH(X)

)
∩H−;

(iii): VMn(τH(X)) = VMn(X);
(iv): diamMn(τH(X)) ≤ diamMn(X).

Proof. Properties (i) and (ii) are just reformulations of the definition of two-point symmetrization,
and they directly yield (iii) and the compactness of τH(X).

For (iv), let x, y ∈ τH(X). If either x, y ∈ X or x, y ∈ σH(X), then readily dMn(x, y) ≤
diamMn(X). Otherwise, we may assume that x ∈ X\σH(X) and y ∈ σH(X)\X, thus x ∈
X ∩ (H+\H) and y ∈ σH(X) ∩ (H+\H). It follows that σH(y) ∈ X ∩ (H−\H), and hence
[x, σH(y)]Mn intersects H in a unique z where x, σH(y) ∈ X implies that [x, σH(y)]Mn is well-
defined even if Mn = Sn. Applying the triangle inequality to x, y, z, we deduce that

dMn(x, y) ≤ dMn(x, z) + dMn(z, y) = dMn(x, z) + dMn(z, σH(y))

= dMn(x, σH(y)) ≤ diamMn(X).
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�

Two-point symmetrization appeared first in V. Wolontis [10]. It is applied to prove the isoperi-
metric inequality in the spherical space by Y. Benyamini [2], and the spherical analogue of the
Blaschke-Santaló inequality by Gao, Hug, Schneider [5].

The following statement was proved by Aubrun, Fradelizi [1] in the Euclidean- and spherical
case. Here we provide a somewhat more detailed version of the argument in [1]. Part of the reason
for more details is that in the case π

2
< D < π of Theorem 1.2 concerned about Sn, we use many

ideas of the proof of Theorem 5.2 on the one hand, however, many essential ingredients of the
argument for Theorem 5.2 do not hold anymore.

Theorem 5.2. If Mn is either Hn or Sn, and the compact, convex K ⊂ Mn with non-empty
interior satisfies that τH(K) is convex for any (n− 1)-dimensional subspace H of Mn, then K is
a ball.

Proof. Let the compact and convex K ⊂Mn with non-empty interior satisfy that τH(K) is convex
for any (n− 1)-dimensional subspace H of Mn.

First we prove that for any pair x, y ∈ ∂MnK, x 6= y, of strongly regular points, writing H to
denote the perpendicular bisector (n− 1)-subspace of [x, y]Mn , we have

(7) NK(x) = σH(NK(y)).

Let x ∈ H+. To prove (7), we verify that

(8) x ∈ ∂MnτH(K)

by observing [x, y]Mn ⊂ τH(K) and distinguishing two cases.
If [x, y]Mn ⊂ ∂MnK, then there exists a supporting (n − 1)-dimensional subspace Π to K

containing [x, y]Mn according to Lemma 4.6. It follows that Π is a supporting (n− 1)-dimensional
subspace to σHK, and in turn to τH(K), proving (8) in this case.

On the other hand, if [x, y]Mn ∩ intMnK 6= ∅, then let ` ⊂Mn be the one-dimensional subspace
of x and y, and hence ` ∩ K = [x, y]Mn by Lemma 4.6. As x ∈ ∂MnσH(K), we deduce from
Lemma 5.1 (i) and (ii) that ` ∩ τH(K) = [x, y]Mn , and in turn (8) finally follows.

Since x ∈ ∂MnτH(K), there exists a supporting (n − 1)-dimensional subspace Ξ to τH(K) at
x, and let τH(K) ⊂ Ξ+. We deduce from Lemma 5.1 (i) that σH(K), K ⊂ Ξ+, thus σH(Ξ) is a
supporting (n − 1)-dimensional subspace to K at y with K ⊂ σH(Ξ+). As x and y are strongly
regular points, we conclude (7) by Lemma 4.6.

In turn, we deduce from (7) that for any pair x, y ∈ ∂MnK, x 6= y, of strongly regular points,
there exists λ(x, y) ∈ R such that

(9) NK(x)−NK(y) = λ(x, y)(x− y) ∈ Rn+1.

Obviously, λ(x, y) = λ(y, x).
We fix a strongly regular point x0 ∈ ∂MnK. We claim that if x, y ∈ ∂MnK are strongly regular

points different from x0, then

(10) λ(x0, x) = λ(x0, y).

We distiguishing two cases. If x0, x, y are not contained in a one-dimensional subspace, then (9)
yields that

NK(x0)−NK(x) = λ(x0, x)(x0 − x)

NK(x)−NK(y) = λ(x, y)(x− y)

NK(y)−NK(x0) = λ(y, x0)(y − x0).
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Adding up the three relations yields λ(x0, x)(x0− x) + λ(x, y)(x− y) + λ(y, x0)(y− x0) = o. Since
any two of x0 − x, x − y, y − x0 are independent in Rn+1, we have λ(x0, x) = λ(x, y) = λ(y, x0),
and hence (10) holds in this case.

On the other hand, if x0, x, y are contained in a one-dimensional subspace, then as strongly
regular points are dense in ∂MnK, there exists a strongly regular point z ∈ ∂MnK not contained
in the one-dimensional subspace passing through x0, x, y. Applying the previous case first to the
triple x0, x, z, then to the triple x0, y, z, it follows that λ(x0, x) = λ(x0, z) = λ(x0, y), proving (10).

According to (10), there exists a common value λ of λ(x0, x) for all strongly regular points
x ∈ ∂MnK. Setting p = NK(x0)− λx0 ∈ Rn+1, we deduce from (9) that

(11) NK(x) = p+ λx for strongly regular point x ∈ ∂MnK.

The rest of the argument is split between the hyperbolic- and spherical case.

Case 1Mn = Hn

We claim that

(12) p 6= o.

Otherwise NK(x0) = λx0 by (11), and hence

−1 = B(NK(x), NK(x)) = λ2B(x, x) = λ2,

what is absurd, verifying (12).
If x ∈ ∂HnK is a strongly regular point, thenNK(x) ∈ Tx, thus (11) yields that 0 = B(NK(x), x) =
B(p + λx, x), and hence B(p, x) = −λ. As p 6= o, we deduce that each strongly regular point of
∂HnK is contained in the standard hypersurface {x ∈ Hn : B(p, x) = −λ} (see the list before
Lemma 2.2), therefore Corollary 2.3 yields that K is a ball.

Case 2Mn = Sn

We again claim that

(13) p 6= o.

Otherwise NK(x0) = λx0 by (11), and hence

1 = 〈NK(x0), NK(x0)〉 = 〈NK(x0), λx0〉 = 0,

what is absurd, verifying (13).
If x ∈ ∂SnK is a strongly regular point, then NK(x) ∈ Tx, thus (11) yields that 0 = 〈NK(x), x〉 =
〈p+ λx, x〉, and hence 〈p, x〉 = −λ. As p 6= o, we deduce that each strongly regular point of ∂SnK
is contained in the boundary {x ∈ Sn : 〈p, x〉 = −λ} of a fixed spherical ball (see the list before
Lemma 2.2), therefore Corollary 2.3 yields that K is a spherical ball. �

Remark: In Rn, a similar argument works, but some changes have to be instituted. Instead of

(7), we have NK(x) = σH̃(NK(y)) where H̃ is the linear (n−1)-plane in Rn parallel to H, therefore
(9) still holds. Similarly as above, (9) leads to (11). For the final part of the argument, we have
λ 6= 0, because otherwise (11) yields that NK(x) = p for any strongly regular point x ∈ ∂RnK,
contradicting that the strongly regular points are dense in x ∈ ∂RnK. As (11) implies that if
x ∈ ∂RnK is a strongly regular point, then

λ−2 = 〈λ−1NK(x), λ−1NK(x)〉 = 〈λ−1p+ x, λ−1p+ x〉,
and hence each strongly regular point of ∂RnK is contained in the boundary {x ∈ Rn : 〈x +
λ−1p, x+ λ−1p〉 = λ−2} of a fixed ball. Therefore Corollary 2.3 yields that K is a ball.
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Proof of Theorem 1.2 when D ≤ π
2
and of Theorem 1.1 Let Mn = Hn, or let Mn = Sn

and D ≤ π
2
. Theorem 3.4 (i) yields the existence of D-maximal sets in Mn, and any D-maximal

set is convex according to Corollary 4.4.
Let C be any D-maximal set, and hence C is convex. We deduce from from Lemma 5.1 that

for any (n− 1)-dimensional subspace H ofMn, τH(C) is D-maximal, thus convex, therefore The-
orem 5.2 yields that C is a ball. The maximality of V (C) implies that the radius of C is D/2,
proving Theorem 1.2 when D ≤ π/2 and also Theorem 1.1. �

Remark: In Rn, (1) can proved in a similar way.

6. Proof of Theorem 1.2 if π
2
< D < π

Let π
2
< D < π. We frequently drop the index “Sn” in the formulas, say we simply write B(x, r),

V (X) and ∂X for x ∈ Sn, X ⊂ Sn and r ∈ (0, π).
Let us recall from Section 3 that C ⊂ Sn is D-maximal if

• C is compact;
• diamSn C ≤ D;
• V (C) = sup{V (X) : X ⊂ Sn compact and diamSnX ≤ D}.

According to Theorem 3.4 (i), there exist D-maximal sets in Sn. We deduce from Lemma 5.1 that
if C ⊂ Sn is D-maximal, then

(14) τH(C) is D-maximal for any (n− 1)-dimensional subspace H of Sn.

As D > π
2
, it is a priori not clear whether a D-maximal set is convex. However, Theorem 3.4

(ii) implies that for any D-maximal set C in Sn and z ∈ ∂C, there exists y ∈ C such that

(15) C ⊂ B(y,D) and z ∈ ∂B(y,D).

Lemma 6.1. If π
2
< D < π and C is a D-maximal set in Sn, then there exists a solid D-maximal

set C0 ⊂ C.

Proof. Let X ⊂ C be the set of density points; namely,

X =

{
z ∈ C : lim

r→0+

V (C ∩B(z, r))

V (B(z, r))
= 1

}
,

thus readily intC ⊂ X. It follows from Lebesgue’s Density Theorem that

V (X) = V (C).

In addition, if z ∈ ∂C, then (15) yields that z 6∈ X, and hence X = intC. We conclude that C0

can be taken as the closure of X. �

The idea of the proof of Theorem 1.2 when π
2
< D < π is similar to the case D ≤ π

2
; more

precisely, the idea is to prove that if π
2
< D < π and C ⊂ Sn is a solid D-maximal set, then there

exist p ∈ Rn+1 and λ ∈ R such that

(16) p+ λx ∈ {NC(x),−NC(x)} for any strongly regular point x ∈ ∂C.

Thus from now on, the main goal is to understand properties of solid D-maximal sets. We use
two-point symmetrization again. The difficulty in the D > π

2
case is that if x, y ∈ ∂C, x 6= y, are

strongly regular points of a solid D-maximal set C in Sn, and H is the perpendicular bisector of
[x, y]Sn , then a priori x may lie in int τHC.
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Lemma 6.2. Let π
2
< D < π, and let C be a solid D-maximal set in Sn. If x, y ∈ ∂C, x 6= y, are

strongly regular points, then there exist λ(x, y) ∈ R and η(x, y) ∈ {−1, 1} such that

(17) NK(x)− η(x, y)NK(y) = λ(x, y)(x− y) ∈ Rn+1

where η(y, x) = η(x, y) and λ(y, x) = η(x, y)λ(x, y).

Proof. It is equivalent to prove that

(18) NC(x) = ±σH(NC(y))

where H is the perpendicular bisector (n − 1)-dimensional subspace of [x, y]Sn . In turn, (18) is
equivalent proving that if we assume

(19) NC(x) 6= −σH(NC(y)),

then we have

(20) NC(x) = σH(NC(y)).

Let x ∈ H+. We deduce from (15) and from the fact that x and y are strongly regular boundary
points that there exist r > 0 and x0, x1, y0, y1 ∈ C such that

B(x0, r) ⊂ C ⊂ B(x1, D) where x ∈ ∂BSn(x0, r) ∩ ∂BSn(x1, D)

B(y0, r) ⊂ C ⊂ B(y1, D) where y ∈ ∂BSn(y0, r) ∩ ∂BSn(y1, D)

B(x0, r) ∩H = B(y0, r) ∩H = ∅.
Readily, we have NC(x) = NB(x0,r)(x) = NB(x1,D)(x) and NC(y) = NB(y0,r)(y) = NB(y1,D)(y).

It follows from (14) that τHC is D-maximal as well. As x = σHy ∈ τHC and

τHC ⊂ B(x1, D) ∪ σHB(y1, D)

by Lemma 5.1, and (19) yields that x is a boundary point of B(x1, D) ∪ σHB(y1, D), we deduce
that x ∈ ∂τHC. We deduce from (15) that τHC ⊂ B(z,D) and x ∈ ∂B(z,D) for some z ∈ τHC.
Now x ∈ B(x0, r) ∩ σHB(y0, r) ∩ ∂B(z,D) and

B(x0, r) ⊂ C ⊂ B(z,D) and σHB(y0, r) ⊂ C ⊂ B(z,D)

by Lemma 5.1, therefore B(x0, r) = σHB(y0, r). We conclude (20), and in turn (18), proving
Lemma 6.2. �

As a first step to prove (16), we consider certain specific triples of strongly regular points.

Lemma 6.3. Let π
2
< D < π, and let C be a solid D-maximal set in Sn. If x0, x, y ∈ ∂C are

strongly regular points not contained in a one-dimensional subspace of Sn such that η(x0, y) = 1
and η(x0, x) = η(y, x), then for λ = λ(y, x0) = λ(x0, y), we have λ(x0, x) = λ and

η(x0, x)NC(x)− λx = NC(x0)− λx0.

Proof. For η(x0, x) = η(y, x) = η, Lemma 6.2 implies that

NC(x)− ηNC(y) = λ(x, y)(x− y)

NC(x0)− ηNC(x) = λ(x0, x)(x0 − x)

NC(y)−NC(x0) = λ(y, x0)(y − x0).
Since η ∈ {−1, 1}, we replace the first equality by ηNC(x)−NC(y) = ηλ(x, y)(x− y) and add up
these three relations, and hence we obtain

ηλ(x, y)(x− y) + λ(x0, x)(x0 − x) + λ(y, x0)(y − x0) = o.

Since any two of x0−x, x−y, y−x0 are independent in Rn+1, we have ηλ(x, y) = λ(x0, x) = λ(y, x0)
where λ(y, x0) = λ. We deduce that NC(x0)− ηNC(x) = λ(x0 − x), proving Lemma 6.3. �
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Let us show that we have the setup in Lemma 6.3 if x and y are close enough strongly regular
boundary points.

Lemma 6.4. Let π
2
< D < π, and let C be a solid D-maximal set in Sn, and let x0 ∈ ∂C be a

strongly regular point.

(i): If limm→∞ ym = x0 for ym ∈ ∂C strongly regular boundary points, then

lim
m→∞

NC(ym) = NC(x0) and lim
m→∞

〈
NC(x0),

ym − x0
dRn+1(ym, x0)

〉
= 0;

(ii): For any strongly regular point z ∈ ∂C, z 6= x0, there exists % ∈ (0, π
2
) depending on x0, z

and C such that η(x0, y) = 1 and η(x0, z) = η(y, z) if y ∈ B(x0, %)∩∂C is a strongly regular
point with y 6= x0.

Proof. There exist some r ∈ (0, π
2
) and z0, z1 ∈ C such that B(z0, r) ⊂ C ⊂ B(z1, D) and x0 ∈

∂B(z0, r) ∩ ∂B(z1, D) according to Theorem 3.4 (ii).
For (i), there exist some wm ∈ C with C ⊂ B(wm, D) and ym ∈ ∂B(wm, D), and we may

assume that B(wm, D) tends to some B(w,D) for w ∈ C. As B(z0, r) ⊂ B(w,D) and x0 ∈
∂B(z0, r) ∩ ∂B(w,D), we have w = z1. This yields that limm→∞NC(ym) = NC(x0). In addition,

limm→∞

〈
NC(x0),

ym−x0
dRn+1 (ym,x0)

〉
= 0 follows from limm→∞ ym = x0 and ym ∈ B(z1, D)\intB(z0, r).

We prove (ii) by contradiction, and we assume that there exists a sequence of strongly regular
boundary points ym ∈ ∂C such that limm→∞ ym = x0, and

(a): either NC(x0) +NC(ym) = λ(x0, ym)(x0 − ym) for each m,
(b): or NC(z) + η(z, x0)NC(ym) = λ(z, ym)(z − ym) for each m.

If (a) holds, then readily |λ(x0, ym)| ≤ 2/dRn+1(x0, ym), thus (i) yields that

4 = lim
m→∞

〈NC(x0) +NC(ym), NC(x0) +NC(ym)〉 = lim
m→∞

|〈NC(x0) +NC(ym), λ(x0, ym)(x0 − ym)〉|

≤ 2 lim
m→∞

∣∣∣∣〈NC(x0) +NC(ym),
x0 − ym

dRn+1(ym, x0)

〉∣∣∣∣ = 0,

what is absurd.
If (b) holds, then as z − x0 and NC(x0) ∈ Tx0 are independent, there exists some u ∈ Sn−1 such

that 〈u, z − x0〉 = 0 and 〈u,NC(x0)〉 > 0. We also observe that if m is large, then |λ(z, ym)| ≤
3/dRn+1(z, x0).

We deduce from limm→∞NC(ym) = NC(x0) that

2〈u,NC(x0)〉 = lim
m→∞

|〈u, [NC(z) + η(z, x0)NC(x0)]− [NC(z)− η(z, x0)NC(x0)]〉|

= lim
m→∞

|〈u, λ(z, ym)(z − ym)− λ(z, x0)(z − x0)〉|

= lim
m→∞

|λ(z, ym)| · |〈u, (z − ym)〉| ≤ 3

dRn+1(z, x0)
· lim
m→∞

|〈u, (z − ym)〉| = 0,

what is again a contradiction, proving (ii). �

Now we choose the right strongly regular “base point” x0.

Lemma 6.5. Let π
2
< D < π, and let C be a solid D-maximal set in Sn. There exists a strongly

regular point x0 ∈ ∂C such that for any one-dimensional subspace ` of Sn passing through x0 and
any ε ∈ (0, π

2
), one finds a strongly regular point y ∈ ∂C ∩ (B(x0, ε)\`).

Proof. First let n ≥ 3, let x0 ∈ ∂C be any strongly regular point, and let ε ∈ (0, π
2
). As C is solid,

there exist
z ∈ intB(x0, ε) ∩ [C\`] and y ∈ intB(x0, ε)\[C ∪ `].
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Since intB(x0, ε)\` is connected (this is the point where we use that n ≥ 3), connecting y and z by
a continuous curve in intB(x0, ε)\` implies that there exists a w ∈ ∂ C ∩ [intB(x0, ε)\`]. It follows
from the fact that strongly regular points in ∂C are dense that there exists a strongly regular point
w̃ ∈ ∂ C ∩ [intB(x0, ε)\`].

Next let n = 2. In this case, the argument is indirect. Since strongly regular points are dense on
the boundary, we suppose that for any strongly regular point w ∈ ∂C, there exist a one-dimensional
subspace `w pasing through w and an rw ∈ (0, π

2
) such that

(21) ∂C ∩B(w, rw) ⊂ `w,

and seek a contradiction. As C is solid, there exist

z ∈ intB(w, rw) ∩ [C\`w] and y ∈ intB(w, rw)\[C ∪ `w].

For any x ∈ B(w, rw) ∩ `w, the piecewise linear path [y, x]Sn ∪ [x, z]Sn intersects ∂C, and the
intersection can be only x by (21). Therefore

(22) ∂C ∩B(w, rw) = `w ∩B(w, rw).

It also follows that one component of intB(w, rw)\`w is part of intC and the other component is
disjoint from C, and hence any x ∈ `w ∩ intB(z, rw) is a strongly regular boundary point with

(23) NC(x) = NC(w) for each x ∈ `w ∩ intB(z, rw) and lw = {x ∈ Sn : 〈x,NC(w)〉 = 0}.

Let us choose a strongly regular point w ∈ ∂C and an other strongly regular point v ∈ ∂C\`w.
It follows that `v 6= `w. We deduce from Lemma 6.4 (ii) and (23) that there exists a y ∈ lw ∩ ∂C
with y 6= w and η ∈ {−1, 1} such that

NC(y) = NC(w), η(y, w) = 1 and η = η(v, w) = η(v, y).

On the one hand, we deduce from from NC(y) = NC(w) that λ(w, y) = λ(y, w) = 0 in Lemma 6.2,
therefore Lemma 6.3 yields that ηNC(v) = NC(w). However `v 6= `w and (23) imply NC(v) 6=
±NC(w) in Rn+1, thus we have arrived at a contradiction, verifying Lemma 6.5 also if n = 2. �

Proof of Theorem 1.2 when π
2
< D < π: Let C be any D-maximal set, and let C0 ⊂ C be

the solid D-maximal set provided by Lemma 6.1. According to Lemma 6.5, there exists a strongly
regular point x0 ∈ ∂C0 such that for any one-dimensional subspace ` passing through x0 and any
ε ∈ (0, π

2
), one finds a strongly regular point y ∈ ∂C ∩ (B(x0, ε)\`).

We deduce from Lemma 6.4 (ii) that there exists r̃ ∈ (0, π
2
) depending on x0 and C such that

η(x0, y) = 1 for any strongly regular point y ∈ B(x0, r̃) ∩ ∂C with y 6= x0. We claim that there
exist r ∈ (0, r̃) and λ ∈ R such that

(24) λ(x0, y) = λ(y, x0) = λ and η(x0, y) = 1 holds for any y ∈ B(x0, r) ∩ ∂C with y 6= x0.

Readily, η(x0, y) = 1 by r < r̃. To have the right value of λ(x0, y), first we fix a strongly regular
point y0 ∈ B(x0, r̃) ∩ ∂C with y0 6= x0, and write `0 to denote the one-dimensional subspace
spanned by x0 and y0. Set

λ = λ(x0, y0).

Lemma 6.3 and Lemma 6.4 (ii) applied to the triple x0, y, y0 imply the existence of an r0 ∈ (0, r̃)
such that λ(x0, y) = λ holds for any strongly regular point y ∈ ∂C ∩ (B(x0, r0)\`0). We fix such
a strongly regular point y1 ∈ ∂C ∩ (B(x0, r0)\`0), and write `1 to denote the one-dimensional
subspace spanned by x0 and y1. In particular, `0 6= `1.

Finally, applying Lemma 6.3 and Lemma 6.4 (ii) to the triple x0, y, y1, there exists r ∈ (0, r0)
such that λ(x0, y) = λ holds for any strongly regular point y ∈ ∂C ∩ (B(x0, r)\`1). Since either
y 6∈ `0 or y 6∈ `1 hold for any point y ∈ ∂C ∩ (B(x0, r)\x0), we conlcude (24).
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Our next goal is to verify that p = NC(x0) − λx0 satisfies that if x ∈ ∂C is a strongly regular
point, then

(25) p+ λx = η(x0, x)NC(x)

where we set η(x0, x0) = 1. Writing ` to denote the one-dimensional subspace passing through
x0 and x, the choice of x0 and Lemma 6.4 (ii) yield the existence of a strongly regular point
y ∈ ∂C ∩ (B(x0, r)\`) such that η(x0, y) = 1 and η(x0, x) = η(y, x). Therefore we conclude (25)
by Lemma 6.3.

We again claim that

(26) p 6= o.

Otherwise NK(x0) = λx0 by (25), and hence

1 = 〈η(x0, x)NK(x0), η(x0, x)NK(x0)〉 = 〈η(x0, x)NK(x0), λx0〉 = 0,

what is absurd, verifying (26).
If x ∈ ∂C is a strongly regular point, thenNK(x) ∈ Tx, thus (25) yields that 0 = 〈η(x0, x)NC0(x), x〉 =
〈p+λx, x〉, and hence 〈p, x〉 = −λ. As p 6= o, we deduce that each strongly regular point of ∂C0 is
contained in the boundary {x ∈ Sn : 〈p, x〉 = −λ} of a fixed spherical ball, therefore Corollary 2.3
yields that C0 is a spherical ball. As C0 has maximal volume among sets of diameter at most D,
it follows that the radius of C0 is D/2, say C0 = B(z,D/2).

Finally, we show that C = B(z,D/2). To prove this, let x ∈ Sn\B(z,D/2), and let ` be the
(or a) one-dimensional subspace of Sn passing through x and x0. As ` intersects B(z,D/2) in an
arc of length D, this arc contains a point y with dSn(x, y) > D. Therefore x 6∈ C, completing the
proof of Theorem 1.2 when D > π/2. �
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