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Abstract— Ensemble learning methods are frequently em-
ployed in medical decision support. In image segmenta-
tion problems the ensemble based decisions require a post-
processing, because the ensemble cannot adequately handle the
strong correlation of neighbor voxels. This paper proposes a
brain tumor segmentation procedure based on an ensemble
cascade. The first ensemble consisting of binary decision trees
is trained to separate focal lesions from normal tissues based
on four observed and 100 computed features. Starting from
the intermediary labels provided by the first ensemble, six
local features are computed for each voxel that serve as input
for the second ensemble. The second ensemble is a classical
random forest that enforces the correlation between neighbor
pixels, regularizes the shape of the lesions. The segmentation
accuracy is characterized by 85.5% overall Dice Score, 0.5%
above previous solutions.

Index Terms— Image segmentation, brain tumor segmenta-
tion, magnetic resonance imaging, ensemble learning.

I. INTRODUCTION

The number of active medical imaging devices is steadily

growing. The amount of medical image data created by

these devices is rising even quicker. On the other hand,

the number of human experts who can evaluate the medical

image data cannot follow this growing trend. Consequently,

there is a strong need for automatic image segmentation and

interpretation algorithms that can reliably process the large

mass of medical records and select those suspected ones,

which should be inspected by the human experts.

Multi-spectral magnetic resonance imaging (MRI) is the

medical imaging modality usually employed in brain tumor
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detection and segmentation [1]. The development of auto-

matic detection and segmentation algorithms for the brain

tumor has been intensively investigated, as a consequence

of the BraTS Challenges organized yearly since 2012 [2],

[3]. The whole methodology arsenal of pattern recognition is

involved in this process. Most solutions employed machine

learning techniques, supervised and semi-supervised ones,

sometimes combined with advanced image segmentation

tools, like: ensemble of random forests [4], AdaBoost clas-

sifier [5], random forests [6], [7], [8], extremely random

trees [9], support vector machines [10], convolutional neural

network [11], [12], deep neural networks [13], [14], [15],

Gaussian mixture models [16], fuzzy c-means clustering

in semi-supervised context [17], [18], tumor growth model

[19], and various advanced image segmentation techniques

like cellular automata combined with level sets [20], active

contour models [21] combined with texture features [22],

and graph cut algorithm [23]. The review paper published

by Gordillo et al. in [24] is a fine summary of the solutions

produced in the pre-BraTS era.

This paper proposes a two-step ensemble learning based

procedure for the detection and segmentation of brain tu-

mors from MRI data. The first ensemble of binary decision

trees produces an intermediary labeling of voxels using the

observed MRI intensity values and several further computed

features. The second ensemble is a classical random forest

which produces the final decision starting from six features

computed from the local distribution of intermediary labels.

The rest of this paper is structured as follows: section II

presents the details of the proposed segmentation procedure,

section III describes the experimental validation of the pro-

posed method, while section IV concludes the study.

II. MATERIALS AND METHODS

Previously, we introduced a brain tumor segmentation

procedure that used ensemble learning by the means of

binary decision trees (BDT), and employed a morphological

criterion to enhance the accuracy of lesion segmentation [25],

[26]. Later we performed several experiments to improve

the overall segmentation quality and the runtime efficiency,

like finding an optimal subset of features [27], comparing

several types of ensembles [28], searching for the histogram

uniformization technique that is most suitable to detect focal

lesions [29], including multi-atlases in the segmentation

process [30], and determining the effect of feature vector’s

spectral resolution upon segmentation accuracy [31]. In this

paper we propose a new method that involves a second learn-

ing ensemble to provide a better performing segmentation
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Fig. 1. The whole segmentation procedure, highlighting the proposed modification.

criterion at post-processing. The whole modified procedure

is depicted in Fig. 1.

A. Data

This study used the nV = 54 low-grade tumor volumes

of the MICCAI Brats 2015 train data set [2] to train and test

the proposed segmentation procedure. Each volume consist

of 155 slices, each slice containing 240×240 voxels. Voxels

have four observed features (T1, T2, T1C, and FLAIR) and

the ground truth provided by human experts. In case of each

record, all data channels were registered to the T1 channel

using an automatic algorithm, and any voxels representing

irrelevant (non-brain) tissues were removed [2]. Records

were randomly separated into two equal groups that were

employed as train and test data in turns.

B. The initial segmentation procedure

The base segmentation procedure that we use as reference

is visible in Fig. 1, if we neglect the presence of the high-

lighted component. MRI records undergo several processing

steps, as listed in the following:

1) Preprocessing has a multiple role: (1) it detects the

presence of intensity inhomogeneity [32], [17], [33]

and applies compensation whenever it is necessary

using the method of Tustison et al. [34]; (2) it pro-

duces uniform histograms to make MRI intensities

comparable with each other, accomplished by a con-

text sensitive linear transform [29]; (3) it generates

100 computed features (minimum, maximum, average

and median intensity values in various neighborhoods;

gradients and Gabor wavelet features) for each voxel,

to take advantage from the correlation between neigh-

bor voxels and to deal with the imperfection of the

automatic registration algorithms that were involved

in aligning data channels during the creation of the

MICCAI BraTS data set.

2) An ensemble built from nT = 125 decision trees is

trained to distinguish normal voxels and the voxels

of the whole tumor. Trees are trained using sets os

N randomly selected voxels from the train volumes,

containing 93% negatives and 7% positives. The proce-

dure was evaluated with values of parameter N ranging

between 104 (10k) and 106 (1000k). Training uses an

entropy criterion to provide optimal decisions. Trees

are not limited in depth so each leaf can give a binary

decision. When the ensemble of trees is established,

it is used to predict the label of all voxels belonging

to the test volumes. The ensemble decision is based

on the majority voting of its trees, but this is only an

intermediary labeling that serves as input for the post-

processing.

3) Morphological post-processing produces the final label

of each test voxel based on the intermediary labels of

its neighbors: first it establishes the number of positive

intermediary labels (νp) and the number of valid brain

voxels (ν) within a cubic 11×11×11 neighborhood of

the current voxel. The value of ν cannot exceed 113

and cannot be zero either, because the current voxel

is always a valid brain voxel. The rate of positive

voxels, determined as ρ = νp/ν, is then compared

with a previously defined threshold θ = 1/3. Those

voxels are finally assigned positive labels which have

ρ > θ, regardless to the voxel’s own intermediary

labeling. Post-processing gives the detected tumor a

regularized shape and in most cases it enhances the

accuracy indicator values.

C. Multi-atlas based enhancement

The segmentation procedure presented so far does not

take in consideration the position of the voxels within the

volume. In a previous paper [30] we created multiple atlases

(one for each feature) based on pixels belonging to normal

tissues only, right after the preprocessing steps. Atlas use

normalized coordinates, have a cubic shape and a discrete

resolution of (2S + 1) × (2S + 1) × (2S + 1), where S
is a parameter. All MRI volumes are aligned to the atlas

using a rigid registration technique. For any voxel of the

atlas, which have normal brain tissue voxels mapped upon,

the average intensity value (μ) and the standard deviation

(σ) of intensities is extracted. These local μ and σ values

are used to update the original feature values, to map them

onto a new target interval, before proceeding to the training

and testing of the BDT ensemble. Atlases of various spatial

resolutions were tested, with parameter S ranging from 60 to

120. All atlases were able to improve segmentation accuracy,

best performances were achieved at S ∈ {90, 100}.
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D. The proposed random forest based post-processing

In this paper we propose an intelligent, random forest

based (RF-based) post-processing method to replace the

previous morphological one. The main properties of the

proposed solution are presented in the following:

1) The random forest is trained to distinguish positive

voxels from negative ones based on six feature, which

are computed for all voxels as follow. Let us define

five cubic neighborhoods of the current voxel, denoted

by Nk, where k = 1 . . . 5, whose size is (2k + 1) ×
(2k + 1) × (2k + 1). Within the neighborhood Nk of

the current voxel, the number of positive intermedi-

ate labels is denoted by ν
(p)
k , while the number of

valid brain voxels is represented by νk. The rate of

positive voxels within neighborhood Nk is computed

as ρk = ν
(p)
k /νk. Further on, we define feature η

as the normalized value of the number of complete

neighborhoods of the current voxel, to be established

by the formula:

η =
1

5

5∑
k=1

δ
(
νk, (2k + 1)3

)
, (1)

where

δ(α, β) =

{
1 if α = β
0 otherwise

. (2)

The feature vector of the current voxels is given as:

(ρ1, ρ2, . . . ρ5, η).
2) The random forest was trained with feature vectors of

voxels taken from the high-grade tumor volumes of the

MICCAI BraTS data set. A number of 107 train voxels

were randomly selected for the training process.

3) Voxels with feature vectors having ρk = 0 for any

k = 1 . . . 5 are considered negatives by default, such

voxels are not used in training and are not fed to the

random forest for prediction.

4) The random forest consists of 100 trees, while the

maximum depth of each tree was set to 8.

5) The RF-based post-processing uses the implementa-

tion provided by the Machine Learning package of

OpenCV, version 3.4.0.

E. Evaluation

The segmentation accuracy of each MRI record i (i =
1 . . . nV ) is primarily expressed by the number of true

positives (TPi), false positives (FPi), true negatives (TNi),

and false negatives (FNi). Our main accuracy indicator is

the Dice Score (DSi), which is computed for any record i
as:

DSi =
2× TPi

2× TPi + FPi + FNi
. (3)

Further on, for any MRI record i, sensitivity (or true positive

rate, TPR) is defined as:

TPRi = TPi/(TPi + FNi) , (4)

while specificity (or true negative rate, TNR) is extracted as:

TNRi = TNi/(TNi + FPi) . (5)

For any accuracy indicator X ∈ {DS,TPR,TNR}, the

average value of X is defined as:

X =
1

nV

nV∑
i=1

Xi . (6)

The overall value of the Dice Score is given as:

D̃S =

2×
nV∑
i=1

TPi

2×
nV∑
i=1

TPi +
nV∑
i=1

FPi +
nV∑
i=1

FNi

. (7)

Similar formulas for the overall value of other accuracy

indicators can be defined analogously.

Swapping the role of the train and test data set allows

us to have segmentation accuracy indicators for all available

low-grade tumor volumes.

III. RESULTS AND DISCUSSION

The above presented brain tumor segmentation procedure,

in all its variants, underwent a thorough evaluation involving

all 54 low-grade tumor volumes of the BraTS 2015 data

set. The train data size varied in four steps, using values

of 10k, 100k, 500k, and 1000k. Procedure variants using

no atlas and involving atlases of various spatial resolutions

(S ∈ {60, 80, 100, 120}) were evaluated. The morphological

and the RF-based post-processing were evaluated in parallel

so that we can formulate comparative assertions. The quality

indicators exhibited in Section II-E were extracted for each

scenario and each individual MRI record. The average and

overall value for each indicator was established for global

quality characterization. Results are presented in the follow-

ing paragraphs.

Table I presents the main overall accuracy indicator val-

ues obtained in case of various train data sizes and atlas

resolutions. In each scenario and for each indicator, three

values are given: the one obtained without post-processing,

the one given by the morphological post-processing, and the

one produced by the proposed RF-based post-processing.

Dice Score, which is the most important accuracy indicator,

shows the superiority of the random forest in all cases. The

differences rise together with the train data size, from 0.1%
at 10k feature vectors per BDT to 0.5% at 1000k data. The

best performing atlas is the one represented by S = 100.

Figure 2 exhibits the overall Dice Scores obtained in case

of various train data sizes and atlas resolutions, and gives

a visual comparison for the values obtained with RF-based

and morphological post-processing. Although the difference

of only 0.5% may seem small at first sight, that improvement

represents the elimination of 9-10% of mistaken labels

produced by the morphological post-processing.

The comparison of Dice Scores obtained for individual

MRI records is given in Fig. 3 and Table II. The difference of

Dice Scores, the one obtained via RF-based post-processing

minus the result of the morphological method, was extracted

for all MRI volumes and all scenarios (train data sizes and

atlas resolutions). The histogram of all these differences

is presented in Fig. 3. The histogram indicated that the

SoSE 2020 • IEEE 15th International Conference of System of Systems Engineering • June 2-4, 2020 Budapest, Hungary

000533

Authorized licensed use limited to: University of Southern Queensland. Downloaded on July 04,2020 at 12:03:24 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I

MAIN OVERALL ACCURACY INDICATORS WITHOUT POST-PROCESSING, WITH MORPHOLOGICAL POST-PROCESSING, AND WITH RANDOM FOREST

BASED POST-PROCESSING

Train data Atlas Dice Score Sensitivity Specificity
size size BEFORE MORPH RF-BASED BEFORE MORPH RF-BASED BEFORE MORPH RF-BASED

No atlas 0.8024 0.8353 0.8364 0.7277 0.8311 0.8096 0.9934 0.9879 0.9903
S = 60 0.8116 0.8388 0.8399 0.7382 0.8157 0.7943 0.9938 0.9901 0.9926

10k S = 80 0.8137 0.8403 0.8414 0.7383 0.8158 0.7942 0.9942 0.9904 0.9928
S = 100 0.8141 0.8415 0.8426 0.7387 0.8166 0.7951 0.9942 0.9905 0.9929
S = 120 0.8112 0.8380 0.8391 0.7369 0.8143 0.7928 0.9939 0.9901 0.9926
No atlas 0.8147 0.8432 0.8464 0.7466 0.8481 0.8278 0.9934 0.9875 0.9902
S = 60 0.8207 0.8454 0.8484 0.7542 0.8308 0.8104 0.9936 0.9897 0.9924

100k S = 80 0.8236 0.8468 0.8502 0.7572 0.8329 0.8126 0.9938 0.9897 0.9924
S = 100 0.8235 0.8469 0.8503 0.7573 0.8330 0.8128 0.9937 0.9897 0.9924
S = 120 0.8206 0.8446 0.8478 0.7541 0.8304 0.8100 0.9936 0.9896 0.9923
No atlas 0.8175 0.8432 0.8475 0.7565 0.8573 0.8375 0.9928 0.9865 0.9893
S = 60 0.8242 0.8476 0.8517 0.7646 0.8408 0.8210 0.9931 0.9891 0.9918

500k S = 80 0.8270 0.8489 0.8534 0.7672 0.8422 0.8225 0.9933 0.9891 0.9920
S = 100 0.8269 0.8495 0.8538 0.7667 0.8423 0.8226 0.9933 0.9892 0.9920
S = 120 0.8245 0.8472 0.8514 0.7652 0.8408 0.8210 0.9931 0.9890 0.9918
No atlas 0.8194 0.8435 0.8484 0.7637 0.8637 0.8443 0.9923 0.9859 0.9888
S = 60 0.8254 0.8483 0.8530 0.7705 0.8462 0.8267 0.9926 0.9886 0.9915

1000k S = 80 0.8278 0.8495 0.8547 0.7723 0.8471 0.8278 0.9929 0.9887 0.9916
S = 100 0.8279 0.8500 0.8549 0.7727 0.8477 0.8284 0.9928 0.9888 0.9916
S = 120 0.8272 0.8497 0.8545 0.7715 0.8468 0.8273 0.9928 0.9888 0.9917

BEFORE - output of first ensemble, MORPH = output morphological post-processing
RF-BASED - output of RF-based post-processing

Fig. 2. Overall Dice Score values without post-processing, with morphological post-processing, and with random forest based post-processing, for various
train data sizes.

TABLE II

RF-BASED POST-PROCESSING VS. MORPHOLOGICAL POST-PROCESSING:

DICE SCORES OBTAINED FOR INDIVIDUAL MRI RECORDS IN VARIOUS

SCENARIOS (TRAIN DATA SIZE AND ATLAS RESOLUTION) COMPARED IN

COMPETITION FORMAT

Atlas Train data size
size 10k 100k 500k 1000k
No atlas 29:25 33:21 35:19 34:20
S = 60 31:23 34:20 36:18 36:18
S = 80 30:24 34:20 37:17 37:17
S = 100 31:23 34:20 35:19 36:18
S = 120 31:23 34:20 36:18 37:17

proposed RF-based post-processing does not improve the

segmentation quality in all cases, but visibly has beneficial

effect upon the global segmentation accuracy. Table II shows

for each train data size and atlas resolution, how many of

the 54 MRI records were segmented more accurately by

the RF-based and the morphological post-processing. In all

scenarios, the proposed RF-based method performed better.

The difference is the biggest for the scenarios that provide

the highest Dice Scores. This is another empirical support

for the usefulness of the intelligent post-processing.
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Fig. 3. Histogram of Dice Score differences between the outcome of
RF-based and morphological post-processing, obtained for individual MRI
records in various tested circumstances.

IV. CONCLUSIONS

This paper introduced a brain tumor segmentation proce-

dure supported by a cascade of trained ensembles. The first

ensemble consists of binary decision trees that distinguish

voxels belonging to normal tissues and lesions based on

four observed and 100 computed features. The intermediary

labels provided by the first ensemble stand at the basis of the

six features used by the second post-processing ensemble,

which is a classical random forest trained to give final

labels of enhanced accuracy. The proposed segmentation

procedure was evaluated using the MICCAI BraTS 2015

train data set. The proposed ensemble cascade achieved an

improvement of the overall Dice Score by 0.5%, compared to

our previous solution. This improvement is relevant enough

to be remarked, as recent state-of-the-art solutions (e.g.

[9], [15]) achieve Dice scores around 85-86% on the same

MICCAI BraTS 2015 data set.
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[8] Sz. Lefkovits, L. Szilágyi and L. Lefkovits, “Brain tumor segmentation
and survival prediction using a cascade of random forests,” Proc. 4th
International Workshop on Brainlesion: Glioma, Multiple Sclerosis,
Stroke and Traumatic Brain Injuries (BraTS MICCAI 2018, Granada),
Lecture Notes in Computer Science, vol. 11384, pp. 334–345, 2019.

[9] A. Pinto, S. Pereira, D. Rasteiro and C. A. Silva, “Hierarchical
brain tumour segmentation using extremely randomized trees,” Patt.
Recogn., vol. 82, pp. 105–117, 2018.

[10] T. Kalaiselvi, P. Kumarashankar and P. Sriramakrishnan, “Three-phase
automatic brain tumor diagnosis system using patches based updated
run length region growing technique,” J. Digit. Imag., vol. 33, pp.
465–479, 2020.

[11] S. Pereira, A. Pinto, V. Alves and C. A. Silva, “Brain tumor segmenta-
tion using convolutional neural networks in MRI images,” IEEE Trans.
Med. Imag., vol. 35, pp. 1240–1251, 2016.

[12] H. C. Shin, H. R. Roth, M. C. Gao, L. Lu, Z. Y. Xu, I. Nogues, J. H.
Yao, D. Mollura and R. M. Summers, “Deep nonvolutional neural
networks for computer-aided detection: CNN architectures, dataset
characteristics and transfer learning,” IEEE Trans. Med. Imag., vol.
35, pp. 1285–1298, 2016.

[13] G. Kim, “Brain tumor segmentation using deep fully convolutional
neural networks,” Proc. 3rd International Workshop on Brainlesion:
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
(BraTS MICCAI 2017, Quebec City), Lecture Notes in Computer
Science, vol. 10670, pp. 344–357, 2018.

[14] Y. X. Li and L. L. Shen, “Deep learning based multimodal brain tumor
diagnosis,” Proc. 3rd International Workshop on Brainlesion: Glioma,
Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BraTS MIC-
CAI 2017, Quebec City), Lecture Notes in Computer Science, vol.
10670, pp. 149–158, 2018.

[15] X. M. Zhao, Y. H. Wu, G. D. Song, Z. Y. Li, Y. Z. Zhang and Y. Fan,
“A deep learning model integrating FCNNs and CRFs for brain tumor
segmentation”, Med. Image Anal., vol. 43, pp. 98–111, 2018.

[16] B. H. Menze, K. van Leemput, D. Lashkari, T. Riklin-Raviv, E.
Geremia, E. Alberts, et al., “A generative probabilistic model and dis-
criminative extensions for brain lesion segmentation – with application
to tumor and stroke,” IEEE Trans. Med. Imag., vol. 35, pp. 933–946,
2016.
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[27] Á. Győrfi, L. Kovács and L. Szilágyi, “A feature ranking and selection
algorithm for brain tumor segmentation in multi-spectral magnetic
resonance image data”, Proc. 41st Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC),
Berlin, Germany, 2019, pp. 804–807.
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