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Abstract— The automatic segmentation of medical images
represents a research domain of high interest. This paper
proposes an automatic procedure for the detection and segmen-
tation of gliomas from multi-spectral MRI data. The procedure
is based on a machine learning approach: it uses ensembles of
binary decision trees trained to distinguish pixels belonging to
gliomas to those that represent normal tissues. The classification
employs 100 computed features beside the four observed ones,
including morphological, gradients and Gabor wavelet features.
The output of the decision ensemble is fed to morphological
and structural post-processing, which regularize the shape of
the detected tumors and improve the segmentation quality. The
proposed procedure was evaluated using the BraTS 2015 train
data, both the high-grade (HG) and the low-grade (LG) glioma
records. The highest overall Dice scores achieved were 86.5%
for HG and 84.6% for LG glioma volumes.

Index Terms— magnetic resonance imaging, brain tumor,
tumor detection, image segmentation, ensemble learning.

I. INTRODUCTION

Brain tumor represents a major cause of death in both de-
veloped and developing countries [1]. There are two general
categories of brain tumors: the so-called high-grade (HG)
and low-grade (LG) gliomas. Patients diagnosed with HG
glioma live fifteen more months in average. On the other
hand, it is possible to live several years with a low-grade
glioma. A key factor of survival or better life expectancy
represents the early diagnosis. This is why there is a strong
need for algorithms that can reliably detect the presence of
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tumors in MRI data, even when it is in an early phase.
The quickly growing number of MRI devices deployed in
hospitals and the even quicker rising amount of collected
MRI data brought another attribute to the specification: the
newly developed algorithms need to be fully automatic, so
that they can separate surely negative cases from suspected
positive ones, and thus can help the medical expert focus on
the serious cases.

Recently developed algorithms for glioma detection and
segmentation mostly rely on multi-spectral magnetic reso-
nance imaging (MRI), which might be a direct consequence
of the BraTS Challenges organized jointly with the MICCAI
conference since year 2012 [2], [3]. A comprehensive sum-
mary of earlier brain tumor segmentation solutions based
on MRI data can be found in the review paper published
by Gordillo et al. in [4]. Recently published solutions
usually combine advanced unsupervised image segmentation
algorithms with supervised and semi-supervised machine
learning techniques. The wide spectrum of methodologies
includes: active contour models combined with texture fea-
tures [5], cellular automata combined with level sets [6],
graph cut segmentation algorithm [7], superpixels combined
with non-parametric classifiers [8], feature fusion combined
with joint label fusion [9], texture feature and kernel sparse
coding [10], Gaussian mixture models [11], [12], fuzzy c-
means clustering in semi-supervised context [13], [14], fuzzy
c-means clustering combined with region growing [15],
AdaBoost classifier [16], extremely random trees (ERT) [17]
combined with superpixel level features [18], random forests
[19], [20], [21] and ensemble of random forests [22], support
vector machines [23], expert systems [24], convolutional
neural network [25], [26], deep neural networks [27], [28],
[29], [30], generative adversarial networks [31], and tumor
growth model [32].

This paper proposes a brain tumor segmentation procedure
that employs an ensemble learning approach based on binary
decision trees, and a twofold post-processing that uses mor-
phological and structural criteria to regularize the shape of
the detected tumor and to enhance the segmentation quality.
Compared to our previous works [33], the main novelty
consists in the structural post-processing, which individually
evaluates each contiguous tumor region within the brain
volume based on its size and shape. The procedure is trained
and evaluated using the MICCAI BraTS 2015 train data set,
both the LG and HG glioma records.

The rest of the paper is structured as follows: section II
presents the details of the proposed segmentation procedure,
dedicating a subsection to each processing step. Section III



evaluates the segmentation accuracy of the proposed pro-
cedure based on experiments conducted using two publicly
available MRI data sets. Section IV concludes the study.

II. MATERIALS AND METHODS

The steps of proposed method are exhibited in Figure 1.
All MRI data volumes involved in this study go through
a multi-step preprocessing, whose main goal is to provide
uniform histograms to all volumes, and to generate further
features to all pixels. After separating train data records from
test data records, the former is fed to the ensemble learning
step. Trained ensembles of binary decision trees are used to
provide prediction for the pixels of the test data records. A
twofold post-processing is employed to regularize the shape
of the estimated tumor. Finally, statistical markers are used
to evaluate the accuracy of the whole proposed procedure.

A. Data

The multi-spectral MRI volumes of the BraTS 2015 data
set [2], [3] include NLG = 54 low-grade and NHG = 220
high-grade glioma records. Each record consists of four
observed data channels (T1, T2, T1C, FLAIR) and the
ground truth established by human experts using a semi-
automatic procedure presented in [2]. In case of each record,
all data channels were registered to the T1 using a standard
automatic procedure. Volumes consist of 155 slices, each
slice containing 240 × 240 pixels. Pixels are isovolumetric,
each of them represents a one millimeter sized cubic area of
brain tissues. Since the adult human brain has a volume of
approximately 1500 cm3, the number of pixels is each record
ranges around 1.5 millions. Each record contains gliomas, the
volume of lesions ranges between 10 and 300 cm3. Some of
the records intentionally contain missing or altered values,
in the amount of up to one third of the pixels in one of the
four data channels.

B. Pre-processing

Pre-processing theoretically has the main goal to deal with
two possible type of noise:

• The intensity non-uniformity (INU) of the MR image
data is mainly the manifestation of turbulence of the
magnetic field [34], [35], [36]. Our procedure uses the
method of Tustison et al. [37] to suppress the effects of
INU.

• The great variety of the intensity ranges is another ob-
stacle encountered in MRI data. The absolute intensity
value of a pixel has no meaning by itself. We treat the
MRI volumes and their data channels independently of
each other, using a context dependent linear transform.
The linear coefficients are chosen such a way that the
25-percentile and 75-percentile value is mapped to 600
and 800, respectively. Further on, transformed intensity
values are bounded at 200 on the lower end, and at
1200 on the upper end of the target interval. Details are
presented in our previous work [33].

The four observed features of each pixel do not contain
enough information for an accurate classification. Neighbour

pixels in the slices of any volume highly correlate with each
other. Further on, the registration of the four data channels
in each record can hardly be called perfect. These are some
reasons that motivate the generation of several morphological
features from the planar and spatial neighborhood of each
pixel. Our procedure generates 25 computed features each
pixel in each data channels. Thus the total number of features
that characterize each pixel is 104. The generated features
for every pixel in every data channel are:

• average, minimum and maximum values extracted from
3× 3× 3 spatial neighborhood;

• five average and five median values extracted from
planar neighborhoods of sizes ranging from 3 × 3 to
11× 11;

• four gradient features extracted from 7 × 7 planar
neighborhood, with respect to the four main directions;

• eight Gabor wavelet features extracted from 11 × 11
planar neighborhood.

C. Decision making

The total number of Nρ records (54 or 220, for LG and HG
data sets, respectively) is randomly separated into two equal
groups. These groups serve as train and test data in turns
for the decision making algorithm. The train data is fed to
the ensemble learning process. The ensemble we employed
in this study is built from binary decision trees [38], which
share the following main characteristics:

• The number of the trees in the ensemble is previously
set to nT = 125. This value was determined empirically
during previous investigations [33].

• The number of feature vectors used to train each
tree, denoted by nF , was chosen from the set
{100k, 200k, 500k, 1000k}. Simulations were per-
formed with all these values to establish which has the
best outcome in terms of accuracy and efficiency.

• The set of nF randomly selected feature vectors in-
volved into the training of each BDT contained p−
percent of negatives and p+ = 100 − p− percent
of positives. The adequate parameter values of the
mixture were established empirically during previous
investigations [33].

• BDTs are built using an entropy-based criterion, allow-
ing the tree to grow as deep as necessary to provide
perfect separation of positive and negative feature vec-
tors. The maximum depth of trees range between 25
and 45, depending on the train data size (nF ) and the
random train data.

When the ensemble is trained, the test data records are
fed to the ensemble for prediction. The feature vector of
each pixel from the test data set receives a vote from each
BDT of the ensemble, collecting a total number of nT votes.
The ensemble decision for the test pixel is established by the
majority of the individual votes received from the trees. The
ensemble thus gives a label to each test pixels. These labels
are considered intermediary, because they may be overruled
during the post-processing.
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Fig. 1. Schematic representation of the proposed method.

D. Post-processing
The proposed post-processing step has the goal of giving

the detected lesions a regularized shape, which is likely
to improve the accuracy of the segmentation. The post-
processing is performed in two phases:

1) The morphological phase reevaluates the intermediary
label of each pixel from the test data set. A cubic
neighborhood of size 11× 11× 11 is defined with the
current pixel in central position. The number of valid
brain pixels within the neighborhood in denoted by nτ ,
while the number of pixels with positive intermediary
label within the neighborhood by nπ . The new label
of the current pixel is set to positive if nπ/nτ > 1/3.
The threshold value was established empirically.

2) The structural phase of the post-processing has the
option to discard some of the positive labels but
never produces extra positive labels. After the mor-
phological phase, adjacent pixels with positive labels
compose some contiguous formations (regions) within
the volume. As a first operation we identify all such
the contiguous lesions using a spatial region growing
method. Those lesions which contain less than 100
pixels are discarded by default, because they are too
small to be reliable declared gliomas. In case of
larger lesions, principal component analysis (PCA) is
applied to the coordinates of all pixels that form the
lesion, to establish the three main spacial axis and the
sizes in each of these directions. PCA provides three
eigenvalues λ1 > λ2 > λ3, where the radius of the
contiguous lesion in the three directions are

√
λ1,
√
λ2

and
√
λ3. If the smallest radius of the region is smaller

than a predefined threshold (
√
λ3 < 2), the current

detected lesion is discarded. All detected lesions that
survive the discarding criteria enumerated above, are
finally declared positives, and all pixels belonging to
them are finally labelled accordingly.

E. Evaluation criteria
The total number of MRI records involved in a certain

study scenario is Nρ ∈ {NLG, NHG}. Since the train and
test data sets can swap their roles, we can perform test
segmentation for all Nρ records. Let Γ

(π)
i and Γ

(ν)
i denote

the set of positive and negative pixels within volume i
(i = 1 . . . Nρ), according to the ground truth. Moreover, let

TABLE I
STATISTICAL CRITERIA TO EVALUATE SEGMENTATION QUALITY OF

INDIVIDUAL VOLUMES

Indicator Formula
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Λ
(π)
i and Λ

(ν)
i stand for the set of pixels of volume i that

received positive and negative final labels, respectively. The
cardinality of any finite set Z is denoted by |Z|.

The main accuracy markers that we extract from volume i,
are defined as presented in Table I. These statistical markers
range from 0 to 1. Ideal segmentation is represented by the
maximum value of each marker.

To characterize the accuracy of segmentation for a whole
set of records, we may compute the average value of the four
markers, with the general formula

X =
1

Nρ

Nρ∑
i=1

Xi , (1)

where X ∈ {TPR,TNR,DS,ACC}.
The overall Dice Score, denoted by D̃S, is given by the

formula:

D̃S =

2×

∣∣∣∣∣Nρ⋃i=1

Γ
(π)
i ∩

Nρ⋃
i=1

Λ
(π)
i
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∣∣∣∣∣+
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(π)
i

∣∣∣∣∣
. (2)

III. RESULTS AND DISCUSSION

The proposed brain tumor segmentation procedure under-
went a thorough experimental evaluation involving the set of
54 LG tumor records and the set of 220 HG tumor records
of the BraTS 2015 data set separately. Tests were performed
using four different values of the train data size nF that was
used for the training of each BDT: 100k, 200k, 500k, and



TABLE II
MAIN GLOBAL AND INDIVIDUAL ACCURACY INDICATORS

Low-grade glioma volumes High-grade glioma volumes
Accuracy Train data size per BDT (nF ) Train data size per BDT (nF )
indicator 100k 200k 500k 1000k 100k 200k 500k 1000k

Overall Dice score D̃S 85.77% 86.12% 86.26% 86.50% 83.91% 84.27% 84.44% 84.60%
Average Dice score DS 83.78% 83.97% 84.06% 84.27% 79.46% 80.28% 80.66% 80.90%
Average sensitivity TPR 79.82% 80.36% 80.83% 81.36% 76.25% 77.73% 78.24% 78.63%
Average specificity TNR 99.41% 99.38% 99.35% 99.32% 99.16% 99.08% 99.07% 99.05%
Correct decision rate ACC 98.11% 98.15% 98.16% 98.18% 97.79% 97.82% 97.84% 97.85%

DSi > 90% 16 of 54 16 of 54 18 of 54 18 of 54 72 of 220 70 of 220 70 of 220 71 of 220
DSi > 85% 38 of 54 39 of 54 40 of 54 40 of 54 120 of 220 122 of 220 124 of 220 124 of 220
DSi > 80% 44 of 54 44 of 54 44 of 54 45 of 54 149 of 220 153 of 220 154 of 220 154 of 220
DSi > 70% 49 of 54 48 of 54 48 of 54 49 of 54 179 of 220 180 of 220 180 of 220 181 of 220
DSi > 60% 50 of 54 50 of 54 50 of 54 50 of 54 194 of 220 197 of 220 198 of 220 199 of 220
DSi > 50% 51 of 54 51 of 54 51 of 54 52 of 54 203 of 220 206 of 220 207 of 220 207 of 220
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Fig. 2. Dice scores obtained for individual low-grade tumor values, plotted
against the true size of the tumor.
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Fig. 3. Dice scores obtained for individual high-grade tumor values, plotted
against the true size of the tumor.

1000k. The rate of negatives in the train data was set to
p− = 93% in case of the LG data, and p− = 91% in case of
the HG records. The segmentation accuracy was evaluated
for each individual record using the statistical indicators
presented in Section II-E, and global indicator values were
extracted to be able to formulate assertions on the overall
performance. Detailed results are presented in the following.

Table II presents statistical characteristics of the global
performance of the proposed segmentation procedure. The
upper part of the table exhibits the overall and average Dice
score, and the average sensitivity, specificity and correct
decision rate obtained in case of various train data sizes. Dice
score and sensitivity values grow together with the train data
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Fig. 4. Statistical accuracy indicator values obtained for the 54 low-grade
tumor volumes separately, represented in increasing order.
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Fig. 5. Statistical accuracy indicator values obtained for the 220 high-grade
tumor volumes separately, represented in increasing order.

size, while the specificity and correct decision rate had only
slight variations.

The lower part of Table II indicates, in case of how many
individual MRI records the proposed method produced a
segmentation having a Dice score exceeding various prede-
fined threshold values ranging between 50% and 90%. These
numbers also indicate that larger train data sets produce en-
sembles that give better accuracy at prediction. The proposed
segmentation procedure achieves Dice scores above 80% in
case of 80% of LG glioma volumes and 70% of HG glioma
volumes.

Figure 2 shows the Dice scores obtained for individual
LG glioma volumes, plotted against the true size of the



Fig. 6. One slice from ten different HG tumor volumes, the four observed
data channels and the segmentation result. The first four rows present the
T1, T2, T1C and FLAIR channel data of the chosen slices. The bottom row
exhibits the segmented slice, representing true positives (|Γ(π)

i ∩ Λ
(π)
i |) in

green, false negatives (|Γ(π)
i ∩Λ

(ν)
i |) in red, false positives (|Γ(ν)

i ∩Λ
(π)
i |)

in blue, and true negatives (|Γ(ν)
i ∩ Λ

(ν)
i |) in gray, where i is the index of

the current MRI record.

tumor, as indicated by the human expert made ground truth.
Each cross (×) represents a Dice score, while the dashed
line shows the linear trend identified via linear regression.
The trend indicates that Dice scores are slightly higher for
larger tumors, but even for the small ones, the expected value
is well above 80%. There are some LG tumor records for
which the high accuracy was not achieved. Those with lots
of missing data belong to this category.

A similar representation of Dice scores achieved for indi-
vidual HG glioma volumes is given in Fig. 3. The distribution
of Dice score values is quite similar to the Dice scores
of LG data. However, the linear trend rises steeper with
tumor size, and small gliomas have somewhat lower expected
Dice scores, around 75%. Here there are also two records
with Dice scores below 10%, which contain image data of
very low quality. Nevertheless, the vast majority of records
received a fine segmentation, with Dice scores above 80%.

Figure 4 plots the main accuracy indicator values obtained
for individual LG tumor records in increasing order: Dice
score and sensitivity on the left side, specificity and accuracy
(correct decision rate) on the right side, to provide good
visibility. Figure 5 plots the same graphs with the accuracy
indicators achieved in case of the HG tumor volumes. These
graphs reveal several important facts:

• The distribution of Dice scores shows that the median
value is well above the average: the difference is around
2% for the LG data and 4% for the HG data. The median
Dice score is well approximated by the overall value
D̃S.

• Specificity values are above 99% in average, and the
values obtained for individual records are above 99%
in a vast majority of cases. This is important because
of the high number of negative pixels. Without this
feature the proposed procedure would produce lots of
false positives.

• Correct decision rates are around 98% in average. This

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS

Method (Classifier) Year BraTS data Dice scores
Tustison et al. [19] (RF) 2015 2013 DS = 0.87

Pereira et al. [25] (CNN) 2016 2013 DS = 0.88

Pinto et al. [17] (ERT) 2018 2013 DS = 0.85

Pereira et al. [25] (CNN) 2016 2015 DS = 0.78

Zhao et al. [29] (CNN) 2018 2015 DS = 0.84

Pei et al. [9] (RF, boosting) 2020 2015 DS = 0.850

2015 LG DS = 0.843

Proposed method D̃S = 0.865

(BDT ensemble) 2015 HG DS = 0.809

D̃S = 0.846

means that only one out of fifty pixels is misclassified.

Figures 2 - 5 all represent the accuracy indicator values
obtained in case of training the BDTs with one million
feature vectors.

Figure 6 shows the final outcome of the segmentation on
ten selected slices from different MRI records. Each column
relates on a single slice. The upper four rows show the
augmented input data of the four data channels, while the
bottom row indicates the segmentation results, using color
coding described in the figure caption.

To perform the test on a new record that was never seen by
the trained procedure needs between 100 and 120 seconds,
depending on the train data size and the number of pixels
in the test record. This duration is achieved on a current
notebook computer with i7 processor, running at 2.6 GHz
frequency. The software is executed on a single core, and
no relevant effort was made to optimize the efficiency of the
procedure. Approximately half of this time is taken by the
feature generation process, which could be easily reduced
by replacing the median features with others that can be
extracted more efficiently.

IV. CONCLUSIONS

This paper proposed an automatic procedure based on
ensemble learning, aimed at the detection and segmentation
of brain tumors from multi-spectral MRI records. The seg-
mentation was achieved in three phases. The first prepro-
cessing step accomplished the data enhancement and feature
generation tasks. In the second phase, an ensemble of binary
decision trees was trained to separate pixels belonging to
lesions from normal tissues, thus providing an intermediary
label for each pixel. Finally, a twofold post-processing was
applied to refine the intermediary labels and provide regular-
ized shape to the detected gliomas. The proposed procedure
was built and evaluated using the BraTS 2015 train data,
which consists of a total number of 274 glioma records. The
highest overall Dice scores, 86.5% for HG and 84.6% for
LG glioma volumes, were achieved using the ensemble built
with the largest employed train data set. These Dice scores
represent 1-1.5% improvement compared to our previous
works, and seem competitive with respect to state-of-the-art
methods, as indicated in Table III.
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glioblastoma segmentation based on a multiparametric structured
unsupervised classification,” PLoS ONE, vol. 10(5), e0125143, 2015.

[12] B. H. Menze, K. van Leemput, D. Lashkari, T. Riklin-Raviv, E.
Geremia, E. Alberts, et al., “A generative probabilistic model and dis-
criminative extensions for brain lesion segmentation – with application
to tumor and stroke,” IEEE Trans. Med. Imag., vol. 35, pp. 933–946,
2016.
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